1
|
Lee JM, Choi A, Lee HH, Park SJ, Kim BH. Purple Corn Extract Improves Dry Eye Symptoms in Models Induced by Desiccating Stress and Extraorbital Lacrimal Gland Excision. Nutrients 2023; 15:5063. [PMID: 38140323 PMCID: PMC10745618 DOI: 10.3390/nu15245063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Dry eye disease (DED) occurs when there are not enough tears, and the associated symptoms-burns, itching, and a gritty feeling in the eye-can cause great discomfort. The purpose of this study was to evaluate the therapeutic effect of purple corn extract (PCE) on DED. Pretreatment with PCE prevented desiccation-stress-induced cell damage in human retinal pigment epithelial cells and primary human corneal epithelial cells. Furthermore, PCE reduced the mRNA expression of inflammatory mediators in the induction of desiccation stress. The therapeutic effects of PCE on DED were evaluated in an animal model with induced unilateral excision of the exorbital lacrimal gland. The administration of PCE was effective at recovering tear production, corneal surface irregularity, and conjunctival goblet cell density, as well as at reducing apoptotic cell death in the outer layer of the corneal epithelium. Collectively, PCE improved dry eye symptoms, and, therefore, it could be a potential agent to ameliorate and/or treat DED.
Collapse
Affiliation(s)
| | | | | | | | - Byung-Hak Kim
- MEDIENCE Co., Ltd., Chuncheon 24232, Republic of Korea; (J.-M.L.); (A.C.); (H.-H.L.); (S.J.P.)
| |
Collapse
|
2
|
Cheng X, Zhu J, Chen Z, Wu Z, Zhang F, Wu C, Fan G. Color stability and degradation kinetics of anthocyanins in mulberry stirred yoghurt fermented by different starter cultures. Food Sci Biotechnol 2023; 32:1351-1359. [PMID: 37457399 PMCID: PMC10349000 DOI: 10.1007/s10068-023-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
To evaluate the storage stability of anthocyanin in stirred yoghurt, mulberry juice and different starter cultures (S) were added into milk to investigate the color stability and degradation kinetics of anthocyanin. The result showed that the redness value decreased, while the brightness value increased, and the anthocyanin content decreased significantly from 1.47 ~ 1.86 to 1.01 ~ 1.19 mg/g. The degradation kinetics followed a first-order reaction. Principal component analysis showed that S2 and S6 were correlated with anthocyanins, S8 and S4 were correlated with a*. At the later stage, S4, S8 were correlated with a*, while S2, S4, S6 were correlated with anthocyanins. At 28th day, the anthocyanin content of S4 was 1.14 mg/g, which was not the highest, but the total score was the highest. Therefore, S4 was the best choice when the storage period is 28 days. This study provided technical support for the selection of a better starter for stirring yoghurt. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01271-8.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Jinpeng Zhu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Zhijie Chen
- College of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai’an, 223005 People’s Republic of China
| | - Zhihao Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Fuqiang Zhang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| |
Collapse
|
3
|
Liu R, Wang X, Yang L, Wang Y, Gao X. Coordinated encapsulation by β-cyclodextrin and chitosan derivatives improves the stability of anthocyanins. Int J Biol Macromol 2023:125060. [PMID: 37245775 DOI: 10.1016/j.ijbiomac.2023.125060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
To improve the stability of anthocyanins (ACNs), ACNs were loaded into dual-encapsulated nanocomposite particles by self-assembly using β-cyclodextrin (β-CD) and two different water-soluble chitosan derivatives, namely, chitosan hydrochloride (CHC) and carboxymethyl chitosan (CMC). The ACN-loaded β-CD-CHC/CMC nanocomplexes with small diameters (333.86 nm) and had a desirable zeta potential (+45.97 mV). Transmission electron microscopy (TEM) showed that the ACN-loaded β-CD-CHC/CMC nanocomplexes had a spherical structure. Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD) confirmed that the ACNs in the dual nanocomplexes were encapsulated in the cavity of the β-CD and that the CHC/CMC covered the outer layer of β-CD through noncovalent hydrogen bonding. The ACNs from the dual-encapsulated nanocomplexes improved stability of ACNs under adverse environmental conditions or in a simulated gastrointestinal environment. Further, the nanocomplexes exhibited good storage stability and thermal stability over a wide pH range when added into simulated electrolyte drinks (pH = 3.5) and milk tea (pH = 6.8). This study provides a new option for the preparation of stable ACNs nanocomplexes and expands the applications for ACNs in functional foods.
Collapse
Affiliation(s)
- Ranran Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lixia Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
5
|
Wang Q, Jiang Y, Chen W, Julian McClements D, Ma C, Liu X, Liu F. Development of pH-Responsive Active Packaging Materials Based on Purple Corncob and Its Application in Meat Freshness Monitoring. Food Res Int 2022; 161:111832. [DOI: 10.1016/j.foodres.2022.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
6
|
Tian XZ, Wang X, Ban C, Luo QY, Li JX, Lu Q. Effect of Purple Corn Anthocyanin on Antioxidant Activity, Volatile Compound and Sensory Property in Milk During Storage and Light Prevention. Front Nutr 2022; 9:862689. [PMID: 35399684 PMCID: PMC8984100 DOI: 10.3389/fnut.2022.862689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to observe the effect of purple corn anthocyanin on the light-induced antioxidant activity, free radicals, volatile compounds, color parameters, and sensory properties of milk during storage. There were four groups: (1) negative control, no addition of anthocyanins + exposure to fluorescent light (NC); (2) positive control 1, no addition of anthocyanins + protected from fluorescent light (PC1); (3) positive control 2, the addition of 0.3% (w/v) anthocyanins + exposure to fluorescent light (PC2); and (4) the addition of 0.3% anthocyanins + protected from fluorescent light (AC). The results indicated that the concentration of antioxidant activity parameters in the NC group decreased during the entire storage period, whereas antioxidant activity parameters were unchanged except for the glutathione peroxidase (GSH-Px) in the AC group. Moreover, the NC group showed lower levels of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and higher levels of superoxide anion and hydrogen peroxide than the other groups after 1 d of storage period. The extent of malondialdehyde accumulation and lipid peroxidation in the control groups were greater than that of the AC group. Twenty-two volatile compounds were determined in milk, which consisted of eight alcohols, three ketones, five aldehydes, two esters, and four hydrocarbons by headspace gas chromatography mass spectrometer analysis. Specifically, individual aldehydes, esters and hydrocarbons in the AC group remained at relatively stable values during storage relative to the other three groups. Stronger positive correlations were detected between several antioxidant activities (superoxide dismutase, GSH-Px) and DPPH scavenging activity as well as total ketones in milk. Adding of anthocyanin did not impact on the color values of L*, a* and b* in light-protected milk during the entire storage period. Some sensory evaluation parameters (flat, garlic/onion/weedy, oxidized-light, oxidized-metal, rancid) in AC group were significantly higher than that of the control group at the end of the period. In conclusion, the current study revealed that the addition of purple corn anthocyanin pigment to light-protected milk had the potential to prevent lipid oxidation, enhance antioxidant activity, maintain volatile compounds and increase the sensory scores.
