1
|
Rojas EM, Zhang H, Velu SE, Wu H. Tetracyclic homoisoflavanoid (+)-brazilin: a natural product inhibits c-di-AMP-producing enzyme and Streptococcus mutans biofilms. Microbiol Spectr 2024; 12:e0241823. [PMID: 38591917 PMCID: PMC11064632 DOI: 10.1128/spectrum.02418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.
Collapse
Affiliation(s)
- Edwin M. Rojas
- School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hua Zhang
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Wu
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Li Q, Shen Y, Guo X, Xu Y, Mao Y, Wu Y, He F, Wang C, Chen Y, Yang Y. Betanin Dose-Dependently Ameliorates Allergic Airway Inflammation by Attenuating Th2 Response and Upregulating cAMP-PKA-CREB Pathway in Asthmatic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3708-3718. [PMID: 35298142 DOI: 10.1021/acs.jafc.2c00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Allergic asthma is a refractory disease that affects hundreds of millions of people worldwide. Betanin is a natural plant-derived nutrient and possesses health-promoting properties. The effects of betanin on allergic asthma remain unknown. Herein, the effects and mechanisms of betanin on allergic asthma were explored in ovalbumin (OVA)-induced BALB/c mice. Betanin in doses of 0, 20, 60, and 180 mg/kg was applied. Peripheral inflammatory cells, IgE, pulmonary pathology, T cell subsets, cytokine levels, protein expressions of the cAMP-PKA-CREB/CREM pathway, and gut microbial profile were measured. The 60 and 180 mg/kg/day betanin doses significantly downregulated IgE, eotaxin, eosinophil infiltration, mucus hyperproduction, and Th2. A 180 mg/kg/day betanin dose also significantly reduced percentages of Th17, Tc17, and Tc2 and Th2- and Th17-signature cytokines and upregulated the cAMP-PKA-CREB pathway. Additionally, 20 mg/kg/day betanin altered the gut microbial profile. In conclusion, betanin dose-dependently alleviated allergic asthma and upregulated the cAMP-PKA-CREB pathway in mice. This study provides a novel nutritional strategy to treat allergic asthma.
Collapse
Affiliation(s)
- Qin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yunqin Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Xingyue Guo
- Department of Nutrition, School of Public Health (Guangzhou), Sun Yat-sen University, Guangzhou 510080, China
| | - Yixuan Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yinfan Wu
- Department of Clinical Nutrition, Shanghai Fourth People Hospital, School of Medicine, Tongji University, Shanghai 200331, China
| | - Fang He
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Caixia Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou 510623, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
3
|
Xue L, Li Y, Li T, Pan H, Liu J, Fan M, Qian H, Zhang H, Ying H, Wang L. Phosphorylation and Enzymatic Hydrolysis with Alcalase and Papain Effectively Reduce Allergic Reactions to Gliadins in Normal Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6313-6323. [PMID: 31070910 DOI: 10.1021/acs.jafc.9b00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Gliadins are major allergens responsible for wheat allergies. Food processing is an effective strategy to reduce the allergenicity of gluten. In the present study, we determined the secondary and tertiary structures of gluten and gliadins treated by chemical, physical, and enzymatic means through FTIR, surface hydrophobicity, intrinsic fluorescence spectra, and UV absorption spectra. The results showed that the three treatments of phosphorylation and alcalase and papain hydrolyses significantly changed the conformational structures of gliadins, especially the secondary structure. Then, the potential allergenicity of the phosphorylated and alcalase and papain hydrolyzed gliadins were further characterized, and we observed a significant decrease in the allergenicity through the results of the index of spleen, serum total IgE, gliadin-specific IgE, histamine, and serum cytokine concentrations. An elevation of Th17 cells, the absence of Treg cells, and an imbalance in Treg/Th17 are associated with allergy. On the basis of the expression levels of related cytokines and key transcription factors, we also confirmed that phosphorylation and alcalase and papain hydrolysis could effectively reduce the allergenicity of gliadins by improving the imbalance of both Th1/Th2 and Treg/Th17 in the spleens of sensitized mice. This study suggested that the changes in conformational structure contribute to gliadin hyposensitization and that phosphorylation and alcalase and papain hydrolysis may be promising strategies for the production of wheat products with low allergenicity.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Haiou Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Hao Ying
