1
|
Abdel-Lateef MA, Zhang D, Darwish IA. Spectral characterization of micellar-enhanced fluorescence of europium (III)-doxycycline complex and its employment as a sensor for development of a highly sensitive fluorimetric assay for determination of indigo carmine in real syrups. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125073. [PMID: 39260241 DOI: 10.1016/j.saa.2024.125073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Indigo carmine (IN-CR) is a synthetic blue dye widely used as a coloring agent in various food and beverage products. It is recognized for its ability to enhance the visual appeal, hue, and consistency of food products. However, recent studies have raised concerns about the potential health risks associated with this substance. Therefore, a highly sensitive analytical tool is required for the trace determination of IN-CR in food products. This study describes the spectral characteristics of micellar-enhanced fluorescence of europium (III)-doxycycline complex and its employment as a sensor for the development of a highly sensitive fluorimetric assay for the trace determination of IN-CR. The complex was formed in an alkaline medium containing hydrogen peroxide and encapsulated into cetyltrimethylammonium bromide micelles. This micellar-encapsulated complex exhibited significantly enhanced fluorescence at a wavelength of 613.5 nm, overlapping with the maximum absorption peak of IN-CR at 610 nm. This inner-filter effect phenomenon resulted in IN-CR's concentration-dependent quenching of the complex's fluorescence. The fluorescence quenching of the complex by inner-filter effect of IN-CR was adopted in the development of a highly sensitive fluorimetric assay for IN-CR. The conditions of the assay were refined, and the optimum procedures were established. The assay was validated for its performance characteristics, and all the validation criteria were met. The assay displayed linearity within the IN-CR concentration range of 100-1250 ng mL-1, with a limit of detection at 41.2 ng mL-1. Importantly, the assay exhibited no interference from other substances commonly used as food additives. The recoveries ranged from 99.11 % to 101.57 %, with relative standard deviations ranging from 1.34 % to 1.89 %.The assay was successfully applied to the determination of IN-CR in commercial syrup products, and the recoveries ranged from 93.5 % to 106.32 % with relative standard deviations ≤4.72 %, confirming the reliability of the assay. The proposed assay provides some key advantages, including a novel application of the europium (III)-doxycycline complex as a fluorescence sensor for the determination of IN-CR in real syrups innovative, high sensitivity and selectivity, simplicity of analysis procedures, time-saving of entire analysis protocol. In conclusion, the assay serves as a valuable tool for quantifying IN-CR in food products, facilitating the assessment of both food quality and safety.
Collapse
Affiliation(s)
- Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Daohong Zhang
- College of Food Engineering, Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Pavithra K, Durga Priyadharshini R, Vennila KN, Elango KP. Multi-spectroscopic, calorimetric and molecular dynamics evaluation on non-classical intercalation of antiviral drug Molnupiravir with DNA. J Biomol Struct Dyn 2024; 42:8897-8905. [PMID: 37621259 DOI: 10.1080/07391102.2023.2249994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The interaction of an antiviral drug Molnupiravir (MOL) with calf thymus DNA (CT-DNA) was investigated using a series of biophysical techniques. A significant hyperchromism with a blue shift nm in the UV-Vis spectra indicated a high binding affinity of MOL for CT-DNA with binding constants in the order of 105 M-1. Competitive fluorescent dye displacement assays with ethidium bromide (EB) and Hoechst 33258 suggested an intercalative mode of binding of MOL with CT-DNA. Thermodynamic profiles determined using fluorescence titration and isothermal titration calorimetric (ITC) analysis matched well with each other. The negative free energy change revealed that the MOL/CT-DNA complexation is a spontaneous process. The negative values of enthalpy and entropy changes indicated that H-bonding and van der Walls interactions play dominant roles in stabilizing the complex. A decrease in viscosity of CT-DNA solution upon adding MOL indicated a partial intercalation mode of binding which was well supported by circular dichroism (CD) spectral and effect of KI and denaturation studies. Molecular docking and metadynamics simulation studies clearly showed the partial intercalation of the pyrimidine ring of MOL into the base pairs of DNA. Free energy surface (FES) contour indicated that the drug/DNA complex is stabilized by H-bonding and pi-pi/pi-cation interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K Pavithra
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
3
|
Lei C, Zhang S, Liu WX, Ye ML, Zhao YG. Fast Determination of Eleven Food Additives in River Water Using C18 Functionalized Magnetic Organic Polymer Nanocomposite Followed by High-Performance Liquid Chromatography. Molecules 2024; 29:3675. [PMID: 39125079 PMCID: PMC11314223 DOI: 10.3390/molecules29153675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18-PS-DVB-Fe3O4) had been synthesized by seeded emulsion polymerization. C18-PS-DVB-Fe3O4 retains the advantages of the chemical stability, large porosity, and uniform morphology of organic polymers and has the magnetic properties of Fe3O4. A simple, flexible, and efficient magnetic dispersive solid phase extraction (Mag-dSPE) method for the extraction of preservatives, sweeteners, and colorants in river water was established. C18-PS-DVB-Fe3O4 was used as an adsorbent for Mag-dSPE and was coupled with high-performance liquid chromatography (HPLC) to detect 11 food additives: acesulfame, amaranth, benzoic acid, tartrazine, saccharin sodium, sorbic acid, dehydroacetic acid, sunset yellow, allura red, brilliant blue, and erythrosine. Under the optimum extraction conditions, combined with ChromCoreTMAQC18 (5 μm, 4.6 × 250 mm), 20 mmol/L ammonium acetate aqueous solution and methanol were used as mobile phases, and the detection wavelengths were 240 nm and 410 nm. The limits of detection (LODs) of 11 food additives were 0.6-3.1 μg/L with satisfactory recoveries ranging from 86.53% to 106.32%. And the material could be reused for five cycles without much sacrifice of extraction efficiency. The proposed method has been used to determine food additives in river water samples, and results demonstrate the applicability of the proposed C18-PS-DVB-Fe3O4 Mag-dSPE coupled with the HPLC method to environment monitoring analysis.
