1
|
Zujovic Z, Bowmaker GA. On the Structure and Role of Avian Eggshells: A 31P, 1H, and 13C Solid-State NMR Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15523-15529. [PMID: 38963614 DOI: 10.1021/acs.jafc.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The eggshell is a composite and highly ordered structure formed by biomineralization. Besides other functions, it has a vital and intricate role in the protection of an embryo from various potentially harsh environmental conditions. Solid-state nuclear magnetic resonance (SSNMR) has been used for detailed structural investigations of the chicken, tinamou, and flamingo eggshell materials. 31P NMR spectra reveal that hydroxyapatite and β-tricalcium phosphate in the ratio 3:2 represent major constituents of phosphate species in the eggshells. All three eggshells exhibit similar spectra, except for the line widths, which implies different structural order of phosphate species in the chicken, tinamou, and flamingo eggshells. 1H NMR spectra for these materials are comparable, differentiating overlapped peaks in three spectral regions at around 7, 4-5, and 1-2 ppm. These spectral regions have been attributed to protons from NH or CaHCO3, water, and possibly isolated monomeric water molecules or hydroxyl groups in calcium-deficient hydroxyapatite. 1H-13C CP MAS NMR revealed the presence of organic matter in the form of lipids and proteins. Two overlapped resonances in the carbonyl region at around 173 and 169 ppm are assigned to the carbonyls of the peptide bonds and the bicarbonate unit in calcite, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed the presence of structural units detected in the NMR spectra.
Collapse
Affiliation(s)
- Zoran Zujovic
- Institute of General and Physical Chemistry, Studentski Trg 12/5, 1100 Belgrade, Republic of Serbia
- School of Chemical Sciences, Faculty of Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Graham A Bowmaker
- School of Chemical Sciences, Faculty of Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
2
|
One-Pot Strategy for the Synthesis of Indeno[1,2-b]Chromene Derivatives. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Kulshreshtha G, Benavides-Reyes C, Rodriguez-Navarro AB, Diep T, Hincke MT. Impact of Different Layer Housing Systems on Eggshell Cuticle Quality and Salmonella Adherence in Table Eggs. Foods 2021; 10:foods10112559. [PMID: 34828840 PMCID: PMC8625084 DOI: 10.3390/foods10112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
The bacterial load on the eggshell surface is a key factor in predicting the bacterial penetration and contamination of the egg interior. The eggshell cuticle is the first line of defense against vertical penetration by microbial food-borne pathogens such as Salmonella Enteritidis. Egg producers are increasingly introducing alternative caging systems into their production chain as animal welfare concerns become of greater relevance to today’s consumer. Stress that is introduced by hen aggression and modified nesting behavior in furnished cages can alter the physiology of egg formation and affect the cuticle deposition/quality. The goal of this study was to determine the impact of caging systems (conventional, enriched, free-run, and free-range), on eggshell cuticle parameters and the eggshell bacterial load. The cuticle plug thickness and pore length were higher in the free-range eggs as compared to conventional eggs. The eggshells from alternative caging (enriched and free-range) had a higher total cuticle as compared to conventional cages. A reduction in bacterial cell counts was observed on eggshells that were obtained from free-range eggs as compared to the enriched systems. An inverse correlation between the contact angle and Salmonella adherence was observed. These results indicate that the housing systems of layer hens can modify the cuticle quality and thereby impact bacterial adherence and food safety.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cristina Benavides-Reyes
- Departamento de Mineralogia y Petrologia, Campus de Fuentenueva, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Alejandro B. Rodriguez-Navarro
- Departamento de Mineralogia y Petrologia, Campus de Fuentenueva, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Ty Diep
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, ON K0E 1M0, Canada;
| | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8193)
| |
Collapse
|
4
|
|
5
|
Braun MS, Sporer F, Zimmermann S, Wink M. Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol Ecol 2019; 94:5036518. [PMID: 29901706 DOI: 10.1093/femsec/fiy117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/11/2018] [Indexed: 01/27/2023] Open
Abstract
The function of uropygial glands (preen glands) has been subject to controversial debates. In this study, we evaluated the antimicrobial potential of preen gland secretions of turkeys (Meleagris gallopavo) against 18 microbial strains by means of diffusion tests, broth microdilutions, checkerboard assays and time-kill curves. Furthermore, we tested the hypothesis that lipids exert direct antimicrobial effects on pathogens. Moreover, we checked for mutualistic relationships between the preen gland bacterium Corynebacterium uropygiale with its hosts. We found that preen gland secretions significantly inhibited the growth of a broad spectrum of bacteria and fungi, particularly when combined with keratinase. Combinations effectively killed multidrug resistant microorganisms in a strongly synergistic manner. Since feather-degrading microorganisms (FDM) express keratinase and thereby disrupt the integrity of the plumage, our data suggests that preen gland secretions of turkeys are specifically activated in the presence of FDM, and specifically eliminate FDM from feathers. However, antimicrobial effects did not originate from lipids, but were mediated by highly polar compounds which might be antimicrobial peptides (AMPs). Finally, C. uropygiale is apparently not involved in the antimicrobial activity of preen gland secretions of turkeys. In conclusion, our results suggest that turkeys can antagonize FDM by amplifying the antimicrobial properties of their preen gland secretions.