Collapse
|
7
|
Storage Conditions and Adsorption Thermodynamic Properties for Purple Corn. Foods 2022; 11:foods11060828. [PMID: 35327250 PMCID: PMC8947547 DOI: 10.3390/foods11060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Adsorption isotherms provide insight into the thermodynamic properties governed by food storage conditions. Adsorption isotherms of purple corn of the Canteño variety were evaluated at 18, 25, and 30 °C, for the equilibrium relative humidity (ERH) range between 0.065 and 0.95. The equilibrium moisture (Xe) was determined by the continuous weight-change method. Seven mathematical models of isotherms were modeled, using the coefficient of determination R2, mean absolute error (MAE), and estimated standard error (ESE) as the convergence criterion. Thermodynamic parameters such as isosteric heat (qst), Gibbs Free Energy (ΔG), differential entropy (ΔS), activation energy (Ea), and compliance with the isokinetic law were evaluated. It was observed that the adsorption isotherms presented cross-linking around 75% ERH and 17% Xe, suggesting adequate storage conditions at these values. The GAB and Halsey models reported better fit (R2 > 97%, MAE < 10%, ESE < 0.014 and random residual dispersion). The reduction of Xe from 17 to 7%, increases qst, from 7.7022 to 0.0165 kJ/g, while ΔG decreases considerably with the increase in Xe, presenting non-spontaneous endergonic behavior, and linear relationship with ΔS, evidencing compliance with the isokinetic theory, governed by qst. Ea showed that more energy is required to remove water molecules from the upper layers bound to the monolayer, evaluated using CGAB. The models predicted the storage conditions, and the thermodynamic parameters show the structural stability of the purple corn grains of the Canteño variety during storage.
Collapse
|
8
|
Ren S, Giusti MM. Comparing the effect of whey protein preheating temperatures on the color expression and stability of anthocyanins from different sources. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021; 13:nu13124495. [PMID: 34960047 PMCID: PMC8709276 DOI: 10.3390/nu13124495] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic metabolic diseases of the 21st century. Nevertheless, its prevalence might be attenuated by taking advantage of bioactive compounds commonly found in fruits and vegetables. This work is focused on the recovery of polyphenols and polysaccharide–polyphenol conjugates from grape pomace for T2DM management and prevention. Bioactives were extracted by solid–liquid extraction and by pressurized hot water extraction (PHWE). Polyphenolic fraction recovered by PHWE showed the highest value for total phenolic content (427 μg GAE.mg−1), mainly anthocyanins and proanthocyanidins, and higher antioxidant activity compared to the fraction recovered by solid–liquid extraction. Polysaccharide–polyphenol conjugates comprehended pectic polysaccharides to which approximately 108 μg GAE of phenolic compounds (per mg fraction) were estimated to be bound. Polyphenols and polysaccharide–polyphenol conjugates exhibited distinct antidiabetic effects, depending on the extraction methodologies employed. Extracts were particularly relevant in the inhibition of a-glucosidase activity, with free polyphenols showing an IC50 of 0.47 μg.mL−1 while conjugates showed an IC50 of 2.7, 4.0 and 5.2 μg.mL−1 (solid–liquid extraction, PHWE at 95 and 120 °C, respectively). Antiglycation effect was more pronounced for free polyphenols recovered by PHWE, while the attenuation of glucose uptake by Caco-2 monolayers was more efficient for conjugates obtained by PHWE. The antidiabetic effect of grape pomace bioactives opens new opportunities for the exploitation of these agri-food wastes in food nutrition, the next step towards reaching a circular economy in grape products.
Collapse
|
10
|
Ren S, Jiménez-Flores R, Giusti MM. The interactions between anthocyanin and whey protein: A review. Compr Rev Food Sci Food Saf 2021; 20:5992-6011. [PMID: 34622535 DOI: 10.1111/1541-4337.12854] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACN) are natural pigments that produce bright red, blue, and purple colors in plants and can be used to color food products. However, ACN sensitivity to different factors limits their applications in the food industry. Whey protein (WP), a functional nutritional additive, has been shown to interact with ACN and improve the color, stability, antioxidant capacity, bioavailability, and other functional properties of the ACN-WP complex. The WP's secondary structure is expected to unfold due to heat treatment, which may increase its binding affinity with ACN. Different ACN structures will also have different binding affinity with WP and their interaction mechanism may also be different. Circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy show that the WP secondary structure changes after binding with ACN. Fluorescence spectroscopy shows that the WP maximum fluorescence emission wavelength shifts, and the fluorescence intensity decreases after interaction with ACN. Moreover, thermodynamic analysis suggests that the ACN-WP binding forces are mainly hydrophobic interactions, although there is also evidence of electrostatic interactions and hydrogen bonding between ACN and WP. In this review, we summarize the information available on ACN-WP interactions under different conditions and discuss the impact of different ACN chemical structures and of WP conformation changes on the affinity between ACN and WP. This summary helps improve our understanding of WP protection of ACN against color degradation, thus providing new tools to improve ACN color stability and expanding the applications of ACN and WP in the food and pharmacy industries.
Collapse
Affiliation(s)
- Shuai Ren
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Rafael Jiménez-Flores
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Maria Monica Giusti
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| |
Collapse
|
11
|
Bayram B, Ozkan G, Kostka T, Capanoglu E, Esatbeyoglu T. Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials. Molecules 2021; 26:4031. [PMID: 34279371 PMCID: PMC8271709 DOI: 10.3390/molecules26134031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The important roles of food packaging are food protection and preservation during processing, transportation, and storage. Food can be altered biologically, chemically, and physically if the packaging is unsuitable or mechanically damaged. Furthermore, packaging is an important marketing and communication tool to consumers. Due to the worldwide problem of environmental pollution by microplastics and the large amounts of unused food wastes and by-products from the food industry, it is important to find more environmentally friendly alternatives. Edible and functional food packaging may be a suitable alternative to reduce food waste and avoid the use of non-degradable plastics. In the present review, the production and assessment of edible food packaging from food waste as well as fruit and vegetable by-products and their applications are demonstrated. Innovative food packaging made of biopolymers and biocomposites, as well as active packaging, intelligent packaging, edible films, and coatings are covered.