Collapse
Affiliation(s)
- Chao Lei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
| | - Shun Zhang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China;
| | - Wen-Xin Liu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
| |
Collapse
|
4
|
Xu X, Pan H, Li W, Xu J, Chen X, Zheng C, Peng J, Mao X, Liu M, Yan H, Wang H. Binding of single/double stranded ct-DNA with graphene oxide‑silver nanocomposites in vitro: A multispectroscopic approach. Int J Biol Macromol 2024; 275:133715. [PMID: 38977048 DOI: 10.1016/j.ijbiomac.2024.133715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The fundamental binding of single-stranded (ssDNA) and double-stranded DNA (dsDNA) with graphene oxide-Ag nanocomposites (GO-AgNCPs) has been systematically investigated by multi spectroscopic methods, i.e. ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopy, and circular dichroism (CD). The experimental and theoretical results demonstrate that both ssDNA and dsDNA can be adsorbed onto the GO-AgNCPs surface. All of the evidence indicated that there were relatively strong binding of ssDNA/dsDNA with GO-AgNCPs. The article compares the differences in binding between the two types of DNA and the nanomaterials using spectroscopic and thermodynamic data. UV-vis absorption spectroscopy experiments indicate that the characteristic absorbance intensity of both ss DNA and ds DNA increases, but the rate of change in absorbance is different. The fluorescence results revealed that ss/dsDNA could interact with the GO-AgNCPs surface, in spite of the different binding affinities. The Ka value of ssDNA binding with GO-AgNCPs is greater than that of dsDNA at each constant temperature, indicating that the affinity of dsDNA toward GO-AgNCPs is comparatively weak. Molecular docking studies have corroborated the mentioned experimental results. The calculated thermodynamic parameters showed that the binding process was thermodynamically spontaneous, van der Waals force and hydrogen bonding played predominant roles in the binding process. The mechanism of ss/ds DNA binding with GO-AgNCPs was also investigated, and the results indicated that GO-AgNCPs directly binds to the minor groove of ss/ds DNA by replacing minor groove binders.
Collapse
Affiliation(s)
- Xiangyu Xu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining, 272067, Shandong Province, China.
| | - Hongshuo Pan
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Wenbo Li
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Jiayi Xu
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Xinyun Chen
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Chuanqi Zheng
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Jia Peng
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Xuyan Mao
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining, 272067, Shandong Province, China
| | - Min Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Hui Yan
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Hao Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, Shandong Province, China.
| |
Collapse
|
5
|
Bera B, Jana P, Mandal S, Kundu S, Das A, Chattopadhyay K, Mondal TK. Fabrication of thiosemicarbazone-based Pd(II) complexes: structural elucidations, catalytic activity towards Suzuki-Miyaura coupling reaction and antitumor activity against TNBC cells. Dalton Trans 2024; 53:11914-11927. [PMID: 38958025 DOI: 10.1039/d4dt00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Currently, there are many uses of metal complexes, especially in the fields of medicinal chemistry and catalysis. Thus, fabrication of new complexes which perform as a catalyst and chemotherapeutic drug is always a beneficial addition to the literature. Herein, we report three heterocyclic thiosemicarbazone-based Pd(II) complexes [Pd(HL1)Cl] (C1), [Pd(L2)(PPh3)] (C2) and [Pd(L3)(PPh3)]Cl (C3) having coligands Cl and PPh3. Thiosemicarbazone ligands (H2L1, H2L2 and HL3) and the complexes (C1-C3) were characterized methodically using several spectroscopic techniques. Single-crystal X-ray diffraction methods reveal that the structural environment around the metal center of C2 is square planar, while for C1 and C3 it is a slighty distorted square plane. The supramolecular network of compounds was built via hydrogen bonds, C-H⋯π and π⋯π interactions. Density functional theory (DFT) study of the structure of the complexes supports experimental findings. The application of these complexes as catalysts toward Suzuki-Miyaura coupling reactions has been examined with various aryl halides and phenyl boronic acid in PEG 400 solvent. The complexes displayed good biomolecular interactions with DNA/protein, with a binding constant value of the order of 105 M-1. C3 showed greater binding efficacy toward these biomolecules than the other complexes, which might be due to the cationic nature of C3. Furthermore, antitumor activity of the complexes was studied against the human triple-negative breast cancer (TNBC) cell line MDA-MB-231. It was found that C3 was more toxic (IC50 = 10 ± 2.90 μM) toward MDA-MB-231 cells than the other complexes. A known chemotherapeutic drug, 5-fluorouracil, was included as positive control. The programmed cell death mechanism of C3 was confirmed. Additionally, complex-induced apoptosis was confirmed and occurred via a mitochondria-dependent (intrinsic) pathway.