- CAS Key laboratory of nutrition, metabolism and food safety, Shanghai Institutes for Biological Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031 , People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
| |
Collapse
|
4
|
Huang M, Duan S, Ma X, Cai B, Wu D, Li Y, Li L, Zhang H, Yang X. Synthesis and antitumor activity of aza-brazilan derivatives containing imidazolium salt pharmacophores. MEDCHEMCOMM 2019; 10:1027-1036. [PMID: 31341578 DOI: 10.1039/c9md00112c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/07/2019] [Indexed: 01/22/2023]
Abstract
The synthesis of a series of novel aza-brazilan derivatives containing imidazolium salt pharmacophores is presented. The biological activity of such imidazolium salts was further evaluated in vitro against a panel of human tumor cell lines. The results suggest that the electron-withdrawing group on the aza-brazilan moiety, substituted 5,6-dimethyl-benzimidazole ring and substitution of the imidazolyl-3-position with a 4-methylbenzyl group were essential for modulating the cytotoxic activity. Compounds 55 and 39, bearing a 4-methylbenzyl substituent at position-3 of 5,6-dimethyl-benzimidazole, were found to be the most potent compounds with IC50 values of 0.52-1.30 μM and 0.56-1.51 μM against four human tumor cell lines investigated. Particularly, compound 57 exhibited inhibitory activity against the MCF-7 cell line with an IC50 value of 0.35 μM and was 56-fold more sensitive than DDP. Moreover, compound 55 inhibited cell proliferation through inducing G0/G1 cell cycle arrest and apoptosis in SMMC-7721 cells.
Collapse
Affiliation(s)
- Mingqin Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119
| | - Xueqiong Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119
| | - Bicheng Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119.,State Key Laboratory for Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , P. R. China .
| | - Dongmei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119.,State Key Laboratory for Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , P. R. China .
| | - Yan Li
- State Key Laboratory for Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , P. R. China .
| | - Liang Li
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry of Education and Yunnan Province , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , P. R. China . ; ; ; Tel: +86 871 65031119
| |
Collapse
|
5
|
A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7125162. [PMID: 30719065 PMCID: PMC6335729 DOI: 10.1155/2019/7125162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.
Collapse
|
6
|
Xia Z, Li D, Li Q, Zhang Y, Kang W. Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC. Chem Cent J 2017; 11:114. [PMID: 29134292 PMCID: PMC5684053 DOI: 10.1186/s13065-017-0342-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF4, [BMIM]PF6 and [HMIM]PF6, were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Zhaoyang Xia
- Institute of Chinese Materia Medica, Henan University, Kaifeng, Henan, 475004, China
| | - Dongdong Li
- Institute of Chinese Materia Medica, Henan University, Kaifeng, Henan, 475004, China
| | - Qing Li
- Institute of Chinese Materia Medica, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China.
| | - Wenyi Kang
- Institute of Chinese Materia Medica, Henan University, Kaifeng, Henan, 475004, China. .,Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Zhang C, Song Y, Wang C, Zhao L, Kang H, Ma X, Wang J, Zhang T, Shumin W, Ma C. The effects of chrysophanol on ovalbumin (OVA)-induced chronic lung toxicology by inhibiting Th17 response. Toxicol Mech Methods 2017; 27:327-334. [PMID: 28399782 DOI: 10.3109/15376516.2015.1053653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chrysophanol (CH), extracted from plants of Rheum genus, possesses various pharmacological effects including anti-inflammatory activity. The purpose of the present study was to evaluate the protective effects and the underlying mechanisms of CH on ovalbumin (OVA)-induced asthma in mice. Fifty mice were randomly assigned to five experimental groups: control group, model group, dexamethasone (2 mg/kg) group and CH (5 and 10 mg/kg) groups. The number of eosinophil cells and the production of interleukin-6 (IL-6), IL-1β, IL-17 A and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF) were measured. In addition, pulmonary histopathology, airway resistance (Raw), T-helper17 (Th17) cells frequency and RORγt expression were evaluated. Our study demonstrated that CH effectively decreased eosinophil count and inflammatory cytokines production in BALF. In addition, treatment with CH significantly inhibited the Raw, Th17 percentage and RORγt expression in OVA-induced animals compared with those in model group. Histological studies also demonstrated that CH significantly suppressed OVA-induced eosinophilia in lung tissue compared with model group. Our findings supported that CH can prevent allergic asthma in the mouse model.
