1
|
Liu F, Malaphan W, Xing F, Yu B. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase. Appl Microbiol Biotechnol 2019; 103:8813-8824. [PMID: 31628520 DOI: 10.1007/s00253-019-10153-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023]
Abstract
Zearalenone (ZEN) is one of the common mycotoxins with quite high occurrence rate and is harmful to animal and human health. Lactobacillus reuteri is known as a probiotic bacterium with active immune stimulating and high inhibitory activity against pathogenic microorganisms. In this study, we expressed the lactonohydrolase from Rhinocladiella mackenziei CBS 650.93 (RmZHD) in L. reuteri via secretion and surface-display patterns, respectively. Endogenous signal peptides from L. reuteri were first screened to achieve high expression for efficient ZEN hydrolysis. For secretion expression, signal peptide from collagen-binding protein showed the best performance, while the one from fructose-2,6-bisphosphatase worked best for surface-display expression. Both of the engineered strains could completely hydrolyze 5.0 mg/L ZEN in 8 h without detrimental effects on bacterial growth. The acid and bile tolerance assay and anchoring experiment on Caco-2 cells indicated both of the abovementioned engineered strains could survive during digestion and colonize on intestinal tract, in which the surface-displayed strain had a better performance on ZEN hydrolysis. Biodetoxification of model ZEN-contaminated maize kernels showed the surface-displayed L. reuteri strain could completely hydrolyze 2.5 mg/kg ZEN within 4 h under low water condition. The strain could also efficiently detoxify natural ZEN-contaminated corn flour in the in vitro digestion model system. The colonized property, survival capacity, and the efficient hydrolysis performance as well as probiotic functionality make L. reuteri strain an ideal host for detoxifying residual ZEN in vivo, which shows a great potential for application in feed industry.
Collapse
Affiliation(s)
- Feixia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wanna Malaphan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport ProcessMinistry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Yang WC, Hsu TC, Cheng KC, Liu JR. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 2017; 16:69. [PMID: 28438205 PMCID: PMC5404306 DOI: 10.1186/s12934-017-0687-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background Mycotoxins are secondary metabolites produced by filamentous fungi that can contaminate agricultural crops in the field as well as during harvest, transportation, processing, or storage. Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, produced by Fusarium species, has been shown to be associated with reproductive disorders in farm animals and to a lesser extent in hyperoestrogenic syndromes in humans. Thus, the decontamination of ZEN in foods and feeds is an important issue. Results In this study, the gene encoding ZHD101, a ZEN-degrading enzyme produced by Clonostachys rosea IFO 7063, was cloned into an Escherichia coli–Lactobacillus shuttle vector, pNZ3004, and the resultant plasmid pNZ-zhd101 was then introduced via electroporation into Lactobacillus reuteri Pg4, a probiotic strain isolated from the gastrointestinal tract of broilers. The transformed strain L. reuteri pNZ-zhd101 acquired the capacity to degrade ZEN. In addition, the production of recombinant ZHD101 did not affect cell growth, acid and bile salt tolerance, and had only a minor effect on the adhesion ability of L. reuteri pNZ-zhd101. Conclusions To the best of our knowledge, this is the first report of successful expression of a ZEN-degrading enzyme by intestinal lactobacilli.