Collapse
Affiliation(s)
- Biswajit Bera
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Pulak Jana
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Subrata Mandal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Sudip Kundu
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032, India
| | - Akash Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | | |
Collapse
|
6
|
Wang L, Liu J, Wang X, Li X, Zhang X, Yuan L, Wu Y, Liu M. Effect of the combined binding of topotecan and catechin/protocatechuic acid to a pH-sensitive DNA tetrahedron on release and cytotoxicity: Spectroscopic and calorimetric studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124179. [PMID: 38522375 DOI: 10.1016/j.saa.2024.124179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The therapeutic efficacy of chemotherapy drugs can be effectively improved through the dual effects of their combination with natural polyphenols and the delivery of targeted DNA nanostructures. In this work, the interactions of topotecan (TPT), (+)-catechin (CAT), or protocatechuic acid (PCA) with a pH-sensitive DNA tetrahedron (MUC1-TD) in the binary and ternary systems at pHs 5.0 and 7.4 were investigated by fluorescence spectroscopy and calorimetry. The intercalative binding mode of TPT/CAT/PC to MUC1-TD was confirmed, and their affinity was ranked in the order of PCA > CAT > TPT. The effects of the pH-sensitivity of MUC1-TD and different molecular structures of CAT and PCA on the loading, release, and cytotoxicity of TPT were discussed. The weakened interaction under acidic conditions and the co-loading of CAT/PCA, especially PCA, improved the release of TPT loaded by MUC1-TD. The targeting of MUC1-TD and the synergistic effect with CAT/PCA, especially CAT, enhanced the cytotoxicity of TPT on A549 cells. For L02 cells, the protective effect of CAT/PCA reduced the damage caused by TPT. The single or combined TPT loaded by MUC1-TD was mainly concentrated in the nucleus of A549 cells. This work will provide key information for the combined application of TPT and CAT/PCA loaded by DNA nanostructures to improve chemotherapy efficacy and reduce side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xiangtai Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
7
|
Faikhruea K, Supabowornsathit K, Angsujinda K, Aonbangkhen C, Chaikeeratisak V, Palaga T, Assavalapsakul W, Wagenknecht HA, Vilaivan T. Nucleic Acid-Templated Synthesis of Cationic Styryl Dyes in Vitro and in Living Cells. Chemistry 2024; 30:e202400913. [PMID: 38563862 DOI: 10.1002/chem.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
A novel method for synthesizing cationic styryl dyes through a nucleic acid-templated reaction has been developed. This approach overcomes issues associated with traditional synthesis methods, such as harsh conditions, low throughput, and wasteful chemicals. The presence of a nucleic acid template accelerated the styryl dye formation from quaternized heteroaromatic and cationic aldehyde substrates. These styryl dyes show remarkable optical properties change when bound to nucleic acids, hence the success of the synthesis could be readily monitored in situ by UV-Vis and fluorescence spectroscopy and the optical properties data were also observable at the same time. This method provides the desired products from a broad range of coupling partners. By employing different substrates and templates, it is possible to identify new dyes that can bind to a specific type of nucleic acid such as a G-quadruplex. The templated dye synthesis is also successfully demonstrated in live HeLa cells. This approach is a powerful tool for the rapid synthesis and screening of dyes specific for diverse types of nucleic acids or cellular organelles, facilitating new biological discoveries.
Collapse
Affiliation(s)
- Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
8
|
Verebová V, Bedlovičová Z, Bednáriková Z, Staničová J. Monitoring of DNA structural changes after incorporation of the phenylpyrazole insecticide fipronil. Arch Biochem Biophys 2024; 756:110001. [PMID: 38636692 DOI: 10.1016/j.abb.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The use of insecticides presents a risk to the environment because they can accumulate in the water, soil, air, and organisms, endangering human and animal health. It is therefore essential to investigate the effects of different groups of insecticides on individual biomacromolecules such as DNA. We studied fipronil, which belongs to the group of phenylpyrazole insecticides. The interaction of fipronil with calf thymus DNA was investigated using spectroscopic methods (absorption and fluorescence spectroscopy) complemented with infrared spectroscopy and viscosity measurement. Fluorescence emission spectroscopy showed the formation of a fipronil/DNA complex with a combined static and dynamic type of quenching. The binding constant was 4.15 × 103 L/mol. Viscosity changes were recorded to confirm/disconfirm the intercalation mode of interaction. A slight change in DNA viscosity in the presence of fipronil was observed. The phenylpyrazole insecticide does not cause significant conformational changes in DNA structure or increase of its chain length. We hypothesize that fipronil is incorporated into the minor groove of the DNA macromolecule via hydrogen interactions as indicated by FT-IR and CD measurements.