Collapse
Affiliation(s)
- Chunyan Zhang
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Yafan Song
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Congxia Wang
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Ling Zhao
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Huafeng Kang
- b Department of Oncology, the Second Affiliated Hospital , Medical School of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Xiaobin Ma
- b Department of Oncology, the Second Affiliated Hospital , Medical School of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Jing Wang
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| | - Tianzhu Zhang
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| | - Wang Shumin
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| | - Chunhua Ma
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| |
Collapse
|
8
|
Lee EB, Xing MM, Kim DK. Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans. Arch Pharm Res 2017; 40:825-835. [PMID: 28667441 DOI: 10.1007/s12272-017-0920-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/08/2017] [Indexed: 01/30/2023]
Abstract
This study contributes to the continual discovery of lifespan-extending compounds from plants, using the Caenorhabditis elegans model system. An ethyl acetate soluble fraction of methanol extract from the heartwood of Caesalpinia sappan showed a significant lifespan-extending activity. Subsequent activity-guided chromatography of the ethyl acetate-soluble fraction led to the isolation of brazilin. Brazilin showed potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging and superoxide anion quenching activities and also revealed a lifespan-extending activity in C. elegans under normal culture conditions. Brazilin also exhibited the protective effects against thermal, oxidative and osmotic stress conditions to improve the survival rate of the nematode. Furthermore, brazilin elevated superoxide dismutase (SOD) activity and decreased intracellular reactive oxygen species accumulation in C. elegans. Further studies showed that brazilin-mediated increased stress tolerance of worms could be due to increased expressions of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). Besides, there were no significant, brazilin-induced changes in aging-related factors, including progeny production, food intake, and growth, indicating brazilin influences longevity activity independent of affecting these factors. Brazilin increased the body movement of aged worms, indicating brazilin affects the healthspan and lifespan of nematode. These results suggest that brazilin contributes to the lifespan of C. elegans under both normal and stress conditions by increasing the expressions of stress resistance proteins.
Collapse
Affiliation(s)
- Eun Byeol Lee
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - Ming Ming Xing
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea.,College of Materials and Chemistry Engineering, Tongren University, Guizhou, 554300, China
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea.
| |
Collapse
|
9
|
Lee CC, Lee YL, Wang CN, Tsai HC, Chiu CL, Liu LF, Lin HY, Wu R. Polygonum multiflorum Decreases Airway Allergic Symptoms in a Murine Model of Asthma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:133-47. [PMID: 26916919 DOI: 10.1142/s0192415x16500099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The root of Polygonum multiflorum (also called He-Shou-Wu in Chinese) is a common herb and medicinal food in Asia used for its anti-aging properties. Our study investigated the therapeutic potential of an extract of the root of Polygonum multiflorum (PME) in allergic asthma by using a mouse model. Feeding of 0.5 and 1 mg/mouse PME inhibited ovalbumin (OVA)-induced allergic asthma symptoms, including airway inflammation, mucus production, and airway hyper-responsiveness (AHR), in a dose-dependent manner. To discern PME's mechanism of action, we examined the profile and cytokine production of inflammatory cells in bronchial alveolar lavage fluid (BALF). We found that eosinophils, the main inflammatory cell infiltrate in the lung of OVA-immunized mice, significantly decreased after PME treatment. Th2 cytokine levels, including interleukin (IL)-4, IL-5, IL-13, eotaxin, and the proinflammatory cytokine tumor necrosis factor (TNF)-[Formula: see text], decreased in PME-treated mice. Elevated mRNA expression of Th2 transcription factor GATA-3 in the lung tissue was also inhibited after oral feeding of PME in OVA-immunized mice. Thus, we conclude that PME produces anti-asthma activity through the inhibition of Th2 cell activation.
