1
|
Sunoqrot S, Al-Shalabi E, Al-Bakri AG, Zalloum H, Abu-Irmaileh B, Ibrahim LH, Zeno H. Coffee Bean Polyphenols Can Form Biocompatible Template-free Antioxidant Nanoparticles with Various Sizes and Distinct Colors. ACS OMEGA 2021; 6:2767-2776. [PMID: 33553895 PMCID: PMC7860067 DOI: 10.1021/acsomega.0c05061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/08/2021] [Indexed: 05/04/2023]
Abstract
Plant polyphenols have attracted attention in recent years due to their ability to undergo oxidative coupling reactions enabled by the presence of multiple phenolic hydroxyl groups, forming chemically versatile coatings and biocompatible nanoparticles (NPs) for various applications. The aim of this study was to investigate whether coffee bean aqueous extracts, which are known to be rich in polyphenols, could serve as a natural source of NP building blocks. Extracts were prepared by heating ground Arabica beans of varying roasting degrees in water with or without the addition of sodium metaperiodate or copper sulfate as an oxidizing agent, followed by filtration. NP formation was verified by dynamic light scattering and transmission electron microscopy, which revealed the presence of nano-sized particles with varying sizes and polydispersities as a function of the coffee type and oxidizing agent used. NP colors ranged from light to medium to dark brown, and particle sizes were between 44 and 250 nm with relatively low polydispersity indices. In vitro antioxidant assays showed that oxidizing agent-treated coffee NPs had lower antioxidant potency compared to air-oxidized NPs, but the free-radical scavenging activity was still retained. Coffee NPs exhibited no antimicrobial activity against common bacterial and fungal strains. Cell viability assays demonstrated that the NPs were biocompatible in human dermal fibroblasts, while exhibiting antiproliferative activity against MCF7 breast cancer cells, particularly copper sulfate-oxidized NPs. This study presents a facile and economical method to produce template-free antioxidant NPs that may be explored for various applications such as drug delivery and cosmetics.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
- . Phone: +962-6-4291511
Ext. 197. Fax: +962-6-4291432
| | - Eveen Al-Shalabi
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Amal G. Al-Bakri
- Department
of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hiba Zalloum
- Hamdi
Mango Scientific Research Center, The University
of Jordan, Amman 11942, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi
Mango Scientific Research Center, The University
of Jordan, Amman 11942, Jordan
| | - Lina Hasan Ibrahim
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Huda Zeno
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| |
Collapse
|
2
|
Kinetic Characterization of Tyrosinase-catalyzed Oxidation of Four Polyphenols. Curr Med Sci 2020; 40:239-248. [PMID: 32337685 DOI: 10.1007/s11596-020-2186-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Phenolic compounds such as chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid and caffeic acid are widely distributed in fruits, vegetables and traditional Chinese medicines with a wide range of biological activities. Tyrosinase plays a critical role in the food industry, but recent studies have proposed unexplored aspects of clinical application. Tyrosinase-catalyzed oxidation of four polyphenols as well as its underlying mechanism remains unclear. In the current work, we investigated the kinetic properties of tyrosinase-catalyzed oxidation of the four polyphenols of interest. To measure the unstable o-quinone products, an analytical method using 3-methyl-2-benzothiazolinone hydrazone (MBTH) was established. The optimal incubation time, buffer pH, temperature and enzyme concentration for the enzyme activity in the presence of each polyphenol of interest were investigated. Under the final optimized conditions, the kinetics and substrate specificity of four polyphenols were examined. Kinetic data showed that tyrosinase had the greatest substrate affnity to chlorogenic acid compared with its isomers and caffeic acid. The catalytic effciency with chlorogenic acid was 8- to 15-fold higher than that with the other 3 polyphenols. Molecular docking study demonstrated that the tight binding of chlorogenic acid at the peripheral site should be the major reason for the specifcity to chlorogenic acid. In light of this, the rational design of high-affnity inhibitors against tyrosinase may focus on the binding of both the Cu site and peripheral site. This study will supply a basis for the selection of phenolic acids in food industry and health care.