Collapse
Affiliation(s)
- Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| | - Frank Sporer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, INF 324, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Ruiz-Castellano C, Ruiz-Rodríguez M, Tomás G, Soler JJ. Antimicrobial activity of nest-lining feathers is enhanced by breeding activity in avian nests. FEMS Microbiol Ecol 2019; 95:5462650. [PMID: 30985888 DOI: 10.1093/femsec/fiz052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/13/2019] [Indexed: 11/15/2022] Open
Abstract
The use of feathers as nest material has been proposed as a kind of self-medication strategy because antimicrobial-producing microorganisms living on feathers may defend offspring against pathogenic infections. In this case, it is expected that density of antimicrobial-producing bacteria, and their antimicrobial effects, are higher in feathers that line the nests than in eggshells. Moreover, we know that feather pigmentation and breeding activity may influence density and antimicrobial production of bacteria. To test these predictions, we analyzed bacterial densities and antimicrobial activity of bacterial colonies isolated from bird eggshells and nest-lining feathers against bacterial strains comprising potential pathogens. Samples were collected from spotless starling (Sturnus unicolor) nests, and from artificial nests to isolate the effects of breeding activity on bacterial communities. The composition of feathers lining the nests was experimentally manipulated to create groups of nests with pigmented feathers, with unpigmented feathers, with both types of feathers or without feathers. Although we did not detect an effect of experimental feather treatments, we found that bacterial colonies isolated from feathers were more active against the tested bacterial strains than those isolated from eggshells. Moreover, bacterial density on feathers, keratinolytic bacteria on eggshells and antimicrobial activity of colonies isolated were higher in starling nests than in artificial nests. These results suggest that antimicrobial activity of bacteria growing on nest-lining feathers would be one of the mechanisms explaining the previously detected antimicrobial effects of this material in avian nests, and that breeding activity results in nest bacterial communities with higher antimicrobial activity.
Collapse
Affiliation(s)
- Cristina Ruiz-Castellano
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| | - Magdalena Ruiz-Rodríguez
- Biologie Integrative des Organismes Marins, Observatoire Océanologique, Sorbonne Universités, Avenue du Fontaulé, 66650 Banyuls-Sur-Mer, France
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| |
Collapse
|
7
|
Li Q, Yin Y, Li Y, Zhang J, Huang M, Kim JK, Wu Y. A simple approach to indeno-coumarins via visible-light-induced cyclization of aryl alkynoates with diethyl bromomalonate. Org Chem Front 2019. [DOI: 10.1039/c9qo00795d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-induced triple-domino cyclization between aryl alkynoates and diethyl bromomalonate was developed for the synthesis of indeno-coumarins.