Collapse
Affiliation(s)
- Valéria Verebová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Zuzana Bednáriková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Science, Watsonova 1935/47, 040 01, Košice, Slovakia
| | - Jana Staničová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 040 01, Košice, Slovakia; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, Prague, Czech Republic.
| |
Collapse
|
9
|
Aeindartehran L, Sadri Z, Rahimi F, Alinejad T. Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research. Methods Appl Fluoresc 2024; 12:032002. [PMID: 38697201 DOI: 10.1088/2050-6120/ad46e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Zahra Sadri
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75205, United States of America
| | - Fateme Rahimi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou 325015, Zhejiang, People's Republic of China
- Institute of Cell Growth Factor, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
10
|
Jana G, Sing S, Das A, Basu A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int J Biol Macromol 2024; 259:129143. [PMID: 38176484 DOI: 10.1016/j.ijbiomac.2023.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.
Collapse
Affiliation(s)
- Gouranga Jana
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
11
|
Li SR, Zeng CM, Peng XM, Chen JP, Li S, Zhou CH. Benzopyrone-mediated quinolones as potential multitargeting antibacterial agents. Eur J Med Chem 2023; 262:115878. [PMID: 37866337 DOI: 10.1016/j.ejmech.2023.115878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
A new type of benzopyrone-mediated quinolones (BMQs) was rationally designed and efficiently synthesized as novel potential antibacterial molecules to overcome the global increasingly serious drug resistance. Some synthesized BMQs effectively suppressed the growth of the tested strains, outperforming clinical drugs. Notably, ethylidene-derived BMQ 17a exhibited superior antibacterial potential with low MICs of 0.5-2 μg/mL to clinical drugs norfloxacin, it not only displayed rapid bactericidal performance and inhibited bacterial biofilm formation, but also showed low toxicity toward human red blood cells and normal MDA-kb2 cells. Mechanistic investigation demonstrated that BMQ 17a could effectually induce bacterial metabolic disorders and promote the enhancement of reactive oxygen species to disrupt the bacterial antioxidant defense system. It was found that the active molecule BMQ 17a could not only form supramolecular complex with lactate dehydrogenase, which disturbed the biological functions, but also effectively embed into calf thymus DNA, thus affecting the normal function of DNA and achieving cell death. This work would provide an insight into developing new molecules to reduce drug resistance and expand antibacterial spectrum.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Mei Zeng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xin-Mei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Zhu S, Wang T, Zheng Y, Shi Q, Guo Q, Zhu J, Mao Y. Spectroscopic and molecular docking study of three kinds of cinnamic acid interaction with pepsin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123169. [PMID: 37517266 DOI: 10.1016/j.saa.2023.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
In this work, under simulated physiological conditions (pH = 2.2, glycine hydrochloric acid buffer solution), the interactions of cinnamic acid (CA), m-hydroxycinnamic acid (m-CA) and p-hydroxycinnamic acid (p-CA) with pepsin were studied by fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), molecular docking and molecular dynamic simulation (MD). The spectrogram results showed that these three kinds of CA had a strong ability to quench the intrinsic fluorescence of pepsin, and the quenching effects were obvious with the increase of concentration of these three kinds of molecules. The quenching mechanism of CA, m-CA and p-CA on the fluorescence of pepsin was static quenching. In addition, a stable complex was formed between three kinds of CA with pepsin. Thermodynamic data and docking information suggested that three kinds of CA combine with pepsin were mainly driven by electrostatic force and hydrogen bond. The binding constant and the number of binding sites were determined. The interaction of CA, m-CA and p-CA with pepsin was spontaneous, and accompanied by non-radiative energy transfer. The results from CD, FTIR, UV-Vis and synchronous fluorescence spectra measurements manifested that the secondary structure of pepsin was changed by the binding of three kinds of CA. The β-sheet of pepsin increased after the interaction with three kinds of CA. The assay results of pepsin activity showed that three kinds of CA led to a decrease in pepsin activity within the investigated concentrations. Molecular docking investigation revealed the formation of polar hydrogen bonds as well as hydrophobic interactions between three kinds of CA with pepsin, and the ligand within the binding pocket of pepsin. MD results implied the formation of a stable complex between three kinds of CA and pepsin. The research suggested that cinnamic acid and its derivatives could be a potential effect on the structure and properties of digestive enzyme.