Collapse
|
3
|
Hidayat MA, Maharani DA, Purwanto DA, Kuswandi B, Yuwono M. Simple and Sensitive Paper-based Colorimetric Biosensor for Determining Total Polyphenol Content of the Green Tea Beverages. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0299-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Zhou L, Liao T, Liu W, Zou L, Liu C, Terefe NS. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit Rev Food Sci Nutr 2019; 60:3594-3621. [PMID: 31858810 DOI: 10.1080/10408398.2019.1702500] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic acids are widely utilized in the food industry for inhibiting the activity of polyphenol oxidase (PPO) and enzymatic browning. This review discusses the mechanisms of inhibition of PPO and enzymatic browning by various organic acids based on studies in model systems, critically evaluates the relevance of such studies to real food systems and assesses the implication of the synergistic inhibitory effects of organic acids with other physicochemical processing techniques on product quality and safety. Organic acids inhibit the activity of PPO and enzymatic browning via different mechanisms and therefore the suitability of a particular organic acid depends on the structure and the catalytic properties of PPO and the physicochemical properties of the food matrix. Studies in model systems provide an invaluable insight into the inhibitory mechanisms of various organics acids. However, the difference in the effectiveness of PPO inhibitors between model systems and food systems and the lack of correlation between the degree of PPO inhibition based on in vitro assays and enzymatic browning imply that the effectiveness of organic acids can be accurately evaluated only via direct assessment of browning inhibition in a particular food system. Combination of organic acids with physical processing techniques is one of the most viable approaches for PPO inhibition since the observed synergistic effect helps to reduce the undesirable organoleptic quality changes from the use of excessive concentration of organic acids or intense physical processing.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | |
Collapse
|
5
|
The nature of β-cyclodextrin inhibition of potato polyphenol oxidase-catalyzed reactions. Food Chem 2019; 298:125004. [DOI: 10.1016/j.foodchem.2019.125004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022]
|
6
|
Kiratitanavit W, Bruno FF, Kumar J, Nagarajan R. Facile enzymatic preparation of fluorescent conjugated polymers of phenols and their application in sensing. J Appl Polym Sci 2018. [DOI: 10.1002/app.46496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ferdinando F. Bruno
- US Army Natick Soldier Research Development and Engineering Center, RDECOM; Natick Massachusetts 01760
| | - Jayant Kumar
- Center for Advanced Materials and HEROES Initiative, University of Massachusetts; Lowell Massachusetts 01854
- Department of Physics; University of Massachusetts; Lowell Massachusetts 01854
| | - Ramaswamy Nagarajan
- Department of Plastics Engineering; University of Massachusetts; Lowell Massachusetts 01854
- Center for Advanced Materials and HEROES Initiative, University of Massachusetts; Lowell Massachusetts 01854
| |
Collapse
|
7
|
Rapid test for the determination of total phenolic content in brewed-filtered coffee using colorimetric paper. Journal of Food Science and Technology 2017; 54:3384-3390. [PMID: 29051633 DOI: 10.1007/s13197-017-2757-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023]
Abstract
This work was aimed to develop a chemical sensor for the determination of total polyphenol content (TPC) of coffee samples. The polyphenol sensor was based on co-immobilization of NaIO4 and MBTH in paper as a test strip. The sensor showed sensitive response to chlorogenic acid by forming pink color adduct which can be scanned and quantified by Imagej program. The sensor had response time of 14 min and a linear range between 0.07 and 0.71 mM of chlorogenic acid with a detection limit at 0.002 mM toward chlorogenic acid. The reproducibility of the sensor was good (RSD = 0.44%) with a life time within 27 days when stored at 4 °C. TPC of coffee samples were determined by the sensor, and the results were in agreement with the Folin-Ciocalteu method suggesting its practical use as a tool for TPC determination in coffee samples.