Collapse
Affiliation(s)
- Qingrui Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yunnian Yin
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yabo Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jianye Zhang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Mengmeng Huang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jung Keun Kim
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| |
Collapse
|
8
|
Kulshreshtha G, Rodriguez-Navarro A, Sanchez-Rodriguez E, Diep T, Hincke MT. Cuticle and pore plug properties in the table egg. Poult Sci 2018; 97:1382-1390. [PMID: 29340658 DOI: 10.3382/ps/pex409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/23/2017] [Indexed: 11/20/2022] Open
Abstract
Food safety of table eggs is vital since many pathogens can contaminate the unfertilized egg, leading to increased risk of foodborne illness for consumers. The eggshell cuticle is the first line of defense to restrict the entry of egg-associated pathogens, such as Salmonella Enteritidis. The thickness and completeness of coverage of the cuticle layer are heritable traits that are strongly associated with egg resistance to bacterial penetration. The present study characterizes the chemical composition of the eggshell cuticle and structure of pore plugs from table eggs. Eggs collected from both brown and white egg laying Lohmann flocks (early, mid, and late lay) were either unwashed or washed. Pore plugs were characterized using scanning electron microscopy (SEM), and elemental composition was determined using energy-dispersive x-ray spectroscopy (EDS). SEM observations confirmed that the plug formed by the cuticle layer within the eggshell pore remains firmly lodged throughout the commercial washing process. The eggshell thickness and cuticle pore length visualized in brown eggs was significantly higher than in white eggs in hens of all ages. EDS analysis revealed that the pore inner surface was enriched in phosphorus and chemically different from the surrounding bulk eggshell mineral. Detailed assessment of the cuticle chemical composition was performed by Fourier transform infrared spectroscopy (FTIR). Washing of eggs removed cuticle from the eggshell surface. There was a trend of lower cuticle coverage with increasing hen age for white eggs. A significant reduction in the amount of proteins and phosphates and polysaccharides was observed in the cuticle of brown unwashed eggs with hen age. In white unwashed eggs, amides and lipids decreased with hen age; by contrast, the amount of sulfate was highest at mid-lay. The results from our research will assist selective breeding programs that target cuticle integrity and pore plug stability to enhance egg resistance to pathogen penetration and improve food safety.
Collapse
Affiliation(s)
- G Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada K1H 8M5
| | - A Rodriguez-Navarro
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario, Canada, K0E 1M0
| | - E Sanchez-Rodriguez
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario, Canada, K0E 1M0
| | - T Diep
- Department of Mineralogy and Petrology, University of Granada, Granada, Spain
| | - M T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
9
|
Dominguez-Gasca N, Muñoz A, Rodriguez-Navarro AB. Quality assessment of chicken eggshell cuticle by infrared spectroscopy and staining techniques: a comparative study. Br Poult Sci 2017; 58:517-522. [DOI: 10.1080/00071668.2017.1342219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- N. Dominguez-Gasca
- Departmento de Mineralogia y Petrologia, Universidad de Granada, Granada, Spain
| | - A. Muñoz
- Departmento de Mineralogia y Petrologia, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
10
|
Zhang M, Wang N, Xu Q, Harlina PW, Ma M. An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36. Korean J Food Sci Anim Resour 2017; 36:769-778. [PMID: 28115888 PMCID: PMC5243961 DOI: 10.5851/kosfa.2016.36.6.769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient.
Collapse
Affiliation(s)
- Maojie Zhang
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ning Wang
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qi Xu
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Putri Widyanti Harlina
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Meihu Ma
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
11
|
Muñoz A, Dominguez-Gasca N, Jimenez-Lopez C, Rodriguez-Navarro AB. Importance of eggshell cuticle composition and maturity for avoiding trans-shell Salmonella contamination in chicken eggs. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Brandl HB, van Dongen WFD, Darolová A, Krištofík J, Majtan J, Hoi H. Composition of Bacterial Assemblages in Different Components of Reed Warbler Nests and a Possible Role of Egg Incubation in Pathogen Regulation. PLoS One 2014; 9:e114861. [PMID: 25493434 PMCID: PMC4262450 DOI: 10.1371/journal.pone.0114861] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022] Open
Abstract
Bacteria play a central role in animal health. Yet, little is known about the acquisition of bacteria and the extent to which bacteria are acquired from different environmental sources. For example, bird nests host diverse bacteria associated with the eggs, nestlings and nesting material, but previous research has typically focussed on only a limited number of nest components at a time. It therefore remains unknown to what extent bacteria are transmitted between these components. Using both molecular and culture techniques, we characterised nest-associated bacterial assemblages throughout the entire nesting cycle of reed warblers by sampling bacteria on eggs before and during incubation, within nestling faeces, and on the nesting material of post-breeding nests. We found that bacterial assemblages clustered by nest component. Yet some overlap existed between nest components, suggesting that bacterial transmission across components is likely to occur. Eggs and nestlings from the same nest harboured more similar bacteria than expected by chance, suggesting an influence of environment or genetics on bacterial assemblages. Bacterial loads were not lower on incubated eggs. Instead, incubation was associated with a change in the structure of assemblages, including a decrease in potentially-harmful Gram-negative bacteria. In addition we show for the first time, that incubation is associated with the complete extinction of harmful haemolytic bacteria. Overall, our study appears to be the first to demonstrate differences in bacterial assemblages between bird nest components. In addition, we highlight the complexity of nest bacterial assemblages and provide new insights into the benefits of incubation.