Collapse
Affiliation(s)
- Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Uskudar, 34668 Istanbul, Turkey
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| |
Collapse
|
12
|
Ren S, Giusti MM. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Res Int 2021; 144:110350. [PMID: 34053543 DOI: 10.1016/j.foodres.2021.110350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/25/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022]
Abstract
Our objective was to explore the effects of whey protein (WP) concentration and preheating temperature on anthocyanin color expression and stability over time in the presence of ascorbic acid. Anthocyanins from purple corn, grape or black carrot were mixed with native WP or preheated WP (40-80°C) in various concentrations (0-10 mg/mL) in pH 3 buffer containing 0.05% ascorbic acid and stored in the dark at 25 °C for 5 days. WP addition increased anthocyanin absorbance and protected anthocyanin from ascorbic acid-mediated degradation. Increasing WP concentration resulted in lower lightness and higher chroma, hue angle and color stability. The color loss of anthocyanin solutions decreased by 40%-50% when 10 mg/mL WP was added. Native WP showed more color enhancement and protection than thermally-induced WP. Increasing the WP preheating temperature resulted in less absorbance increase and more absorbance loss. Anthocyanin' half-life was improved by addition of WP in a dose dependent manner. Native WP addition (10 mg/mL) extended anthocyanin half-life by about 2 times for purple corn and grape, and 1.31 times for black carrot anthocyanin solutions. Preheating temperature did not significantly affect anthocyanin protection by WP. WP addition might enhance anthocyanin stability in beverages containing ascorbic acid, expanding anthocyanin application in foods.
Collapse
Affiliation(s)
- Shuai Ren
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210-1007, United States.
| | - M Monica Giusti
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210-1007, United States.
| |
Collapse
|
13
|
Recovery of phenolic compounds from agro-industrial by-products: Evaluating antiradical activities and immunomodulatory properties. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Kalaitsidis K, Sidiropoulou E, Tsiftsoglou O, Mourtzinos I, Moschakis T, Basdagianni Z, Vasilopoulos S, Chatzigavriel S, Lazari D, Giannenas I. Effects of Cornus and Its Mixture with Oregano and Thyme Essential Oils on Dairy Sheep Performance and Milk, Yoghurt and Cheese Quality under Heat Stress. Animals (Basel) 2021; 11:1063. [PMID: 33918077 PMCID: PMC8069601 DOI: 10.3390/ani11041063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The effect of a diet supplemented with a novel cornus extract, enriched with essential oils of oregano and thyme, on the performance of Chios cross-bred dairy sheep was investigated during the summer period. The plant extracts were prepared using a "green" method based on aqueous extraction. A total of 45 lactating ewes were allocated into three equal groups in a randomized block design. The three groups were fed the same feed allowance, roughage based on Lucerne hay and wheat straw and a concentrate based on cereals and oil cakes (the control diet). The diet of two groups was fortified with cornus extract, with or without oregano and thyme essential oils, at a level 0.515 g of plant extract/essential oils per kg of concentrate. Individual milk yield was recorded weekly and feed refusals were recorded on a pen basis daily, during a six-week period of lactation. Milk samples were analyzed for the chemical composition of protein, fat, lactose and solids-not-fat constituents, somatic cell counts and total viable bacteria counts. Moreover, the milk of each group was used for yoghurt and Feta cheese production. The lipid oxidative stability, protein carbonyl content and fatty acid composition of milk, yoghurt and cheese samples were also evaluated. The results showed that the incorporation of novel plant extracts and essential oils increased the milk production per ewe. Dietary supplementation with cornus extracts and essential oils lowered lipid and protein oxidation in milk, yoghurt and cheese samples, compared to the control. However, diet supplementation with herbal extracts did not affect the fatty acid profile in milk, cheese and yoghurt or the serum biochemical parameters. In conclusion, dietary supplementation with cornus in combination with oregano and thyme has the potential to improve feed utilization and the performance of high-yield dairy Chios cross-bred ewes reared under heat stress.
Collapse
Affiliation(s)
- Konstantinos Kalaitsidis
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (E.S.); (S.V.)
| | - Erasmia Sidiropoulou
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (E.S.); (S.V.)
| | - Olga Tsiftsoglou
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (O.T.); (D.L.)
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.M.); (T.M.)
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.M.); (T.M.)
| | - Zoitsa Basdagianni
- Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stylianos Vasilopoulos
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (E.S.); (S.V.)
| | | | - Diamanto Lazari
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (O.T.); (D.L.)
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (E.S.); (S.V.)
| |
Collapse
|
15
|
Inhibitory effects of soy protein and its hydrolysate on the degradation of anthocyanins in mulberry extract. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Miyagusuku-Cruzado G, Jiménez-Flores R, Giusti MM. Whey protein addition and its increased light absorption and tinctorial strength of model solutions colored with anthocyanins. J Dairy Sci 2021; 104:6449-6462. [PMID: 33773783 DOI: 10.3168/jds.2020-19690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023]
Abstract
Anthocyanins (ACN) are pigments with vivid colors, but their application as food colorants is restricted by their limited stability and color expression. Anthocyanins exhibit higher stability in dairy systems than in buffers at similar pH, suggesting that pigments may be able to interact with dairy components such as proteins, resulting in improved performance as colorants. Our objective was to determine the type of interaction between whey proteins (WP) and ACN leading to color enhancements and to determine the role of the ACN chemical structure in this interaction. Model solutions colored with semipurified pigments from sources with different ACN profiles (Berberis boliviana, grape skin, purple corn, black carrot, and red cabbage) were mixed with different concentrations of whey protein isolate (WPI) in pH 3 buffer. Absorption spectra of these solutions were acquired using an absorbance microplate reader, and color parameters were calculated from spectral data. Isolated ACN 3-glucosides were used to determine the role of the aglycone structure in the WP-ACN interaction using visible and fluorescence spectroscopy. In silico modeling was used to visualize potential differences in the interaction between β-lactoglobulin and ACN. Addition of WPI resulted in hyperchromic shifts at the wavelength of maximum absorption in the visible range (λvis-max) of up to 19%, and a significant increase in tinctorial strength for all ACN sources (ΔE > 5). Moreover, ACN acylation did not seem to play a significant role in the WP-ACN interaction. When using isolated ACN, WPI addition resulted in hyperchromic shifts at the λvis-max only for methoxylated ACN such as petunidin-3-glucoside (up to 24%), and malvidin-3-glucoside (up to 97%). The bimolecular quenching constant values (Kq > 1010M-1s-1) strongly suggested that the predominant type of quenching interaction was static. Analysis of enthalpy, entropy, and Gibbs free energy showed that this binding was spontaneous; depending on the chemical structure of the ACN, the predominant binding forces could be hydrophobic interactions or hydrogen bonding. Modeling suggested that methoxylations in the B ring of the aglycon structure promoted interactions with electron acceptor amino acids. Overall, WP could be used to enhance the tinctorial strength of select ACN depending on their structural characteristics. Therefore, ACN source selection may play a key role for specific applications in dairy products.