Collapse
|
8
|
Molitor C, Mauracher SG, Pargan S, Mayer RL, Halbwirth H, Rompel A. Latent and active aurone synthase from petals of C. grandiflora: a polyphenol oxidase with unique characteristics. PLANTA 2015; 242:519-37. [PMID: 25697287 PMCID: PMC4540782 DOI: 10.1007/s00425-015-2261-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/03/2015] [Indexed: 05/21/2023]
Abstract
Aurone synthase belongs to the novel group 2 polyphenol oxidases and the presented kinetic characterization suggests a differing aurone biosynthesis in Asteraceae species compared to snapdragon. Aurone synthases (AUS) are polyphenol oxidases (PPO) physiologically involved in the formation of yellow aurone pigments in petals of various Asteraceae species. They catalyze the oxidative conversion of chalcones into aurones. Latent (58.9 kDa) and active (41.6 kDa) aurone synthase from petals of C. grandiflora was purified by a quantitative removal of pigments using aqueous two-phase separation and several subsequent chromatographic steps. The purified enzymes were identified as cgAUS1 (A0A075DN54) and sequence analysis revealed that cgAUS1 is a member of a new group of plant PPOs. Mass determination experiments of intact cgAUS1 gave evidence that the C-terminal domain, usually shielding the active site of latent polyphenol oxidases, is linked to the main core by a disulfide bond. This is a novel and unique structural feature of plant PPOs. Proteolytic activation in vivo leads to active aurone synthase possessing a residual peptide of the C-terminal domain. Kinetic characterization of purified cgAUS1 strongly suggests a specific involvement in 4-deoxyaurone biosynthesis in Coreopsis grandiflora (Asteraceae) that differs in various aspects compared to the 4-hydroxyaurone formation in Antirrhinum majus (Plantaginaceae): cgAUS1 is predicted to be localized in the thylakoid lumen, it possesses exclusively diphenolase activity and the results suggest that aurone formation occurs at the level of chalcone aglycones. The latent enzyme exhibits allosteric activation which changes at a specific product concentration to a constant reaction rate. The presented novel structural and functional properties of aurone synthase provide further insights in the diversity and role of plant PPOs.
Collapse
Affiliation(s)
- Christian Molitor
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| | - Stephan Gerhard Mauracher
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| | - Sanela Pargan
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| | - Rupert L. Mayer
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical Engineering, University of Technology Vienna, Getreidemarkt 9, 1060 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
9
|
Li HR, Habasi M, Xie LZ, Aisa HA. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules 2014; 19:12940-8. [PMID: 25157464 PMCID: PMC6271456 DOI: 10.3390/molecules190912940] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 01/27/2023] Open
Abstract
Chlorogenic acid (CGA), the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but the effects of CGA on melanogenesis are unknown. In this study, we analyzed the effects of CGA on cell proliferation, melanin content and tyrosinase of B16 murine melanoma cells. Additionally, the enzymatic reactions of CGA in B16 melanoma cells lytic solution were detected by UV spectrophotometry. Results showed CGA at 30 and 60 μM significantly suppresses cell proliferation. 8-MOP at 100 μM significantly promotes cell proliferation, but CGA can counter this. Incubated for 24 h, CGA (500 μM) improves melanogenesis while suppressing tyrosinase activity in B16 melanoma cells or 8-methoxypsoralen (8-MOP) co-incubated B16 melanoma cells. After 12 h, B16 melanoma cell treatment with CGA leads to an increase in melanin accumulation, however, after 48 h there is a decrease in melanin production which correlates broadly with a decrease in tyrosinase activity. CGA incubated with lytic solution 24 h turned brown at 37 °C. The formation of new products (with a maximum absorption at 295 nm) is associated with reduction of CGA (maximum absorption at 326 nm). Therefore, CGA has its two sidesroles in melanogenesis of B16 melanoma cells. CGA is a likely a substrate of melanin, but the metabolic product(s) of CGA may suppress melanogenesis in B16 melanoma cells by inhibiting tyrosinase activity.
Collapse
Affiliation(s)
- Hao-Rong Li
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Maidina Habasi
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Lian-Zhen Xie
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Haji Akber Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
10
|
Dwiecki K, Siger A, Czubiński J, Nogala-Kałucka M, Lampart-Szczapa E. The Interactions Between Rapeseed Lipoxygenase and Native Polyphenolic Compounds in a Model System. J AM OIL CHEM SOC 2012; 89:379-387. [PMID: 22514355 PMCID: PMC3324947 DOI: 10.1007/s11746-011-1923-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/15/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022]
Abstract
The focus of the present research was to study inhibition of lipoxygenase activity by rapeseed native polyphenols and the interactions between those compounds and the enzyme. The enzyme and polyphenolic compounds (polyphenols, phenolic acids) were extracted from rapeseed (Brassica napus) varieties Aviso and PR45DO3. The total phenolic compounds concentration in tested rapeseed was 1,485-1,691 mg/100 g d.m. (dry matter) and the free phenolic acids content in both rapeseed varieties was about 76 μg/100 g d.m. The isolated proteins showed lipoxygenase activity. Prooxidant properties of phenolic compounds in the presence of lipoxygenase and linoleic acid were observed rather in the case of extracts containing a relatively high concentration of miscellaneous polyphenols. Antioxidant properties were recorded in the case of phenolic acid extracts which contain only 1.4-1.9% of phenolics present in raw phenolic extracts. We propose that the prooxidant effect of phenolic compounds comes from quinone and oxidized polyphenols formation. The observed antioxidant activity of phenolic acid extracts is probably due to their ability to scavenge free radicals formed from linoleic acid. However, reduction of lipoxygenase ferric to ferrous ions, which prevent the activation of the enzyme and inhibited its activity, was also observed.
