1
|
Chen P, Cui H, Feng L, Yu J, Hayat K, Jia C, Zhang X, Ho CT. Effect of the C-Ring Structure of Flavonoids on the Yield of Adducts Formed by the Linkage of the Active Site at the A-Ring and Amadori Rearrangement Products during the Maillard Intermediate Preparation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3280-3288. [PMID: 35245065 DOI: 10.1021/acs.jafc.1c07521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavonoids (dihydromyricetin, dihydroquercetin, epicatechin, and epigallocatechin) were applied to indicate the critical formation condition of the Amadori rearrangement product (ARP) in Maillard reaction performed under a two-step temperature rising process in the threonine-xylose model system. Threonine-ARP (Thr-ARP) was mixed with dihydromyricetin (DM), dihydroquercetin (DQ), epicatechin (EC), and epigallocatechin (EGC) before the heat treatment; then, the mixture was tested by liquid chromatography-mass spectrometry (LC-MS). The results showed that these flavonoids trapped the ARP and generated adducts. The A-ring of flavonoids (the meta-polyhydroxylated benzene ring) was the functional group to capture the Thr-ARP. The relative contents of the adducts of DM-Thr-ARP, DQ-Thr-ARP, EC-Thr-ARP, and EGC-Thr-ARP were compared with each other, and it was found that the structure of the C-ring of the flavonoids (the carbonyl group on C-4) significantly impeded the formation of adducts with Thr-ARP, while the number of hydroxyl groups on the B-ring had little influence. The formation of adducts delayed the degradation of Thr-ARP, decreased the production of α-dicarbonyl compounds, and suppressed Maillard browning. In this way, the flavonoids might trace the critical formation conditions of ARP during the two-step temperature rising process.
Collapse
Affiliation(s)
- Pusen Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Linhui Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Junhe Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chengsheng Jia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
2
|
Zhuang Y, Dong L, Wang JP, Wang SJ, Wang S. Formation and migration of α-dicarbonyl compounds during storage and reheating of a sugary food simulation system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2296-2304. [PMID: 31953836 DOI: 10.1002/jsfa.10263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The thermal processing of food results in the formation of α-dicarbonyl compounds (α-DCs) such as glyoxal (GO), methylglyoxal (MGO), 2,3-butanedione (2,3-BD), and 3-deoxyglucosone (3-DG), which are precursors of potentially harmful advanced glycation end products. Some of the α-DCs found in food products might result from chemical deterioration reactions during storage and reheating. A range of sugary food simulation systems were stored at three different temperatures (4, 25, and 37 °C) and reheated using three different processing methods to investigate the formation and migration of α-DCs. RESULTS During 20 days of storage, the concentration of α-DCs declined, following which the concentration remained approximately constant. Methylglyoxal was the major α-DC affected during storage, its relative content decreasing from 233.71 to 44.12 μg mL-1 in the glucose-lysine system. The concentration of α-DCs decreased with increasing temperature. Microwave reheating increased the formation of α-DC compounds. The largest increases in 3-DG concentrations were observed in the maltose-lysine systems (24.94 to 35.74 μg mL-1 ). The concentration of α-DCs only changed a little in response to reheating at 100 °C, but declined when reheated at 150 °C. CONCLUSION The concentration of α-DCs following storage and reheating depends on the type of sugar, lysine content, temperature, and method of reheating. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jun-Ping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Shu-Jun Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|