1
|
Ishikawa R, Saito K, Matsumura T, Arai K, Yamauchi S, Goda R, Tachiki H, Kawabata M, Nitta SI, Nagao A, Suga T, Uchiyama H, Nakai K, Asahina K, Yamaoka M, Saito Y. A multilaboratory validation study of LC/MS biomarker assays for three lysophosphatidylcholines. Bioanalysis 2021; 13:1533-1546. [PMID: 34696608 DOI: 10.4155/bio-2021-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: Although the fit-for-purpose approach has been proposed for validation procedures and acceptance criteria for biomarker assays, practical biomarker assays to facilitate clinical application and regulatory documents on biomarker assays remain limited. Materials & methods: We assigned six independent laboratories and selected three lysophosphatidylcholines (LPCs): LPC(16:0), LPC(18:0) and LPC(18:1) as model biomarkers. Using LC-MS, the following key validation parameters were evaluated: calibration curve, carryover, parallelism, precision and relative accuracy and these values were similar among all laboratories. Further, we determined LPC levels in six lots of rat plasma at unknown concentrations and compared them among the laboratories. Conclusion: Our multilaboratory validation and reproducibility data are useful for the development of future biomarker assay validation procedures, as well as regulatory documents.
Collapse
Affiliation(s)
- Rika Ishikawa
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | | | - Koji Arai
- LSI Medience Corporation, Tokyo, 101-8517, Japan
| | | | - Ryoya Goda
- Daiichi Sankyo Company, Ltd, Tokyo, 140-8710, Japan
| | | | | | | | | | | | | | - Keiko Nakai
- LSI Medience Corporation, Tokyo, 101-8517, Japan
| | | | | | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| |
Collapse
|
2
|
Chronic Effect of a Cafeteria Diet and Intensity of Resistance Training on the Circulating Lysophospholipidome in Young Rats. Metabolites 2021; 11:metabo11080471. [PMID: 34436412 PMCID: PMC8398762 DOI: 10.3390/metabo11080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
The daily practice of physical exercise and a balanced diet are recommended to prevent metabolic syndrome (MetS). As MetS is a multifactorial disorder associated with the development of serious diseases, the advancement of comprehensive biomarkers could aid in an accurate diagnosis. In this regard, it is known that gut microbiota is altered in MetS, and especially, lipid metabolites species are highly modified, thus emerging as potential biomarkers. In preliminary studies, we observed that alterations in serum lysoglycerophospholipids (Lyso-PLs) were shared between animals with diet-induced MetS and those performing resistance exercises assiduously. Therefore, our objective was the targeted determination of the lysophospholipidome in young rats fed a standard (ST) or a cafeteria diet (CAF) and submitted to different training intensities to evaluate its potential as a biomarker of a detrimental lifestyle. Targeted metabolomics focused on lysophosphatidylcholines (Lyso-PCs) and lysophosphatidylethanolamines (Lyso-PEs) and multivariate statistics were used to achieve an integral understanding. Chronic intake of CAF altered the serological levels of both lipid subclasses. Twenty-two Lyso-PLs were significantly altered by CAF, from which we selected Lyso-PCs (14:0), (17:1) and (20:2) and Lyso-PEs (18:2) and (18:3) as they were enough to achieve an optimal prediction. The main effect of physical training was decreased Lyso-PEs levels with disparities among training intensities for each diet. We concluded that an examination of the lysophospholipidome reveals the general state of the metabolome in young female rats, especially due to intake of an MetS-inducing diet, thus highlighting the importance of this family of compounds in lipid disorders.
Collapse
|
3
|
Siriwardane DA, Wang C, Jiang W, Mudalige T. Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Int J Pharm 2020; 578:119077. [DOI: 10.1016/j.ijpharm.2020.119077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023]
|
4
|
Zhang Q, Xu H, Liu R, Gao P, Yang X, Jin W, Zhang Y, Bi K, Li Q. A Novel Strategy for Targeted Lipidomics Based on LC-Tandem-MS Parameters Prediction, Quantification, and Multiple Statistical Data Mining: Evaluation of Lysophosphatidylcholines as Potential Cancer Biomarkers. Anal Chem 2019; 91:3389-3396. [DOI: 10.1021/acs.analchem.8b04715] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wei Jin
- Urumqi Traditional Chinese Medicine Hospital, 590 Youhao South Road, Urumqi 830000, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
5
|
Suárez-García S, Arola L, Pascual-Serrano A, Arola-Arnal A, Aragonès G, Bladé C, Suárez M. Development and validation of a UHPLC-ESI-MS/MS method for the simultaneous quantification of mammal lysophosphatidylcholines and lysophosphatidylethanolamines in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:86-97. [DOI: 10.1016/j.jchromb.2017.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
|
6
|
Chen G, Song C, Jin S, Li S, Zhang Y, Huang R, Feng Y, Xu Y, Xiang Y, Jiang H. An integrated strategy for establishment of metabolite profile of endogenous lysoglycerophospholipids by two LC-MS/MS platforms. Talanta 2017; 162:530-539. [DOI: 10.1016/j.talanta.2016.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/01/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