Collapse
Affiliation(s)
- Chen-Chen Lee
- * Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan.,† Graduate Institute of Basic Medical Science, China Medicine University, Taichung, Taiwan.,‡ Graduate Institute of Immunology, China Medicine University, Taichung, Taiwan.,∥ Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Lun Lee
- * Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan
| | - Chien-N Wang
- † Graduate Institute of Basic Medical Science, China Medicine University, Taichung, Taiwan
| | - Hsing-Chuan Tsai
- § Center for Comparative Respiratory Biology and Medicine, Internal Medicine, College of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Chun-Lung Chiu
- § Center for Comparative Respiratory Biology and Medicine, Internal Medicine, College of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Leroy F Liu
- ¶ The Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University; College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- ¶ The Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University; College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Reen Wu
- § Center for Comparative Respiratory Biology and Medicine, Internal Medicine, College of Medicine, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
10
|
Tu Y, Ma S, Liu F, Sun Y, Dong X. Hematoxylin Inhibits Amyloid β-Protein Fibrillation and Alleviates Amyloid-Induced Cytotoxicity. J Phys Chem B 2016; 120:11360-11368. [PMID: 27749059 DOI: 10.1021/acs.jpcb.6b06878] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation and aggregation of amyloid β-protein (Aβ) play an important role in the pathogenesis of Alzheimer's disease. There has been increased interest in finding new anti-amyloidogenic compounds to inhibit Aβ aggregation. Herein, thioflavin T fluorescent assay and transmission electron microscopy results showed that hematoxylin, a natural organic molecule extracted from Caesalpinia sappan, was a powerful inhibitor of Aβ42 fibrillogenesis. Circular dichroism studies revealed hematoxylin reduced the β-sheet content of Aβ42 and made it assemble into antiparallel arrangement, which induced Aβ42 to form off-pathway aggregates. As a result, hematoxylin greatly alleviated Aβ42-induced cytotoxicity. Molecular dynamics simulations revealed the detailed interactions between hematoxylin and Aβ42. Four binding sites of hematoxylin on Aβ42 hexamer were identified, including the N-terminal region, S8GY10 region, turn region, and C-terminal region. Notably, abundant hydroxyl groups made hematoxylin prefer to interact with Aβ42 via hydrogen bonds. This also contributed to the formation of π-π stacking and hydrophobic interactions. Taken together, the research proved that hematoxylin was a potential agent against Aβ fibrillogenesis and cytotoxicity.
Collapse
Affiliation(s)
- Yilong Tu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Shuai Ma
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Fufeng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China.,College of Biotechnology and National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology , Tianjin 300457, P. R. China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
11
|
High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 2016; 6:18815. [PMID: 26739898 PMCID: PMC4703978 DOI: 10.1038/srep18815] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway.
Collapse
|
12
|
Mueller M, Weinmann D, Toegel S, Holzer W, Unger FM, Viernstein H. Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food Funct 2016; 7:1671-9. [DOI: 10.1039/c5fo01256b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heartwood of Caesalpinia sappan is a traditional ingredient of food and beverages in South East Asia and has been used in traditional medicine as an analgesic and anti-inflammatory drug or to promote blood circulation.