Collapse
Affiliation(s)
- G Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1007
| | - R Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1007
| | - M M Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1007.
| |
Collapse
|
17
|
Gong S, Yang C, Zhang J, Yu Y, Gu X, Li W, Wang Z. Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Ma Y, Li S, Ji T, Wu W, Sameen DE, Ahmed S, Qin W, Dai J, Liu Y. Development and optimization of dynamic gelatin/chitosan nanoparticles incorporated with blueberry anthocyanins for milk freshness monitoring. Carbohydr Polym 2020; 247:116738. [DOI: 10.1016/j.carbpol.2020.116738] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
19
|
Zhang Y, Deng Z, Li H, Zheng L, Liu R, Zhang B. Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11817-11828. [PMID: 32975408 DOI: 10.1021/acs.jafc.0c05224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A model food system was designed with dietary fiber and crude anthocyanins from purple eggplant peel to explore the degradation mechanism of anthocyanins during microwave and frying treatments. Our results found that delphinidin-3-O-rutinoside was either hydrolyzed into delphinidin or condensed with p-coumaric acid to form p-coumaroyl-delphinidin-3-O-glucoside. Delphinidin was cleaved into gallic acid and phloroglucinaldehyde, which might be further oxidized into pyrogallol and phloroglucinol, respectively. The total anthocyanin degradation followed the first-order kinetics in fried and microwaved solid matrix samples as well as microwaved liquid matrix samples. However, the total anthocyanin degradation followed the second-order kinetics in the heated liquid matrix samples at the frying temperature. The brown/polymeric color index, which negatively correlated with the anthocyanin content, increased faster in the liquid matrix samples than in the solid matrix samples. Compared with frying treatment, a higher rate of anthocyanin degradation in solution was observed under microwave treatment. However, anthocyanins were subject to much more damage under frying treatment than microwave treatment in a solid food system.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
20
|
Pangestu NP, Miyagusuku-Cruzado G, Giusti MM. Copigmentation with Chlorogenic and Ferulic Acid Affected Color and Anthocyanin Stability in Model Beverages Colored with Sambucus peruviana, Sambucus nigra, and Daucus carota during Storage. Foods 2020; 9:E1476. [PMID: 33081089 PMCID: PMC7602824 DOI: 10.3390/foods9101476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
The food industry is looking for alternatives to synthetic colorants. Anthocyanins (ACNs) are suitable replacements due to their color characteristics and potential health benefits. The application of sauco (Sambucus peruviana, SP) as a potential source of ACN-based colorants was evaluated and compared to elderberry (Sambucus nigra, SN) and an extract from purple carrots (PC). Color and pigment stability were evaluated using a model beverage system during eight weeks of storage. Copigmentation with chlorogenic acid (CGA) and ferulic acid (FA) were also evaluated. SP ACNs provided darker and more intense colors than those obtained with SN but less intense than those obtained with PC. Addition of CGA and FA resulted in significantly darker colors with higher chroma in beverages colored with SP and SN but not in beverages colored with PC. Copigmentation with FA reduced monomeric pigment half-lives for all ACN sources but increased the chroma half-lives of beverages colored with SP and SN, from 23 to 49 weeks, and from 23 to 55 weeks, respectively. Analyses using liquid chromatography coupled to photodiode array detection and mass spectrometry showed that interaction between non-acylated ACNs and FA resulted in the formation of pyranoanthocyanins. Overall, ACNs from non-acylated sources such as SP, in combination with FA, showed potential for commercial food applications.
Collapse
Affiliation(s)
| | | | - M. Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210-1007, USA; (N.P.P.); (G.M.-C.)
| |
Collapse
|
21
|
Różyło R. Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
A New Italian Purple Corn Variety (Moradyn) Byproduct Extract: Antiglycative and Hypoglycemic In Vitro Activities and Preliminary Bioaccessibility Studies. Molecules 2020; 25:molecules25081958. [PMID: 32340142 PMCID: PMC7221992 DOI: 10.3390/molecules25081958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
The reuse of byproducts from agricultural and food industries represents the key factor in a circular economy, whose interest has grown in the last two decades. Thus, the extraction of bioactives from agro-industrial byproducts is a potential source of valuable molecules. The aim of this work was to investigate the in vitro capacity of byproducts from a new Italian corn variety, named Moradyn, to inhibit the accumulation of advanced glycation end products (AGEs) involved in several chronic age-related disorders. In addition, the hypoglycemic effect of Moradyn was tested by in vitro enzymatic systems. A Moradyn phytocomplex and its purified anthocyanin fraction were able to inhibit fructosamine formation and exhibited antiglycative properties when tested using BSA-sugars and BSA-methylglyoxal assays. These properties could be attributed to the polyphenols, mainly anthocyanins and flavonols, detected by RP-HPLC-DAD-ESI-MSn. Finally, a Moradyn phytocomplex was submitted to a simulated in vitro digestion process to study its bioaccessibility. Moradyn could be considered as a promising food ingredient in the context of typical type 2 diabetes risk factors and the study will continue in the optimization of the ideal formulation to preserve its bioactivities from digestion.