Collapse
Affiliation(s)
- Wen-Chun Yang
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Tsui-Chun Hsu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Je-Ruei Liu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
3
|
Hasunuma T, Kondo A. Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Tomohisa Hasunuma
- Kobe University; Graduate School of Science, Technology and Innovation; 1-1 Rokkodai Nada Kobe 657-8501 Japan
| | - Akihiko Kondo
- RIKEN; Biomass Engineering Program; 1-7-22 Suehiro-cho, Tsurumi Yokohama 230-0045 Japan
| |
Collapse
|
4
|
Schüürmann J, Quehl P, Festel G, Jose J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 2014; 98:8031-46. [DOI: 10.1007/s00253-014-5897-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/24/2022]
|
5
|
Hsueh HY, Yu B, Liu CT, Liu JR. Increase of the adhesion ability and display of a rumen fungal xylanase on the cell surface of Lactobacillus casei by using a listerial cell-wall-anchoring protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:576-584. [PMID: 23824609 DOI: 10.1002/jsfa.6298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lactobacillus, which has great adhesion ability to intestinal mucosa and is able to hydrolyse plant cell walls, can be used more efficiently as a feed additive. To increase the adhesion ability and display a fungal xylanase on the cell surface of Lactobacillus casei, the Listeria monocytogenes cell-wall-anchoring protein gene, mub, was introduced into L. casei ATCC 393 cells and used as a fusion partner to display the rumen fungal xylanase XynCDBFV on the cell surface of the transformed strains. RESULTS The transformed strain L. casei pNZ-mub, which harboured mub gene, displayed recombinant Mub on its cell surface and showed greater adhesion ability to Caco-2 cells than the parental strain. The transformed strain L. casei pNZ-mub/xyn, which harboured mub-xynCDBFV fusion gene, acquired the capacity to break down oat spelt xylan and exhibited greater competition ability against the adhesion of L. monocytogenes to Caco-2 cells, in comparison with the parental strain. CONCLUSION Mub has a potential to be used as a fusion partner to display heterologous proteins on the cell surface of Lactobacillus. Moreover, this is the first report of the successful display of xylanase on the cell surface of Lactobacillus.
Collapse
Affiliation(s)
- Hsiang-Yun Hsueh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
6
|
Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. BIORESOURCE TECHNOLOGY 2013. [PMID: 23195654 DOI: 10.1016/j.biortech.2012.10.047] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The biorefinery manufacturing process for producing chemicals and liquid fuels from biomass is a promising approach for securing energy and resources. To establish cost-effective fermentation of lignocellulosic biomass, the consolidation of sacccharification and fermentation processes is a desirable strategy, but requires the development of microorganisms capable of cellulose/hemicellulose hydrolysis and target chemical production. Such an endeavor requires a large number of prerequisites to be realized, including engineering microbial strains with high cellulolytic activity, high product yield, productivities, and titers, ability to use many carbon sources, and resistance to toxic compounds released during the pretreatment of lignocellulosic biomass. Researchers have focused on either engineering naturally cellulolytic microorganisms to improve product-related properties or modifying non-cellulolytic organisms with high product yields to become cellulolytic. This article reviews recent advances in the development of microorganisms for the production of renewable chemicals and advanced biofuels, as well as ethanol, from lignocellulosic materials through consolidated bioprocessing.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. MICROBIAL ECOLOGY 2012; 63:267-81. [PMID: 22213055 DOI: 10.1007/s00248-011-9998-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/12/2011] [Indexed: 05/05/2023]
Abstract
The phylum Fibrobacteres currently comprises one formal genus, Fibrobacter, and two cultured species, Fibrobacter succinogenes and Fibrobacter intestinalis, that are recognised as major bacterial degraders of lignocellulosic material in the herbivore gut. Historically, members of the genus Fibrobacter were thought to only occupy mammalian intestinal tracts. However, recent 16S rRNA gene-targeted molecular approaches have demonstrated that novel centres of variation within the genus Fibrobacter are present in landfill sites and freshwater lakes, and their relative abundance suggests a potential role for fibrobacters in cellulose degradation beyond the herbivore gut. Furthermore, a novel subphylum within the Fibrobacteres has been detected in the gut of wood-feeding termites, and proteomic analyses have confirmed their involvement in cellulose hydrolysis. The genome sequence of F. succinogenes rumen strain S85 has recently suggested that within this group of organisms a "third" way of attacking the most abundant form of organic carbon in the biosphere, cellulose, has evolved. This observation not only has evolutionary significance, but the superior efficiency of anaerobic cellulose hydrolysis by Fibrobacter spp., in comparison to other cellulolytic rumen bacteria that typically utilise membrane-bound enzyme complexes (cellulosomes), may be explained by this novel cellulase system. There are few bacterial phyla with potential functional importance for which there is such a paucity of phenotypic and functional data. In this review, we highlight current knowledge of the Fibrobacteres phylum, its taxonomy, phylogeny, ecology and potential as a source of novel glycosyl hydrolases of biotechnological importance.
Collapse
Affiliation(s)
- Emma Ransom-Jones
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | | | | |
Collapse
|