Collapse
Affiliation(s)
- Krzysztof Dwiecki
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Aleksander Siger
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Jarosław Czubiński
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Małgorzata Nogala-Kałucka
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Eleonora Lampart-Szczapa
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| |
Collapse
|
11
|
Dabas D, Elias RJ, Lambert JD, Ziegler GR. A Colored Avocado Seed Extract as a Potential Natural Colorant. J Food Sci 2011; 76:C1335-41. [DOI: 10.1111/j.1750-3841.2011.02415.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Akyilmaz E, Yorganci E, Asav E. Do copper ions activate tyrosinase enzyme? A biosensor model for the solution. Bioelectrochemistry 2010; 78:155-60. [DOI: 10.1016/j.bioelechem.2009.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/16/2022]
|
13
|
Munoz-Munoz JL, Garcia-Molina F, Varon R, Tudela J, García-Cánovas F, Rodriguez-Lopez JN. Quantification of the antioxidant capacity of different molecules and their kinetic antioxidant efficiencies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2062-2070. [PMID: 20102221 DOI: 10.1021/jf9042024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A kinetic method has been developed to determine the antioxidant capacity of a variety of molecules. In this method, named the enzymatic kinetic method, the free radical of ABTS is generated continuously in the reaction medium by a peroxidase/ABTS/H(2)O(2) system. The presence of an antioxidant in the solution provokes a lag period in the accumulation of the free radical in the medium, and by studying this lag period it is possible to calculate the antioxidant capacity of the molecule in question. This antioxidant capacity, named the primary antioxidant capacity, will be quantified by n, the number of electrons donated per molecule of antioxidant, the effective concentration, EC50, and the antioxidant or antiradical power (ARP) (ARP = 1/EC50 = 2n). If the products arising from the reaction between the antioxidant and the free radical evolve by consuming more radical, a secondary antioxidant capacity is generated. To calculate this, a nonenzymatic test is proposed.
Collapse
Affiliation(s)
- Jose Luis Munoz-Munoz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biologia, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Song Z, Weng X, Weng L, Huang J, Wang X, Bai M, Zhou Y, Yang G, Zhou X. Synthesis and oxidation-induced DNA cross-linking capabilities of bis(catechol) quaternary ammonium derivatives. Chemistry 2008; 14:5751-4. [PMID: 18491338 DOI: 10.1002/chem.200800783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhibin Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, Wuhan 430072 (PR of China)
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sakiroğlu H, Oztürk AE, Pepe AE, Erat M. Some kinetic properties of polyphenol oxidase obtained from dill (Anethum graveolens). J Enzyme Inhib Med Chem 2008; 23:380-5. [PMID: 18569343 DOI: 10.1080/14756360701587201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polyphenol oxidase (PPO) was partially purified from dill by (NH4)(2)SO4 precipitation followed by dialysis and gel filtration chromatography. Polyphenol oxidase activity was measured spectrophotometrically at 420 nm using catechol, dopamine and chlorogenic acid as substrates. Optimum pH, temperature, and ionic strength were determined with three substrates. The best substrate of dill PPO was found to be chlorogenic acid. Some kinetic properties of the enzyme such as V(max,) K(M) and V(max)/K(M) were determined for all three substrates. The effects of various inhibitors on the reaction catalysed by the enzyme were tested and I(50) values calculated. The most effective inhibitor was L-cysteine. Activation energies, E(a), were determined from the Arrhenius equation. In addition, activation enthalpy, DeltaH(a), and Q(10) values of the enzyme were also calculated.
Collapse
Affiliation(s)
- Halis Sakiroğlu
- Department of Chemistry, Faculty of Arts and Sciences, Ataturk University, Erzurum, Turkey.
| | | | | | | |
Collapse
|