Collapse
|
23
|
Kılıç Bayraktar M, Harbourne NB, Fagan CC. Impact of heat treatment and acid gelation on polyphenol enriched milk samples. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
de Moura SCSR, Schettini GN, Garcia AO, Gallina DA, Alvim ID, Hubinger MD. Stability of Hibiscus Extract Encapsulated by Ionic Gelation Incorporated in Yogurt. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02308-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Oliveira G, Eliasson L, Ehrnell M, Höglund E, Andlid T, Alminger M. Tailoring bilberry powder functionality through processing: Effects of drying and fractionation on the stability of total polyphenols and anthocyanins. Food Sci Nutr 2019; 7:1017-1026. [PMID: 30918644 PMCID: PMC6418464 DOI: 10.1002/fsn3.930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022] Open
Abstract
Bilberries are a rich natural source of phenolic compounds, especially anthocyanins. The press cake obtained during the processing of bilberry juice is a potential source of phytochemicals. The objective of this study was to evaluate different drying techniques and the fractionation of bilberry press cake powder toward obtaining phenolic-rich ingredients for incorporation into value-added food products. The derived powders were dispersed in water and dairy cream, to investigate the effects of drying and fractionation on the dispersibility and solubility of phenolic compounds. The drying techniques, hot air drying and microwave drying, applied on bilberry press cake reduced the content of total phenolics and anthocyanins. The degradation was, however, consistently small and similar for both techniques. The major anthocyanins detected in the samples were stable during drying and fractionation treatments. Fractionation of the press cake powder affected the total apparent phenolic content and composition of the different fractions. The highest phenolic content (55.33 ± 0.06 mg g-1 DW) and highest anthocyanin content (28.15 ± 0.47 mg g-1 DW) were found in the fractions with the smallest particle size (<500 μm), with delphinidin-3-O-galactoside being the most abundant anthocyanin. Dispersibility of all dried powder samples was higher in dairy cream than water, and the highest level of anthocyanins was measured in samples from the powder with the smallest particle size (<500 μm), dispersed in cream. The application of drying, milling and fractionation was found to be a promising approach to transform bilberry press cake into stable and deliverable ingredients that can be used for fortification of food products with high levels of phenolic compounds.
Collapse
Affiliation(s)
- Gabriel Oliveira
- Department of Biology and Biological Engineering, Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| | - Lovisa Eliasson
- RISE Research Institute of Sweden, Agrifood and BioscienceGothenburgSweden
| | - Maria Ehrnell
- RISE Research Institute of Sweden, Agrifood and BioscienceGothenburgSweden
| | - Evelina Höglund
- RISE Research Institute of Sweden, Agrifood and BioscienceGothenburgSweden
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| | - Marie Alminger
- Department of Biology and Biological Engineering, Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
26
|
Extraction of purple corn ( Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Guo J, Giusti MM, Kaletunç G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Res Int 2018; 107:414-422. [PMID: 29580503 DOI: 10.1016/j.foodres.2018.02.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
Purple corn (PC) and blueberry (BB) extracts were encapsulated in alginate-pectin hydrogel particles to protect anthocyanins (ACNs) from degradation. Combinations of alginate to pectin ratios at 82 to 18% and 43 to 57% and total gum concentrations (TGC) at 2.2% and 2.8% TGC were prepared to encapsulate both PC and BB ACN. The alginate-pectin hydrogel particles containing PC or BB extracts were produced by dripping solution into pH 1.2 buffer. Blueberry extract encapsulation efficiency was significantly higher than that of purple corn extract due to ACN chemical structure differences and the compatibility between the ACN structures and alginate-pectin hydrogel structure at the low pH environment. Effect of initial ACN concentration in droplets, particle shape, alginate to pectin ratio, TGC, ACN source, and curing bath conditions on encapsulation efficiency after curing (EEm) was investigated. The initial ACN concentration and particle shape didn't influence the EEm, while the alginate to pectin ratio, TGC, ACN source and the pH of the curing bath showed significant effect on the EEm. The EEm was improved from 26% to 65% for PC ACN and from 48% to 116% for BB ACN by augmenting curing bath with ACN at various concentrations. The ACN retention during storage (ARs) in hydrogel particles stored in pH 3.0 buffer was improved at low temperature and high particle weight to solution volume ratio. Higher amount of ACN was retained in the hydrogel particles when spherical particles were used. Encapsulation in hydrogel particles significantly reduced the anthocyanin photodegradation upon exposure to fluorescence light. The degradation of ACN was described with a first-order kinetics with half-life values of 630 h for encapsulated PC ACN and 58 h for PC ACN aqueous solution. Hydrogel production and subsequent storage conditions can be optimized to increase the anthocyanin delivered to human body using the low pH beverages such as fruit juices as a delivery vehicle.
Collapse
Affiliation(s)
- Jingxin Guo
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States
| | - M Monica Giusti
- Department of Food Science and Technology, Ohio State University, Columbus, OH, United States
| | - Gönül Kaletunç
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
28
|
Kalušević AM, Lević SM, Čalija BR, Milić JR, Pavlović VB, Bugarski BM, Nedović VA. Effects of different carrier materials on physicochemical properties of microencapsulated grape skin extract. Journal of Food Science and Technology 2017; 54:3411-3420. [PMID: 29051636 DOI: 10.1007/s13197-017-2790-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022]
Abstract
The goal of this study was to investigate the characteristics of grape skin extract (GSE) spray dried with different carriers: maltodextrin (MD), gum Arabic (GA) and skim milk powder (SMP). The grape skin extract was obtained from winery by-product of red grape variety Prokupac (Vitis vinifera L.). The morphology of the powders, their thermal, chemical and physical properties (water activity, bulk and tapped densities, solubility), as well as release studies in different pH conditions were analyzed. Total anthocyanin content and total phenolic content were determined by spectrophotometric methods. MD and GA-based microparticles were non-porous and spherical, while SMP-based ones were irregularly shaped. The process of spray drying Prokupac GSE using these three carriers produced powders with low water activity (0.24-0.28), good powder characteristics, high yields, and solubility higher than 90%. The obtained dissolution/release profiles indicated prolonged release of anthocyanins and phenolic compounds in different mediums, especially from GSE/GA microparticles. These results have shown that grape skin as the main by-product of wine production could be used as a source of natural colorants and bioactive compounds, and microencapsulation as a promising technique for the protection of these compounds, their stabilization in longer periods and prolonged release.
Collapse
Affiliation(s)
- Ana M Kalušević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080 Serbia.,Institute of Meat Hygiene and Technology, Kaćanskog 13, Belgrade, 11000 Serbia
| | - Steva M Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080 Serbia
| | - Bojan R Čalija
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221 Serbia
| | - Jela R Milić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221 Serbia
| | - Vladimir B Pavlović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080 Serbia
| | - Branko M Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120 Serbia
| | - Viktor A Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080 Serbia
| |
Collapse
|
29
|
Kalušević A, Lević S, Čalija B, Pantić M, Belović M, Pavlović V, Bugarski B, Milić J, Žilić S, Nedović V. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. J Microencapsul 2017; 34:475-487. [PMID: 28715926 DOI: 10.1080/02652048.2017.1354939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Black soybean coat is insufficiently valorised food production waste rich in anthocyanins. The goal of the study was to examine physicochemical properties of spray dried extract of black soybean coat in regard to carrier materials: maltodextrin, gum Arabic, and skimmed milk powder. Maltodextrin and gum Arabic-based microparticles were spherical and non-porous while skimmed milk powder-based were irregularly shaped. Low water activity of microparticles (0.31-0.33), good powders characteristics, high solubility (80.3-94.3%) and encapsulation yields (63.7-77.0%) were determined. All microparticles exhibited significant antioxidant capacity (243-386 μmolTE/g), good colour stability after three months of storage and antimicrobial activity. High content of total anthocyanins, with cyanidin-3-glucoside as predominant, were achieved. In vitro release of anthocyanins from microparticles was sustained, particularly from gum Arabic-based. These findings suggest that proposed simple eco-friendly extraction and microencapsulation procedures could serve as valuable tools for valorisation and conversion of black soybean coat into highly functional and stable food colourant.