Collapse
Affiliation(s)
- Monika Mueller
- Department of Pharmaceutical Technology and Biopharmaceutics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology
- Department of Orthopaedics
- Medical University of Vienna
- A-1090 Vienna
- Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology
- Department of Orthopaedics
- Medical University of Vienna
- A-1090 Vienna
- Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Chemistry – Division of Drug Synthesis
- University of Vienna
- A-1090 Vienna
- Austria
| | - Frank M. Unger
- Department of Pharmaceutical Technology and Biopharmaceutics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics
- University of Vienna
- A-1090 Vienna
- Austria
| |
Collapse
|
13
|
Yan Y, Chen YC, Lin YH, Guo J, Niu ZR, Li L, Wang SB, Fang LH, Du GH. Brazilin isolated from the heartwood of Caesalpinia sappan L induces endothelium-dependent and -independent relaxation of rat aortic rings. Acta Pharmacol Sin 2015; 36:1318-26. [PMID: 26564314 DOI: 10.1038/aps.2015.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
AIM Brazilin is one of the major constituents of Caesalpinia sappan L with various biological activities. This study sought to investigate the vasorelaxant effect of brazilin on isolated rat thoracic aorta and explore the underlying mechanisms. METHODS Endothelium-intact and -denuded aortic rings were prepared from rats. The tension of the preparations was recorded isometrically with a force displacement transducer connected to a polygraph. The phosphorylation levels of ERK1/2 and myosin light chain (MLC) were analyzed using Western blotting assay. RESULTS Application of brazilin (10-100 μmol/L) dose-dependently relaxed the NE- or high K(+)-induced sustained contraction of endothelium-intact aortic rings (the EC50 was 83.51±5.6 and 79.79±4.57 μmol/L, respectively). The vasorelaxant effect of brazilin was significantly attenuated by endothelium removal or by pre-incubation with L-NAME, methylene blue or indomethacin. In addition, pre-incubation with brazilin dose-dependently attenuated the vasoconstriction induced by KCl, NE or Ang II. Pre-incubation with brazilin also markedly suppressed the high K(+)-induced extracellular Ca(2+) influx and NE-induced intracellular Ca(2+) release in endothelium-denuded aortic rings. Pre-incubation with brazilin dose-dependently inhibited the NE-stimulated phosphorylation of ERK1/2 and MLC in both endothelium-intact and -denuded aortic rings. CONCLUSION Brazilin induces relaxation in rat aortic rings via both endothelium-dependent and -independent ways as well as inhibiting NE-stimulated phosphorylation of ERK1/2 and MLC. Brazilin also attenuates vasoconstriction via blocking voltage- and receptor-operated Ca(2+) channels.
Collapse
|
14
|
Brazilin plays an anti-inflammatory role with regulating Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice. Int Immunopharmacol 2015; 27:130-7. [DOI: 10.1016/j.intimp.2015.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/06/2023]
|
15
|
Dapson R, Bain C. Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments. Biotech Histochem 2015; 90:401-23. [DOI: 10.3109/10520295.2015.1021381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Lee CC, Wang CN, Lee YL, Tsai YR, Liu JJ. High mobility group box 1 induced human lung myofibroblasts differentiation and enhanced migration by activation of MMP-9. PLoS One 2015; 10:e0116393. [PMID: 25692286 PMCID: PMC4332862 DOI: 10.1371/journal.pone.0116393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that involves the binding with DNA and influences chromatin regulation and transcription. HMGB1 is also a cytokine that can activate monocytes and neutrophils involved in inflammation. In this study, we investigated the role of HMGB1 on cellular activation using human fibroblast cell line WI-38. After treatment with 1, 10, and 100 ng/mL of HMGB1 for 24 h, we did not find obviously cytotoxicity and cellular proliferation of WI-38 cells by MTT and BrdU incorporation assay, respectively. However, we found that treatment with 10 and 100 ng/mL of HMGB1 induced the differentiation of lung fibroblasts into myofibroblasts and myofibroblasts showed higher migration ability through activation of matrix metalloproteinase (MMP)-9 activation. To delineate the mechanism underlying HMGB1-induced cellular migration, we examined HMGB1-induced mitogen activated protein kinases (MAPKs), including extracellular signal related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase (p38) phosphorylation, as well as nuclear factor (NF)-κB nuclear