Collapse
Affiliation(s)
- Sujuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Ting Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ying Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qiang Shi
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qian Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jing Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yiyang Mao
- Center for Disease Control and Prevention, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
13
|
Malek-Esfandiari Z, Rezvani-Noghani A, Sohrabi T, Mokaberi P, Amiri-Tehranizadeh Z, Chamani J. Molecular Dynamics and Multi-Spectroscopic of the Interaction Behavior between Bladder Cancer Cells and Calf Thymus DNA with Rebeccamycin: Apoptosis through the Down Regulation of PI3K/AKT Signaling Pathway. J Fluoresc 2023; 33:1537-1557. [PMID: 36787038 DOI: 10.1007/s10895-023-03169-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
The interaction of Rebeccamycin with calf thymus (ctDNA) in the absence and presence of H1 was investigated by molecular dynamics, multi-spectroscopic, and cellular techniques. According to fluorescence and circular dichroism spectroscopies, Rebeccamycin interacted with ctDNA in the absence of H1 through intercalator or binding modes, while the presence of H1 resulted in revealing theintercalator, as the dominant role, and groove binding modes of ctDNA-Rebeccamycin complex. The binding constants, which were calculated to be 1.22 × 104 M-1 and 7.92 × 105 M-1 in the absence and presence of H1, respectively, denoted the strong binding of Rebeccamycin with ctDNA. The binding constants of Rebeccamycin with ct DNA in the absence and presence of H1 were calculated at 298, 303 and 308 K. Considering the thermodynamic parameters (ΔH0 and ΔS0), both vander waals forces and hydrogen bonds played predominant roles throughout the binding of Rebeccamycin to ctDNA in the absence and presence of H1. The outcomes of circular dichroism suggested the lack of any major conformational changes in ctDNA upon interacting with Rebeccamycin, except some perturbations in native B-DNA at local level. Additionally, the effect of NaCl and KI on ctDNA-Rebeccamycin complex provided further evidence for the reliance of their interaction modes on substituted groups. The observed increase in the relative viscosity of ctDNA caused by the enhancement of Rebeccamycin confirmed their intercalation and groove binding modes in the absence and presence of H1. Moreover, the assessments of molecular docking simulation corroborated these experimental results and also elucidated the effectiveness of Rebeccamycinin inhibiting and proliferating T24 and 5637 cells. Meanwhile, the ability of Rebeccamycin in inhibiting cell proliferation and tumor growth through the induction of apoptosis by down regulating the PI3K/AKT signaling pathway were provided.
Collapse
Affiliation(s)
- Zohreh Malek-Esfandiari
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Azadeh Rezvani-Noghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Tahmineh Sohrabi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
14
|
Pavithra K, Priyadharshini RD, Vennila KN, Elango KP. Multi-spectroscopic and molecular simulation methods of analysis to explore the mode of binding of Mebendazole drug with calf-thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122938. [PMID: 37269657 DOI: 10.1016/j.saa.2023.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
UV-vis, fluorescence, circular dichroism (CD) and 1H NMR spectroscopic techniques have been employed to explore the mode of binding of Mebendazole (MBZ) drug with calf thymus DNA (CT-DNA). UV-vis and fluorescence spectral studies suggested a complex formation between the drug and nucleic acid. The fluorescence of MBZ was found to enhance upon binding with CT-DNA through a ground state complex formation with Kb in the order of 104 M-1. The thermodynamic aspects indicated that the complex formation is a spontaneous process and an entropy-driven one. ΔH0 > 0 and ΔS0 > 0 revealed that hydrophobic interaction plays a dominant role in the stabilization of the complex. Competitive dye displacement assays with ethidium bromide (EB) and Hoechst 33258 dyes and viscosity measurements pointed out that MBZ binds with CT-DNA via intercalation mode, which is confirmed by CD and 1H NMR spectral studies as well as denaturation studies. Molecular docking analysis could not match well with the experimental results. However, molecular simulation studies and the resultant free energy surface (FES) analysis clearly showed that the benzimidazole ring of MBZ intercalated between the base pairs of the nucleic acid, which is in excellent agreement with the results of the various biophysical experiments.
Collapse
Affiliation(s)
- K Pavithra
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| |
Collapse
|
15
|
Mati SS, Chowdhury S, Sarkar S, Bera N, Sarkar N. Targeting genomic DNAs and oligonucleotide on base specificity: A comparative spectroscopic, computational and in vitro study. Int J Biol Macromol 2023:124933. [PMID: 37230444 DOI: 10.1016/j.ijbiomac.2023.124933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Drug discovery in targeted nucleic acid therapeutics encompass several stages and rigorous challenges owing to less specificity of the DNA binders and high failure rate in different stages of clinical trials. In this perspective, we report newly synthesized ethyl 4-(pyrrolo[1,2-a]quinolin-4-yl)benzoate (PQN) with minor groove A-T base pair binding selectivity and encouraging in cell results. This pyrrolo quinolin derivative has shown excellent groove binding ability with three of our inspected genomic DNAs (cpDNA 73 % AT, ctDNA58% AT and mlDNA 28 % AT) with varying A-T and G-C content. Notably in spite of similar binding patterns PQN have strong binding preference with A-T rich groove of genomic cpDNA over the ctDNA and mlDNA. Spectroscopic experiments like steady state absorption and emission results have established the relative binding strengths (Kabs = 6.3 × 105 M-1, 5.6 × 104 M-1, 4.3 × 104 M-1 and Kemiss = 6.1 × 105 M-1, 5.7 × 104 M-1 and 3.5 × 104 M-1 for PQN-cpDNA, PQN-ctDNA and PQN-mlDNA respectively) whereas circular dichroism and thermal melting studies have unveiled the groove binding mechanism. Specific A-T base pair attachment with van der Waals interaction and quantitative hydrogen bonding assessment were characterized by computational modeling. In addition to genomic DNAs, preferential A-T base pair binding in minor groove was also observed with our designed and synthesized deca-nucleotide (primer sequences 5/-GCGAATTCGC-3/ and 3/-CGCTTAAGCG-5/). Cell viability assays (86.13 % in 6.58 μM and 84.01 % in 9.88 μM concentrations) and confocal microscopy revealed low cytotoxicity (IC50 25.86 μM) and efficient perinuclear localization of PQN. We propose PQN with excellent DNA-minor groove binding capacity and intracellular permeation properties, as a lead for further studies encompassing nucleic acid therapeutics.