Collapse
Affiliation(s)
- Ana Kalušević
- a Department of Food Technology and Biochemistry, Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
- b Institute of Meat Hygiene and Technology , Belgrade , Serbia
| | - Steva Lević
- a Department of Food Technology and Biochemistry, Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| | - Bojan Čalija
- c Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - Milena Pantić
- a Department of Food Technology and Biochemistry, Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| | - Miona Belović
- d Institute of Food Technology, University of Novi Sad , Novi Sad , Serbia
| | - Vladimir Pavlović
- a Department of Food Technology and Biochemistry, Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| | - Branko Bugarski
- e Department of Chemical Engineering, Faculty of Technology and Metallurgy , University of Belgrade , Belgrade , Serbia
| | - Jela Milić
- c Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - Slađana Žilić
- f Department of Food Technology and Biochemistry , Maize Research Institute , Belgrade , Serbia
| | - Viktor Nedović
- a Department of Food Technology and Biochemistry, Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
30
|
Cheng J, Liu JH, Prasanna G, Jing P. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin. Int J Biol Macromol 2017; 105:965-972. [PMID: 28751048 DOI: 10.1016/j.ijbiomac.2017.07.119] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
Abstract
The interaction of β-Lactoglobulin (β-Lg) with cyanidin-3-O-glucoside (C3G) was characterized using fluorescence, circular dichroism spectroscopy, and docking studies under physiological conditions. Fluorescence studies showed that β-Lg has a strong binding affinity for C3G via hydrophobic interaction with the binding constant, Ka, of 3.14×104M-1 at 298K. The secondary structure of β-Lg displayed an increase in the major structure of β-sheet upon binding with C3G, whereas a decrease in the minor structure of α-helix was also observed. In addition, evidenced by near UV-CD, the interaction also disrupted the environments of Trp residues. The molecular docking results illustrated that both hydrogen bonding and the hydrophobic interaction are involved as an acting force during the binding process. These results may contribute to a better understanding over the enhanced physicochemical proprieties of anthocyanins due to the complexation with milk proteins.
Collapse
Affiliation(s)
- Jing Cheng
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Hua Liu
- College of Resources and Environment Engineering, Yibin University, Yibin 644000, Sichuan, China
| | - Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Cano-Lamadrid M, Trigueros L, Wojdyło A, Carbonell-Barrachina Á, Sendra E. Anthocyanins decay in pomegranate enriched fermented milks as a function of bacterial strain and processing conditions. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Yousuf B, Gul K, Wani AA, Singh P. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Crit Rev Food Sci Nutr 2017; 56:2223-30. [PMID: 25745811 DOI: 10.1080/10408398.2013.805316] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Anthocyanins are one of the six subgroups of large and widespread group of plant constituents known as flavonoids. These are responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers and some cereal grains. More than 600 structurally distinct anthocyanins have been identified in nature. Earlier, anthocyanins were only known for their coloring properties but now interest in anthocyanin pigments has intensified because of their possible health benefits as dietary antioxidants, which help to prevent neuronal diseases, cardiovascular illnesses, cancer, diabetes, inflammation, and many such others diseases. Ability of anthocyanins to counter oxidants makes them atherosclerosis fighters. Therefore, anthocyanin-rich foods may help to boost overall health by offering an array of nutrients. However, the incorporation of anthocyanins into food and medical products is a challenging task due to their low stability toward environmental conditions during processing and storage. Encapsulation seems to be an efficient way to introduce such compounds into these products. Encapsulating agents act as a protector coat against ambient adverse conditions such as light, humidity, and oxygen. Encapsulated bioactive compounds are easier to handle and offer improved stability. The main objective of this review is to explore health benefits of anthocyanins and their extraction, characterization, encapsulation, and delivery.
Collapse
Affiliation(s)
- Basharat Yousuf
- a Department of Food Engineering & Technology , Sant Longowal Institute of Engineering & Technology , Longowal , Punjab , India
| | - Khalid Gul
- b Department of Processing & Food Engineering , Punjab Agricultural University , Ludhiana , Punjab
| | - Ali Abas Wani
- c Fraunhofer Institute of Process Engineering & Packaging, IVV , Freising , Munich , Germany.,d Department of Food Technology , Islamic University of Science and Technology , Awantipora , Jammu and Kashmir , India
| | - Preeti Singh
- c Fraunhofer Institute of Process Engineering & Packaging, IVV , Freising , Munich , Germany
| |
Collapse
|
33
|
Lao F, Sigurdson GT, Giusti MM. Health Benefits of Purple Corn (Zea mays L.) Phenolic Compounds. Compr Rev Food Sci Food Saf 2017; 16:234-246. [PMID: 33371534 DOI: 10.1111/1541-4337.12249] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Purple corn (Zea mays L.), a grain with one of the deepest shades in the plant kingdom, has caught the attention of the food industry as it could serve as a source for alternatives to synthetic colorants. Also being rich in phenolic compounds with potential health-promoting properties, purple corn is becoming a rising star in the novel ingredients market. Although having been widely advertised as a "healthy" food, the available information on purple corn health benefits has not yet been well reviewed and summarized. In this review, we present compositional information focused on the potential functional phenolic compounds correlated to health-promoting effects. Studies evaluating potential health-benefitting properties, including in vitro tests, cell models, animal and human trials, are also discussed. This paper emphasizes research using purple corn, or its extracts, but some other plant sources with similar phenolic composition to purple corn are also mentioned. Dosage and toxicity of purple corn studies are also reviewed. Purple corn phenolic compounds have been shown in numerous studies to have potent antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic, and anti-angiogenesis properties. They were also found to ameliorate lifestyle diseases, such as obesity, diabetes, hyperglycemia, hypertension, and cardiovascular diseases, based on their strong antioxidant power involving biochemical regulation amelioration. With promising evidence from cell and animal studies, this rich source of health-promoting compounds warrants additional attention to better understand its potential contributions to human health.
