1
|
Mittal RK, Mishra R, Sharma V, Purohit P. Bioactive Exploration in Functional Foods: Unlocking Nature's Treasures. Curr Pharm Biotechnol 2024; 25:1419-1435. [PMID: 38031768 DOI: 10.2174/0113892010282580231120041659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Functional foods offer an appealing way to improve health and prevent chronic diseases, and this subject has received much attention lately. They are effective in preventing chronic diseases like cancer, diabetes, heart disease, and obesity, according to research. OBJECTIVE This work presents an in-depth analysis of functional foods, covering key challenges from a scientific, legal, and commercial perspective. METHODS Multiple databases were searched to find studies on functional foods included in the systematic literature review. Various aspects of functional foods, from their classification, impact on human wellness, effectiveness in inhibiting chronic diseases, the regulatory environment, global market trends, and industry challenges, are all clarified in this thorough review. RESULTS This study aims to enhance understanding and establish a pathway for functional foods to be acknowledged as valid choices in the field of dietary supplements. It provides a thorough investigation of bioactive compounds present in functional foods, including but not limited to polyphenols, carotenoids, omega fatty acids, prebiotics, probiotics, and dietary fiber, along with an overview of their potential to mitigate chronic illnesses. We engage in an in-depth exploration of regulatory frameworks, shed light on groundbreaking research advancements, and meticulously examine strategies for commercialization and the variety of global challenges that accompany them. Establishing scientific consensus, navigating complex regulatory processes, dealing with skeptical consumers, and rising levels of competition are all problems that need to be solved in this field. CONCLUSION The field of functional foods can advance further, promoting better public health outcomes, by deeply comprehending and addressing these complex dimensions.
Collapse
Affiliation(s)
- Ravi K Mittal
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Priyank Purohit
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
2
|
Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022; 11:foods11152189. [PMID: 35892774 PMCID: PMC9330871 DOI: 10.3390/foods11152189] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plant polyphenols have attracted considerable attention because of their key roles in preventing many diseases, including high blood sugar, high cholesterol, and cancer. A variety of functional foods have been designed and developed with plant polyphenols as the main active ingredients. Polyphenols mainly come from vegetables and fruits and can generally be divided according to their structure into flavonoids, astragalus, phenolic acids, and lignans. Polyphenols are a group of plant-derived functional food ingredients with different molecular structures and various biological activities including antioxidant, anti-inflammatory, and anticancer properties. However, many polyphenolic compounds have low oral bioavailability, which limits the application of polyphenols in nutraceuticals. Fortunately, green bio-based nanocarriers are well suited for encapsulating, protecting, and delivering polyphenols, thereby improving their bioavailability. In this paper, the health benefits of plant polyphenols in the prevention of various diseases are summarized, with a review of the research progress into bio-based nanocarriers for the improvement of the oral bioavailability of polyphenols. Polyphenols have great potential for application as key formulations in health and nutrition products. In the future, the development of food-grade delivery carriers for the encapsulation and delivery of polyphenolic compounds could well solve the limitations of poor water solubility and low bioavailability of polyphenols for practical applications.
Collapse
|
3
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
Tanaka M. Study on the Physiological Benefits of Food Compounds on Vascular Health and Their Underlying Mechanisms. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mitsuru Tanaka
- Faculty of Agriculture, Graduate School of Kyushu University
| |
Collapse
|
5
|
Rat aorta as a pharmacological tool for in vitro and in vivo studies. Life Sci 2016; 145:190-204. [DOI: 10.1016/j.lfs.2015.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/26/2015] [Accepted: 12/24/2015] [Indexed: 11/24/2022]
|
6
|
Zhao J, Suyama A, Tanaka M, Matsui T. Ferulic acid enhances the vasorelaxant effect of epigallocatechin gallate in tumor necrosis factor-alpha-induced inflammatory rat aorta. J Nutr Biochem 2014; 25:807-14. [DOI: 10.1016/j.jnutbio.2014.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
7
|