Collapse
Affiliation(s)
- Soumya Sundar Mati
- Department of Chemistry, Government General Degree College, Keshiary, Paschim Medinipur,WB 721135, India.
| | - Sourav Chowdhury
- Structural Biology and Bio-informatics division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Soumen Sarkar
- Department of Chemistry, Balurghat College, Dakshin Dinajpur, WB 733101, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Paschim Medinipur, WB 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Paschim Medinipur, WB 721302, India.
| |
Collapse
|
16
|
Arsenault-Escobar S, Fuentes-Galvez JF, Orellana C, Bollo S, Sierra-Rosales P, Miranda-Rojas S. Unveiling the tartrazine binding mode with ds-DNA by UV-visible spectroscopy, electrochemical, and QM/MM methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122400. [PMID: 36739665 DOI: 10.1016/j.saa.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Here, we studied the interaction between the food colorant tartrazine (TZ) and double stranded DNA (dsDNA), using spectroscopic, electrochemical, and computational methods such as QM/MM combined with TD-DFT. Despite the UV-vis spectroscopy is widely used to study the interaction between molecules, for the case of TZ there are discrepancies in the analyses presented in the literature available, presenting both hyperchromic and hypochromic effects and consequently different rationalizations for their results. Herein we propose the combination of UV-vis experiments with the design of high-level computational models capable of reproducing the experimental behavior to finally define the proper binding mode at the molecular scale together with the rationalization of the experimental optical response due to the complex formation. To complement the UV-vis experiments, we propose the use of electrochemical measurements, to support the results obtained through UV-vis spectroscopy, as it has been successfully used for the determination of interaction modes between small molecules and biomolecules in any condition. Our UV-vis spectroscopy experiments showed only a hypochromic effect of the absorption spectra of TZ after interaction with DNA, indicative of TZ being deeply buried in the DNA structure. The effect of ionic strength in the experimental procedures led to the dissociation of TZ, thus indicating that the interaction mode was groove binding. On the other hand, the electrochemical studies showed an irreversible reduction peak of TZ, which after the interaction with DNA exhibited a positive shift in potential that can be attributed to groove binding. The binding constant for TZ-DNA was calculated as 4.45x104M-1 (UV-vis) and 5.75x104M-1 (electrochemistry), in line with other groove binder azo dyes. Finally, through the QM/MM calculations we found that the minor-groove binding mode interacting in zones rich in adenine and thymine was the model best suited to reproduce the experimental UV-vis response.
Collapse
Affiliation(s)
- S Arsenault-Escobar
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - J F Fuentes-Galvez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - C Orellana
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - S Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile. Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile. Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - P Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile.
| | - S Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile.
| |
Collapse
|
17
|
Ponkarpagam S, Vennila KN, Elango KP. A closer look at the mode of binding of drug pemetrexed with CT-DNA. J Biomol Struct Dyn 2023; 41:3553-3561. [PMID: 35297322 DOI: 10.1080/07391102.2022.2051747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
The interaction of antifolate drug Pemetrexed (PEM) with CT-DNA has been studied by UV-Vis, fluorescence and circular dichroism spectroscopic techniques. The results of these spectroscopic studies in combination with viscosity measurements, voltammetric and KI quenching studies suggested a less-common mode of binding of PEM with CT-DNA i.e. neither intercalation nor groove binding. Thus, metadynamic (MD) simulation is utilized to decipher the nature of binding of PEM with CT-DNA. Analysis of free energy surfaces obtained in MD simulation, reveals that PEM binds to the 3'- and 5'-ends of the DNA molecule. The thermodynamics of the interaction has been investigated by isothermal titration calorimetric experiment. The analysis shows that PEM binds with CT-DNA strongly with a binding constant of 2.6x109 M-1 and the process is found to be spontaneous (ΔG - 12.84 kcal/mol). Further, positive values of enthalpy (ΔH 6.09 cal/mol) and entropy (ΔS 43.1 cal/mol) changes indicate that the binding is an enthalpically unfavourable and, instead, entropically driven process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| |
Collapse
|
18
|
Meng W, Lin S, Ouyang K, Chen L, Zhang Y, Wang W. Screening and Inhibition Mechanism of Xanthine Oxidase Inhibitors in Ethanolic Extracts of Chimonanthus salicifolius Hu Leaves. Chem Biodivers 2023; 20:e202200480. [PMID: 36929603 DOI: 10.1002/cbdv.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to evaluate the inhibition of the ethanol elutions of Chimonanthus salicifolius Hu leaves (CsHL) against xanthine oxidase (XO). The results of XO inhibition assay and enzymatic superoxide free radical scavenging assay in vitro showed that 70 % ethanol eluate (EE) had the best inhibitory effect and followed by 40 % EE. High performance liquid chromatograph analysis showed that quercetin and kaempferol were the potential active components of XO inhibition. The inhibition mechanism of quercetin and kaempferol on XO was investigated by kinetic analysis and fluorescence quenching titration assay. The molecular simulation further revealed that quercetin and kaempferol bind to XO mainly by hydrogen bonding and van der Waals, blocking the entry of substrates and leading to the inhibition of XO. In conclusion, the CsHL have inhibitory effects on XO activity, which provides a theoretical basis for relieving or preventing hyperuricemia and gout as a natural food or medicinal plant in the future.