|
7
|
Yu S, Wu X, Ferguson M, Simmen RC, Cleves MA, Simmen FA, Fang N. Diets Containing Shiitake Mushroom Reduce Serum Lipids and Serum Lipophilic Antioxidant Capacity in Rats. J Nutr 2016; 146:2491-2496. [PMID: 27798348 PMCID: PMC5118771 DOI: 10.3945/jn.116.239806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/18/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We previously reported that dietary intake of shiitake mushroom (SM; Lentinus edodes) decreased serum concentrations of polar lipids in male rats. OBJECTIVE This study evaluated the dietary effects of SM on serum cholesterol-related and serum antioxidant indexes in rats of both sexes. METHODS Sprague-Dawley rats [38 dams and their offspring (20 males and 20 females/diet)] were fed diets containing 0 (control), 1%, 4%, or 10% (wt:wt) SM powder from gestation day 4 through to postnatal day (PND) 126. Biochemical indexes were monitored during the midgrowth phase (PNDs 50-66). RESULTS The food consumption by offspring fed the control diet and diets supplemented with SM was not different when measured on PND 65. However, the 4% and 10% SM diets resulted in male rats with 7% lower body weights than those of the other 2 groups on PND 66. SM consumption dose-dependently decreased the concentrations of lipidemia-related factors in sera, irrespective of sex. At PND 50, serum concentrations of total cholesterol, HDL cholesterol, and non-HDL cholesterol in SM-fed male and female rats were generally lower (3-27%) than those in the corresponding control groups. Consumption of the 10% SM diet resulted in significantly decreased (55%) serum triglyceride concentrations relative to the control groups for both sexes. The 10% SM diet elicited a 62% reduction of serum leptin concentrations in females but not in males, and this same diet increased serum insulin (137%) and decreased serum glucose (15%) in males compared with controls. Serum lipophilic antioxidant capacity in males and females fed SM diets was generally lower (31-86%) than that in the control groups. CONCLUSION SM decreased the concentrations of lipidemia-related factors in rat sera irrespective of sex. The SM-elicited reduction of lipophilic antioxidant capacity irrespective of sex may reflect a lower pro-oxidative state and, hence, improved metabolic profile.
Collapse
Affiliation(s)
- Shanggong Yu
- Arkansas Children's Nutrition Center, Little Rock, AR
| | - Xianli Wu
- Beltsville Human Nutrition Research Center, USDA-Agricultural Research Service, Beltsville, MD; and
| | | | | | - Mario A Cleves
- Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Nianbai Fang
- Arkansas Children's Nutrition Center, Little Rock, AR;
- Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
8
|
Jin S, Song C, Li S, Zhang Y, Chen C, Zhou X, Xu Y, Feng Y, Zhang Z, Jiang H. Preventive effects of turmeric on the high-fat diet-induced hyperlipidaemia in mice associated with a targeted metabolomic approach for the analysis of serum lysophosphatidylcholine using LC-MS/MS. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids 2011; 46:893-906. [PMID: 21744277 DOI: 10.1007/s11745-011-3589-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/16/2011] [Indexed: 02/07/2023]
Abstract
In the present study, the anti-inflammatory action of lysophosphatidylethanolamine (lysoPtdEtn), orally administered, in zymosan A-induced peritonitis was examined. Oral administration of 2-DHA-lysoPtdEtn (ED(50), ~111 μg/kg) or 2-ARA-lysoPtdEtn (ED(50), 221 μg/kg) was found to inhibit the plasma leakage in mice treated with zymosan A. In support of this, 2-polyunsaturated acyl-lysoPtdEtn diminished the formation of LTC(4), a lipid mediator responsible for vascular permeability. Next, 2-DHA-lysoPtdEtn (ED(50), 110 μg/kg) or 2-ARA-lysoPtdEtn (ED(50), 123 μg/kg) effectively inhibited the leukocyte extravasation into the peritoneum. Consistent with this, each polyunsaturated-lysoPtdEtn diminished the formation of LTB(4) and 12-HETE, potent chemotactic factors. Additionally, the level of pro-inflammatory mediator (IL-1 β, IL-6, TNF-α or NO) was lowered remarkably in contrast to the augmentation of anti-inflammatory interleukin IL-10. Furthermore, 2-(15-HETE)-lysoPtdEtn and 2-(17-HDHE)-lysoPtdEtn, 15-lipoxygenation product of 2-ARA-lysoPtdEtn and 2-DHA-lysoPtdEtn, respectively, were more potent than corresponding lysoPtdEtn, suggesting the action of 2-acyl-lysoPtdEtn might be expressed through 15-lipoxygenation. In support of this, the formation of 15-HETE and LXA(4) was upgraded in accordance with an increasing dose of 2-ARA-lysoPtdEtn. Separately, anti-inflammatory actions, 2-polyunsaturated acyl-lysoPtdEtns also drastically diminished leukocyte infiltration in a later phase of zymosan A-induced peritonitis, indicating that these lipids also possess pro-resolving activity. Taken together, it is suggested that polyunsaturated lysoPtdEtns and their lipoxygenation derivatives, could be classified as potent anti-inflammatory lipids.
Collapse
|