translocation. Using specific inhibitors and shRNAs of protein kinases, we observed that repression of ERK, JNK, p38, and NF-κB all inhibited HMGB1-induced cellular differentiation, migration and MMP-9 activation in WI-38 cells. In addition, knocking down of RAGE but not TLR2 and TLR4 by shRNAs attenuated HMGB1-induced myofibroblast differentiation and migration. In conclusion, our study demonstrated that HMGB1 induced lung fibroblasts’ differentiation into myofibroblasts and enhanced cell migration through induction of MMP-9 activation and the RAGE-MAPK and NF-κB interaction signaling pathways. Targeting HMGB1 might be a potential therapeutic approach for alleviation of airway remodeling seen in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Chien-Neng Wang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Tsai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jau-Jin Liu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Pi CC, Wang HY, Lu CY, Lu FL, Chen CJ. Ganoderma formosanum polysaccharides attenuate Th2 inflammation and airway hyperresponsiveness in a murine model of allergic asthma. SPRINGERPLUS 2014; 3:297. [PMID: 25019045 PMCID: PMC4072879 DOI: 10.1186/2193-1801-3-297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022]
Abstract
Allergic asthma is an inflammatory disease of the airways mediated by Th2 immune responses and characterized by airway hyperresponsiveness (AHR). Fungi of the genus Ganoderma are basidiomycetes that have been used in traditional Asian medicine for centuries. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the activation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response. This study was designed to investigate whether the Th1 adjuvant properties of PS-F2 could suppress the development of allergic asthma in a mouse model. BALB/c mice were sensitized by repeated immunization with chicken ovalbumin (OVA) and alum, followed by intranasal challenge of OVA to induce acute asthma. PS-F2 administration during the course of OVA sensitization and challenge effectively prevented AHR development, OVA-specific IgE and IgG1 production, bronchial inflammation, and Th2 cytokine production. Our data indicate that PS-F2 has a potential to be used for the prevention of allergic asthma.
Collapse
Affiliation(s)
- Chia-Chen Pi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617 Taiwan
| | - Hui-Yi Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617 Taiwan
| | - Chiu-Ying Lu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617 Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10041 Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617 Taiwan
| |
Collapse
|
18
|
Jeon J, Lee JH, Park KA, Byun HS, Lee H, Lee Y, Zhang T, Kang K, Seok JH, Kwon HJ, Han MD, Kang SW, Hong JH, Hur GM. Brazilin selectively disrupts proximal IL-1 receptor signaling complex formation by targeting an IKK-upstream signaling components. Biochem Pharmacol 2014; 89:515-25. [DOI: 10.1016/j.bcp.2014.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/15/2023]
|
19
|
Lin CD, Kou YY, Liao CY, Li CH, Huang SP, Cheng YW, Liao WC, Chen HX, Wu PL, Kang JJ, Lee CC, Lai CH. Zinc oxide nanoparticles impair bacterial clearance by macrophages. Nanomedicine (Lond) 2014; 9:1327-39. [PMID: 24628689 DOI: 10.2217/nnm.14.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM The extensive development of nanoparticles (NPs) and their widespread employment in daily life have led to an increase in environmental concentrations of substances that may pose a biohazard to humans. The aim of this work was to examine the effects of zinc oxide nanoparticles (ZnO-NPs) on the host's pulmonary immune system response to nontypeable Haemophilus influenzae (NTHi) infection. MATERIALS & METHODS A murine infection model was employed to assess pulmonary inflammation and bacterial clearance in response to exposure to ZnO-NPs. The molecular mechanisms underlying ZnO-NP-impaired macrophage activation were investigated. RESULTS Treatment with ZnO-NPs impaired macrophage activation, leading to a delay in NTHi clearance in the bronchial alveolar lavage fluids and lungs. Exposure to ZnO-NPs followed by NTHi challenge decreased levels of nitric oxide compared with NTHi infection alone. The effects of ZnO-NPs involved downregulation of NTHi-activated expression of inducible nitric oxide synthase and the translocation of active NF-kB into the nucleus. CONCLUSION These results demonstrate that exposure to ZnO-NPs can impair innate immune responses and attenuate macrophage responses to bacterial infection.