Collapse
Affiliation(s)
- Fei Lao
- Department of Food Science and Technology, The Ohio State Univ., 2015 Fyffe Ct, Parker Food Science Building, Columbus, Ohio, 43210, U.S.A
| | - Gregory T Sigurdson
- Department of Food Science and Technology, The Ohio State Univ., 2015 Fyffe Ct, Parker Food Science Building, Columbus, Ohio, 43210, U.S.A
| | - M Mónica Giusti
- Department of Food Science and Technology, The Ohio State Univ., 2015 Fyffe Ct, Parker Food Science Building, Columbus, Ohio, 43210, U.S.A
| |
Collapse
|
34
|
Lao F, Giusti MM. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders. Food Chem 2017; 227:376-382. [PMID: 28274446 DOI: 10.1016/j.foodchem.2017.01.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Abstract
Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss.
Collapse
Affiliation(s)
- Fei Lao
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA.
| | - M Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Bhaswant M, Shafie SR, Mathai ML, Mouatt P, Brown L. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition 2016; 41:24-31. [PMID: 28760424 DOI: 10.1016/j.nut.2016.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Increased consumption of fruits and vegetables as functional foods leads to the reduction of signs of metabolic syndrome. The aim of this study was to measure and compare cardiovascular, liver, and metabolic parameters following chronic administration of the same dose of anthocyanins either from chokeberry (CB) or purple maize (PM) in rats with diet-induced metabolic syndrome. METHODS Male Wistar rats were fed a maize starch (C) or high-carbohydrate, high-fat diet (H) and divided into six groups for 16 wk. The rats were fed C, C with CB or PM for the last 8 wk (CCB or CPM), H, H with CB or PM for the last 8 wk (HCB or HPM); CB and PM rats received ∼8 mg anthocyanins/kg daily. The rats were monitored for changes in blood pressure, cardiovascular and hepatic structure and function, glucose tolerance, and adipose tissue mass. RESULTS HCB and HPM rats showed reduced visceral adiposity index, total body fat mass, and systolic blood pressure; improved glucose tolerance, liver, and cardiovascular structure and function; decreased plasma triacylglycerols and total cholesterol compared with H rats. Inflammatory cell infiltration was reduced in heart and liver. CONCLUSION CB and PM interventions gave similar responses, suggesting that anthocyanins are the bioactive molecules in the attenuation or reversal of metabolic syndrome by prevention of inflammation-induced damage.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia
| | - Siti Raihanah Shafie
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia
| | - Michael L Mathai
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Peter Mouatt
- Analytical Research Laboratory, Southern Cross Plant Science, Southern Cross University, East Lismore, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia.
| |
Collapse
|
36
|
Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chem 2016; 209:234-40. [DOI: 10.1016/j.foodchem.2016.04.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 01/21/2023]
|
37
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother Res 2016; 30:1265-86. [DOI: 10.1002/ptr.5642] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Antonella Smeriglio
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Davide Barreca
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Ersilia Bellocco
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Domenico Trombetta
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
38
|
Preheated milk proteins improve the stability of grape skin anthocyanins extracts. Food Chem 2016; 210:221-7. [PMID: 27211641 DOI: 10.1016/j.foodchem.2016.04.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022]
Abstract
The effects of casein and whey proteins, preheated at 40-100°C and 45-60°C for 15min, respectively, on color loss and anthocyanins degradation in grape skin anthocyanins extracts (GSAE) at pH 3.2 and 6.3 were evaluated. Preheating milk proteins effectively improved their protective effects against color loss and anthocyanins degradation in GSAE solutions during thermal treatment (at 80°C for 2h), H2O2 oxidation (0.005% H2O2 for 1h) and illumination (at 5000lx for 5 d). Whey proteins and casein, preheated at 50°C and 60°C for 15min, respectively, demonstrated the optimal protective effects. However, preheated whey proteins had a better protective effect on the thermal, oxidation and photo stability of GSAE, decreasing the thermal, oxidative and photo degradation of anthocyanins in GSAE 71.59%, 32.22% and 56.92% at pH 3.2 and 54.91%, 22.89% and 46.68% at pH 6.3, respectively.
Collapse
|
39
|
He Z, Xu M, Zeng M, Qin F, Chen J. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chem 2015; 199:314-22. [PMID: 26775977 DOI: 10.1016/j.foodchem.2015.12.035] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/25/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
Abstract
The interactions of α- and β-casein with malvidin-3-O-glucoside (MG), the major anthocyanin in grape skin anthocyanin extracts (GSAE), were examined at pH 6.3 by fluorescence, fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy. The binding constant (KS), binding force and effects of the interactions on the caseins conformation and GSAE stability were investigated. The results showed that α- and β-casein bound with MG via hydrophilic (van der Waals forces or hydrogen bonding) and hydrophobic interactions, respectively. α-Casein had a slightly stronger binding affinity toward MG than β-casein, with respective KS values of 0.51×10(3)M(-1) and 0.46×10(3)M(-1) at 297K. The secondary structures of α- and β-casein were changed by MG binding, with a decrease in α-helix and an increase in turn for α-casein and no change in α-helix and a decrease in turn for β-casein. The casein-anthocyanin interaction appeared to have a positive effect on the thermal, oxidation and photo stability of GSAE.
Collapse
Affiliation(s)
- Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Mingzhu Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
40
|
Quantification of Purple Corn (Zea mays L.) Anthocyanins Using Spectrophotometric and HPLC Approaches: Method Comparison and Correlation. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0318-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Oliveira A, Alexandre EM, Coelho M, Lopes C, Almeida DP, Pintado M. Incorporation of strawberries preparation in yoghurt: Impact on phytochemicals and milk proteins. Food Chem 2015; 171:370-8. [DOI: 10.1016/j.foodchem.2014.08.107] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/10/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
|
42
|
Huang B, Wang Z, Park JH, Ryu OH, Choi MK, Lee JY, Kang YH, Lim SS. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutr Res Pract 2015; 9:22-9. [PMID: 25671064 PMCID: PMC4317475 DOI: 10.4162/nrp.2015.9.1.22] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/OBJECTIVES Recently, anthocyanins have been reported to have various biological activities. Furthermore, anthocyanin-rich purple corn extract (PCE) ameliorated insulin resistance and reduced diabetes-associated mesanginal fibrosis and inflammation, suggesting that it may have benefits for the prevention of diabetes and diabetes complications. In this study, we determined the anthocyanins and non-anthocyanin component of PCE by HPLC-ESI-MS and investigated its anti-diabetic activity and mechanisms using C57BL/KsJ db/db mice. MATERIALS/METHODS The db/db mice were divided into four groups: diabetic control group (DC), 10 or 50 mg/kg PCE (PCE 10 or PCE 50), or 10 mg/kg pinitol (pinitol 10) and treated with drugs once per day for 8 weeks. During the experiment, body weight and blood glucose levels were measured every week. At the end of treatment, we measured several diabetic parameters. RESULTS Compared to the DC group, Fasting blood glucose levels were 68% lower in PCE 50 group and 51% lower in the pinitol 10 group. Furthermore, the PCE 50 group showed 2- fold increased C-peptide and adiponectin levels and 20% decreased HbA1c levels, than in the DC group. In pancreatic islets morphology, the PCE- or pinitol-treated mice showed significant prevention of pancreatic β-cell damage and higher insulin content. Microarray analyses results indicating that gene and protein expressions associated with glycolysis and fatty acid metabolism in liver and fat tissues. In addition, purple corn extract increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6pase) genes in liver, and also increased glucose transporter 4 (GLUT4) expressions in skeletal muscle. CONCLUSIONS Our results suggested that PCE exerted anti-diabetic effects through protection of pancreatic β-cells, increase of insulin secretion and AMPK activation in the liver of C57BL/KsJ db/db mice.