Collapse
Affiliation(s)
- Hanja B Brandl
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
| | - Wouter F D van Dongen
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
| | - Alžbeta Darolová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Ján Krištofík
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Juraj Majtan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
| |
Collapse
|
13
|
Webb ML, Spickler JL, Bourassa DV, Cox NA, Wilson JL, Buhr RJ. Recovery of Salmonella serovar Enteritidis from inoculated broiler hatching eggs using shell rinse and shell crush sampling methods. Poult Sci 2014; 93:2117-22. [PMID: 24931964 DOI: 10.3382/ps.2014-03992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study compared the recovery of Salmonella from hatching eggs using 3 sampling methods (eggshell rinsing, eggshell crush following a previous rinse, and eggshell crush without previous rinse). Eggshells were drop-inoculated with approximately 10(1), 10(2), or 10(3) cfu/eggshell of Salmonella Enteritidis and allowed to dry at room temperature for 1 or 24 h. For the shell rinse groups, each inoculated egg was rinsed with buffered peptone water. These rinsed eggs were used for the shell crush with previous rinse groups, and each egg was aseptically cracked, the contents discarded, and the eggshell and membranes crushed with buffered peptone water. This same crush procedure was used for the shell crush without previous shell rinse eggs. The recovery of Salmonella 1 h after inoculation for shell rinse sampled eggs was 16% positive at 10(1), 49% at 10(2), and 93% at 10(3) cfu/eggshell challenge. For the shell crush with previous shell rinse, sampled egg recovery was 0% positive at 10(1), 3% at 10(2), and 17% at 10(3) cfu/eggshell. For the shell crush, sampled eggs had recovery of 23% positive at 10(1), 69% at 10(2), and 96% at 10(3) cfu/eggshell challenge. The recovery of Salmonella 24 h after inoculation for the shell rinse eggs was 3% positive at 10(1), 12% at 10(2), and 22% at 10(3) cfu/eggshell challenge; recovery for shell crush with previous shell rinse sampling was 2% positive at 10(1), 8% at 10(2), and 5% at 10(3) cfu/eggshell challenge; and for the shell crush sampling recovery was 2% at 10(1), 32% at 10(2), and 42% at 10(3) cfu/eggshell challenge. Eggshell crush was a more sensitive (∼10 percentage points) sampling method than eggshell rinse at both 1 and 24 h, but both methods were equally optimal when the inoculum was at 10(3) and samples were collected after 1 h. Waiting 24 h after inoculation to sample significantly lowered the recovery for both the shell rinse and shell crush sampling methods by ∼40 percentage points.
Collapse
Affiliation(s)
- M L Webb
- Biology Department, Claflin University, Orangeburg, SC 29115 Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA, Agricultural Research Service, Athens, GA 30605
| | - J L Spickler
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA, Agricultural Research Service, Athens, GA 30605 Department of Poultry Science, The University of Georgia, Athens 30602
| | - D V Bourassa
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA, Agricultural Research Service, Athens, GA 30605
| | - N A Cox
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA, Agricultural Research Service, Athens, GA 30605
| | - J L Wilson
- Department of Poultry Science, The University of Georgia, Athens 30602
| | - R J Buhr
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA, Agricultural Research Service, Athens, GA 30605
| |
Collapse
|
14
|
Rodríguez-Navarro AB, Domínguez-Gasca N, Muñoz A, Ortega-Huertas M. Change in the chicken eggshell cuticle with hen age and egg freshness. Poult Sci 2013; 92:3026-35. [PMID: 24135608 DOI: 10.3382/ps.2013-03230] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
For a fuller understanding of the functionality of the eggshell cuticle, we conducted a detailed study using a wide array of analytical techniques (scanning and transmission microscopy), energy dispersive x-rays, and attenuated total reflection-Fourier transform infrared spectroscopy to analyze the structure, morphology, and chemical composition of this organic coating. This study shows that the cuticle has a compositional gradation with an outer part richer in proteins and an inner part richer in sulfated polysaccharides and phosphates. It also shown that the cuticle composition, thickness, and degree of coverage are highly dependent on hen age and egg freshness. During the course of the first laying year, the thickness and degree of glycosylation of the cuticle decreases with hen age, and at the end of the laying cycle, the cuticle is significantly depleted in lipids. There are also well-defined compositional changes in the cuticle of freshly laid eggs as time passes and there is a notable increase in the permeability of the eggshell after 24 h due to cuticle drying. We discuss how these changes in the cuticle can affect the food safety of eggs in relation to the risk of trans-shell contamination by bacteria (i.e., Salmonellosis).
Collapse
|
15
|
|