Collapse
Affiliation(s)
- Wenya Meng
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Suyun Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
19
|
Wang L, Wu Y, Weng T, Li X, Zhang X, Zhang Y, Yuan L, Zhang Y, Liu M. Binding of combined irinotecan and epicatechin to a pH-responsive DNA tetrahedron for controlled release and enhanced cytotoxicity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
20
|
Das M, Brandao P, Mati SS, Roy S, Anoop A, James A, De S, Das UK, Laha S, Mondal J, Samanta BC, Maity T. Effect of ancillary ligand on DNA and protein interaction of the two Zn (II) and Co (III) complexes: experimental and theoretical study. J Biomol Struct Dyn 2022; 40:14188-14203. [PMID: 34842505 DOI: 10.1080/07391102.2021.2001377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present work we have developed one mononuclear Zn(II) complex [Zn(L)(H2O)] (Complex 1) by utilizing a tetracoordinated ligand H2L, formed by simple condensation of 2, 2 dimethyl 1,3 diamino propane and 3- ethoxy salicylaldehyde and one newly designed mononuclear Co (III) complex [Co(L)(L1)] (complex 2) by utilizing (H2L) and 3- ethoxy salicylaldehyde(HL1) as an ancillary ligand. The newly developed complex 2 have been spectroscopically characterized. An interesting phenomenon has been noticed that in presence of ancillary ligand, the solubility in buffer solution and the thermal stability of complex 2 comparatively increases than 1. To check the effect of ancillary ligand, present in complex 2 towards the DNA and HSA binding efficacy, both the complexes have been taken into consideration to inspect their binding potentiality with the macromolecules. The 'on', 'off' fluorescence changes in presence of DNA and HSA, the binding constant values, obtained from electronic spectral titration, iodide induced quenching, competitive binding assay, circular dichroism (CD) spectral titration, time resolved fluorescence experiment unambiguously assure the better binding efficacy of complex 2 with the signal of minor groove binding mode with DNA along with no significant conformational changes of the macromolecules. The strong and spontaneous binding of complex 2 with CT-DNA is further supported by the Isothermal Titration Calorimetry (ITC) study. Furthermore TDDFT calculation of DNA with and without complex 2 significantly authorize the formation of complex 2-DNA adduct during the association. Finally Molecular Docking study properly verifies the experimental findings and provides justified explanation behinds experimental findings.
Collapse
Affiliation(s)
- Manik Das
- Department of Chemistry, P. K. College, Contai, India
| | - Paola Brandao
- Departamento de Química/CICEC, Universidade de Aveiro, Aveiro, Portugal
| | - Soumya Sundar Mati
- Department of Chemistry, Government General Degree College, Keshiary, India
| | - Saikat Roy
- Department of Chemistry, IIT Kharagpur, Kharagpur, India
| | | | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Cochin, India
| | - Susmita De
- Department of Applied Chemistry, Cochin University of Science and Technology, Cochin, India
| | - Uttam Kumar Das
- Department of Chemistry, School of Physical sciences, Mahatma Gandhi Central University, Motihari, India
| | - Soumik Laha
- Indian Institute of Chemical Biology CSIR, Kolkata, India
| | - Jisu Mondal
- Indian Institute of Chemical Biology CSIR, Kolkata, India
| | | | - Tithi Maity
- Department of Chemistry, P. K. College, Contai, India
| |
Collapse
|
21
|
Sasaoka Y, Ito K. Amphiphilic Sugar Derivatives Linked with Gallic Acid Bearing Tris-alkoxy Groups through L-Lysine Linkage: Self-assembly and Efficient Dye Removal in Water-organic Solvent Biphasic System. CHEM LETT 2022. [DOI: 10.1246/cl.220328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuuki Sasaoka
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kazuaki Ito
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
22
|
Mondal P, Singh P, Morgan D, Bose A, Sen K. Ni-Sinapic Acid Nanocomposite in the Selective Sensing of Permanganate ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Supabowornsathit K, Faikhruea K, Ditmangklo B, Jaroenchuensiri T, Wongsuwan S, Junpra-Ob S, Choopara I, Palaga T, Aonbangkhen C, Somboonna N, Taechalertpaisarn J, Vilaivan T. Dicationic styryl dyes for colorimetric and fluorescent detection of nucleic acids. Sci Rep 2022; 12:14250. [PMID: 35995925 PMCID: PMC9395382 DOI: 10.1038/s41598-022-18460-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Nucleic acid staining dyes are important tools for the analysis and visualizing of DNA/RNA in vitro and in the cells. Nevertheless, the range of commercially accessible dyes is still rather limited, and they are often very costly. As a result, finding nontoxic, easily accessible dyes, with desirable optical characteristics remains important. Styryl dyes have recently gained popularity as potential biological staining agents with many appealing properties, including a straightforward synthesis procedure, excellent photostability, tunable fluorescence, and high fluorescence quantum yield in the presence of nucleic acid targets with low background fluorescence signals. In addition to fluorescence, styryl dyes are strongly colored and exhibit solvatochromic properties which make them useful as colorimetric stains for low-cost and rapid testing of nucleic acids. In this work, novel dicationic styryl dyes bearing quaternary ammonium groups are designed to improve binding strength and optical response with target nucleic acids which contain a negatively charged phosphate backbone. Optical properties of the newly synthesized styryl dyes have been studied in the presence and absence of nucleic acid targets with the aim to find new dyes that can sensitively and specifically change fluorescence and/or color in the presence of nucleic acid targets. The binding interaction and optical response of the dicationic styryl dyes with nucleic acid were superior to the corresponding monocationic styryl dyes. Applications of the developed dyes for colorimetric detection of DNA in vitro and imaging of cellular nucleic acids are also demonstrated.