Collapse
Affiliation(s)
- Bo Huang
- College of Food Science and Engineering, Liaoning Medical University, Jinzhou 121000, China
| | - Zhiqiang Wang
- Department of Food Science and Nutrition and Center for Aging and HealthCare, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Jong Hyuk Park
- Institute of Natural Medicine, Hallym University Medical School, Gangwon 200-702, Korea
| | - Ok Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University, Gangwon 200-702, Korea
| | - Moon Ki Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University, Gangwon 200-702, Korea
| | - Jae-Yong Lee
- Institute of Natural Medicine, Hallym University Medical School, Gangwon 200-702, Korea. ; Department of Biochemistry, School of Medicine, Hallym University, Gangwon 200-702, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Center for Aging and HealthCare, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Soon Sung Lim
- Institute of Natural Medicine, Hallym University Medical School, Gangwon 200-702, Korea. ; Department of Food Science and Nutrition and Center for Aging and HealthCare, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| |
Collapse
|
43
|
Makam N S, Chidambara Murthy KN, Sultanpur CM, Rao RM. Natural molecules as tumour inhibitors: Promises and prospects. J Herb Med 2014. [DOI: 10.1016/j.hermed.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Trigueros L, Wojdyło A, Sendra E. Antioxidant activity and protein-polyphenol interactions in a pomegranate (Punica granatum L.) yogurt. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6417-6425. [PMID: 24939339 DOI: 10.1021/jf501503h] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pomegranate juice (PGJ) is rich in phenolics which are potent antioxidants but also prone to interact with proteins. A yogurt rich in PGJ (40%) made from arils was elaborated (PGY) to determine the antioxidant activity and to estimate the phenolics-proteins interaction during 28 days of cold storage. Juice, yogurts, and protein-free permeates were analyzed for phenolic composition. Yogurt fermentation modified the anthocyanin profile of the initial PGJ, especially the content in cyanidin-3-O-glucoside. During storage, individual anthocyanin content in PGY decreased but it did not modify yogurt color. The analysis of permeates revealed that the degree of phenol-protein interaction depends on the type of phenolic, ellagic acid and dephinidin-3,5-O-diglucoside being the least bound phenolic compounds. The presence of PGJ in yogurt enhanced radical scavenging performance, whereas all the observed ferric reducing power ability of PGY was strictly due to the PGJ present. The 84.73% of total anthocyanins remained bound to proteins at the first day of storage and 90.06% after 28 days of cold storage, revealing the high affinity of anthocyanins for milk proteins.
Collapse
Affiliation(s)
- Lorena Trigueros
- IPOA Research Group (UMH-1 and REVIV_Generalitat Valenciana), Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández , Ctra. de Beniel km 3.2, 03300 Orihuela, Alicante, Spain
| | | | | |
Collapse
|
45
|
Mezquita PC, Huerta BEB, Ramírez JCP, Hinojosa CPO. Milks pigmentation with astaxanthin and determination of colour stability during short period cold storage. Journal of Food Science and Technology 2013; 52:1634-41. [PMID: 25745234 DOI: 10.1007/s13197-013-1179-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 11/28/2022]
Abstract
Astaxanthin has been used as a colorant and antioxidant with excellent results, its application and stability in food matrices to human consumption has been little studied. The aim of this work was the incorporation of astaxanthin oleoresin to milks with different fat content, simulating the red-orange color that can impart apricot fruit. For astaxanthin determination by HPLC, a methodology was implemented for its extraction from the food matrix, followed by saponification with KOH. Milk samples were stored (5 ± 2 °C) and stability of color and astaxanthin content were determined by colorimetry and high performance liquid chromatography each 24 h for a week. Pigment degradation followed first-order kinetic with a constant degradation of 0.259 day(-1) and 0.104 day(-1), in whole and semi-skimmed milk, respectively. Chromaticity coordinates L*, a*, b* for different types of milk showed a low dispersion of their values during the storage time, indicating high stability of astaxanthin within the matrix.
Collapse
Affiliation(s)
- Pedro Cerezal Mezquita
- Departamento de Alimentos, Facultad de Recursos del Mar, Universidad de Antofagasta, Avenida Universidad de Antofagasta # 02800, Campus Coloso, Casilla 170, Antofagasta, Chile
| | - Blanca E Barragán Huerta
- Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas (ENCB, Instituto Politécnico Nacional (IPN), Avenida Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, México, D.F. México
| | - Jenifer C Palma Ramírez
- Departamento de Alimentos, Facultad de Recursos del Mar, Universidad de Antofagasta, Avenida Universidad de Antofagasta # 02800, Campus Coloso, Casilla 170, Antofagasta, Chile
| | - Claudia P Ortíz Hinojosa
- Departamento de Alimentos, Facultad de Recursos del Mar, Universidad de Antofagasta, Avenida Universidad de Antofagasta # 02800, Campus Coloso, Casilla 170, Antofagasta, Chile
| |
Collapse
|
46
|
Anthocyanin and glucosinolate occurrences in the roots of Chinese red radish (Raphanus sativus L.), and their stability to heat and pH. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.051] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
|
48
|
Tobal TM, da Silva R, Gomes E, Bolini HMA, Boscolo M. Evaluation of the use ofSyzygium cuminifruit extract as an antioxidant additive in orange juice and its sensorial impact. Int J Food Sci Nutr 2011; 63:273-7. [DOI: 10.3109/09637486.2011.621412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Yang Z, Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2010.03.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Nayak CA, Rastogi NK, Raghavarao K. Bioactive Constituents Present inGarcinia IndicaChoisy and its Potential Food Applications: A Review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2010. [DOI: 10.1080/10942910802626754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|