Zhao F, Lin HT, Zhang S, Lin YF, Yang JF, Ye NX. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2772-2781. [PMID: 24625357 DOI: 10.1021/jf4056314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The primary taste and healthy benefits of tea are mainly attributed to tea polyphenols and caffeine. Due to very many kinds of flavonoid glycosides in tea and the lack of commercial standards of flavonoid glycosides, it is critical to develop a rapid and cheap method for determining flavonoid glycosides of tea. Contents of myricetin glycosides and quercetin glycosides in Wuyi Rock tea were determined by detecting contents of corresponding myricetin and quercetin. Optimizing hydrolysis conditions for hydrolyzing flavonoid glycosides to their corresponding flavonols including quercetin and myricetin in Wuyi Rock tea was a key technology for detecting contents of corresponding myricetin and quercetin. The results showed that hydrolysis at 2 mol/L HCl solution and at 90 °C for 1 h was an optimizing condition for hydrolyzing flavonoid glycosides to myricetin and quercetin in Wuyi Rock tea. Caffeine and seven kinds of polyphenols (GA, EGC, C, EGCG, EC, ECG, and CGA) in 20 samples of Wuyi Rock tea were simultaneously determined using a simple and fast reverse-phase high-performance liquid chromatography procedure coupled with photodiode array detector (RP-HPLC-PDAD). The results indicated that there were significant (P < 0.05) differences of ECG, CGA, ECG, and myricetin glycosides in 'Wuyi Rougui' and 'Wuyi Shuixian', which were credited with causing the difference in taste between these two cultivar of Wuyi Rock tea. The study may be useful for clarifying the cause of "cultivated varieties flavor" of Wuyi Rock tea.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian 350002, China
| | | | | | | | | | | |
Collapse
|
8
|
Fukuda T, Kuroda T, Kono M, Miyamoto T, Tanaka M, Matsui T. Attenuation of L-type Ca²⁺ channel expression and vasomotor response in the aorta with age in both Wistar-Kyoto and spontaneously hypertensive rats. PLoS One 2014; 9:e88975. [PMID: 24533163 PMCID: PMC3923070 DOI: 10.1371/journal.pone.0088975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/13/2014] [Indexed: 01/15/2023] Open
Abstract
Age-related vascular diseases are induced by vascular dysfunction, which involves changes in the vasomotor response. The voltage-dependent L-type calcium channel (VDCC) protein is involved in the regulation of vessel function (contraction/relaxation action). In the present study, we evaluated age-related vasomotor function and expression of the signal-related target proteins, including VDCC, using thoracic aorta from both 8- and 40-week old Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). In contraction experiments using aortic rings, vasomotor responses of both phenylephrine-induced contraction and acetylcholine-induced relaxation were significantly attenuated with age in SHR, whereas WKY did not lose activity with age. Contraction induced by angiotensin II was impaired only for the 40-week old SHR among all the rat groups tested, although enhanced AT1R/reduced AT2R expression with age was observed for both WKY and SHR. In contrast, a vasomotor responsiveness to Bay K 8644 (a VDCC agonist) at the initial contraction phase was significantly attenuated in both 40-week WKY and SHR with significant reduction of VDCC protein expression. The reduced VDCC expression in 40-week old rats significantly lowered the relaxation activity of VDCC blockers, such as verapamil and Trp-His, but did not affect that of nifedipine. Taken together, we provided the first evidence that aging caused a reduction of VDCC expression in rat aorta, irrespective of the rat strain, along with diminishment of the therapeutic potential of VDCC blockers.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Aging/metabolism
- Aging/physiology
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Gene Expression Regulation/drug effects
- Male
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Toshihiko Fukuda
- The Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Takahiro Kuroda
- The Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Miki Kono
- The Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Takahisa Miyamoto
- The Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Mitsuru Tanaka
- The Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Toshiro Matsui
- The Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
9
|
Valenti D, de Bari L, Manente GA, Rossi L, Mutti L, Moro L, Vacca RA. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2085-96. [PMID: 23911347 DOI: 10.1016/j.bbadis.2013.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/11/2013] [Accepted: 07/23/2013] [Indexed: 12/29/2022]
Abstract
Increasing evidence reveals a large dependency of epithelial cancer cells on oxidative phosphorylation (OXPHOS) for energy production. In this study we tested the potential of epigallocatechin-3-gallate (EGCG), a natural polyphenol known to target mitochondria, in inducing OXPHOS impairment and cell energy deficit in human epitheliod (REN cells) and biphasic (MSTO-211H cells) malignant pleural mesothelioma (MMe), a rare but highly aggressive tumor with high unmet need for treatment. Due to EGCG instability that causes H2O2 formation in culture medium, the drug was added to MMe cells in the presence of exogenous superoxide dismutase and catalase, already proved to stabilize the EGCG molecule and prevent EGCG-dependent reactive oxygen species formation. We show that under these experimental conditions, EGCG causes the selective arrest of MMe cell growth with respect to normal mesothelial cells and the induction of mitochondria-mediated apoptosis, as revealed by early mitochondrial ultrastructure modification, swelling and cytochrome c release. We disclose a novel mechanism by which EGCG induces apoptosis through the impairment of mitochondrial respiratory chain complexes, particularly of complex I, II and ATP synthase. This induces a strong reduction in ATP production by OXPHOS, that is not adequately counterbalanced by glycolytic shift, resulting in cell energy deficit, cell cycle arrest and apoptosis. The EGCG-dependent negative modulation of mitochondrial energy metabolism, selective for cancer cells, gives an important input for the development of novel pharmacological strategies for MMe.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|