Collapse
Affiliation(s)
- Chia-Der Lin
- Department of Otolaryngology-Head & Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guo J, Li L, Wu YJ, Yan Y, Xu XN, Wang SB, Yuan TY, Fang LH, Du GH. Inhibitory Effects of Brazilin on the Vascular Smooth Muscle Cell Proliferation and Migration Induced by PDGF-BB. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1283-96. [DOI: 10.1142/s0192415x13500869] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation and migration contribute to the pathogenesis of vascular diseases including atherosclerosis and restenosis. Brazilin isolated from the heartwood of Caesalpinia sappan L. has been reported to exhibit various biological activities, such as anti-platelet aggregation, anti-inflammation, vasorelaxation and pro-apoptosis. However, the functional effects of Brazilin on VSMCs remain unexplored. The present study investigated the potential effects of Brazilin on platelet-derived growth factor (PDGF)-BB induced VSMC proliferation and migration as well as the underlying mechanism of action. VSMC proliferation and migration were measured by Crystal Violet Staining, wound-healing and Boyden chamber assays, respectively. Cell cycle was analyzed by flow cytometry. Enzymatic action of matrix metalloproteinase-9 (MMP-9) was carried out by gelatin zymography. Expression of adhesion molecules, cell cycle regulatory proteins, the phosphorylated levels of PDGF receptor β (PDGF-Rβ), Src, extracellular signal regulated kinase (ERK) and Akt were tested by immunoblotting. The present study demonstrated that pretreatment with Brazilin dose-dependently inhibited PDGF-BB stimulated VSMC proliferation and migration, which were associated with a cell-cycle arrest at G0/G1 phase, a reduction in the adhesion molecule expression and MMP-9 activation in VSMCs. Furthermore, the increase in PDGF-Rβ, Src, ERK1/2 and Akt phosphorylation induced by PDGF-BB were suppressed by Brazilin. These findings indicate that Brazilin inhibits PDGF-BB induced VSMC proliferation and migration, and the inhibitory effects of Brazilin may be associated with the blockade of PDGF-Rβ - ERK1/2 and Akt signaling pathways. In conclusion, the present study implicates that Brazilin may be useful as an anti-proliferative agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| | - Yu-Jie Wu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Yan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Na Xu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| | - Tian-Yi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| |
Collapse
|
21
|
Yan-yan J, Yan L, Ying S, Jinyi Z, Fang D, Yuan S, Ai-dong W. A simple high-performance liquid chromatographic method for the determination of brazilin and its application to a pharmacokinetic study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:108-13. [PMID: 24095700 DOI: 10.1016/j.jep.2013.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia sappan is a medicinal plant native to China popularly used to treat chronic pelvic inflammation, dysmenorrhea and hysteromyoma. Its main bioactive component is brazilin which had presented antibacterial, anti-inflammatory and anti-platelet aggregation activities. To establish a sensitive, selective, reproducible, and accurate high performance liquid chromatographic (HPLC) method for the quantitative determination of brazilin in plasma, and study the pharmacokinetics of brazilin in rats after intravenous administration of brazilin. MATERIALS AND METHODS Rats received intravenous injection of 25, 50 and 100mg/kg of brazilin. Concentrations of brazilin in plasma were determined by HPLC method at different time points and all pharmacokinetic parameters were estimated by non-compartmental analysis with WinNonLin 6.2 software. RESULTS After single intravenous doses of 25, 50 and 100mg/kg brazilin in rats, the main PK parameters were as follows: Cmax were 18.1 ± 4.1, 46.7 ± 8.7 and 82.2 ± 9.6 µg/mL; AUC0-24 were 20.4 ± 4.3, 48.7 ± 6.8 and 90.4 ± 10.3 µgh/mL; and t1/2 were 5.4 ± 1.5, 5.8 ± 0.9 and 6.2 ± 1.2h, respectively. CONCLUSION It showed that the brazilin was eliminated moderately in rat by intravenous injection route with t1/2 of 6h and showed a dose-dependence profile of Cmax and AUC0-24 at the doses of 25~100mg/kg of brazilin for injection in rats.
Collapse
Affiliation(s)
- Jia Yan-yan
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China.
| | - Li Yan
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China
| | - Song Ying
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China
| | - Zhao Jinyi
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China
| | - Dou Fang
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China
| | - Sun Yuan
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China
| | - Wen Ai-dong
- Department of Pharmacy, First Affiliated Hospital of the Fourth Military Medical University, Changle West Street 127, Xi'an, Shaanxi 710032, China.
| |
Collapse
|