Collapse
Affiliation(s)
- Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Boonsong Ditmangklo
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theeranuch Jaroenchuensiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sutthida Wongsuwan
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirikarn Junpra-Ob
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ilada Choopara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Lisa John V, Joy F, Jose Kollannoor A, Joseph K, Nair Y, T. P. V. Amine functionalized carbon quantum dots from paper precursors for selective binding and fluorescent labelling applications. J Colloid Interface Sci 2022; 617:730-744. [DOI: 10.1016/j.jcis.2022.03.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 01/14/2023]
|
25
|
Huang G, Ma J, Li J, Yan L. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Development of a Smart Fluorescent Probe Specifically Interacting with C-Myc I-Motif. Int J Mol Sci 2022; 23:ijms23073872. [PMID: 35409230 PMCID: PMC8998492 DOI: 10.3390/ijms23073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
I-motifs play key regulatory roles in biological processes, holding great potential as attractive therapeutic targets. In the present study, we developed a novel fluorescent probe G59 with strong and selective binding to the c-myc gene promoter i-motif. G59 had an i-motif-binding carbazole moiety conjugated with naphthalimide fluorescent groups. G59 could differentiate the c-myc i-motif from other DNA structures through selective activation of its fluorescence, with its apparent visualization in solution. The smart probe G59 showed excellent sensitivity, with a low fluorescent detection limit of 154 nM and effective stabilization to the c-myc i-motif. G59 could serve as a rapid and sensitive probe for label-free screening of selective c-myc i-motif binding ligands under neutral crowding conditions. To the best of our knowledge, G59 is the first fluorescent probe with high sensitivity for recognizing the i-motif structure and screening for selective binding ligands.
Collapse
|
27
|
Hu X, Luo X, Zhou Z, Wang R, Hu Y, Zhang G, Zhang G. Multi-Spectroscopic and Molecular Simulation Approaches to Characterize the Intercalation Binding of 1-Naphthaleneacetic Acid With Calf Thymus DNA. FRONTIERS IN TOXICOLOGY 2022; 3:620501. [PMID: 35295128 PMCID: PMC8915802 DOI: 10.3389/ftox.2021.620501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
1-Naphthaleneacetic acid (NAA), having high-quality biological activity and great yield-increasing potential in agricultural production, is a broad-spectrum plant growth regulator. Although NAA is of low toxicity, it can affect the balance of the human metabolism and damage the body if it is used in high quantity for a long time. In this study, the interaction of NAA with calf thymus DNA (ctDNA) was investigated under simulated human physiological acidity (pH 7.4) using fluorescence, ultraviolet-visible absorption, and circular dichroism spectroscopy combined with viscosity measurements and molecular simulation techniques. The quenching of the endogenous fluorescence of NAA by ctDNA, observed in the fluorescence spectrum experiment, was a mixed quenching process that mainly resulted from the formation of the NAA-ctDNA complex. NAA mainly interacted with ctDNA through hydrophobic interaction, and the binding constant and quenching constant at room temperature (298 K) were 0.60 × 105 L mol-1 and 1.58 × 104 L mol-1, respectively. Moreover, the intercalation mode between NAA and ctDNA was verified in the analysis of melting point, KI measurements, and the viscosity of ctDNA. The results were confirmed by molecular simulation, and it showed that NAA was enriched near the C-G base of ctDNA. As shown in circular dichroism spectra, the positive peak intensity of ctDNA intensified along with a certain degree of redshift, while the negative peak intensity decreased after binding with NAA, suggesting that the binding of NAA induced the transformation of the secondary structure of ctDNA from B-form to A-form. These researches will help to understand the hazards of NAA to the human body more comprehensively and concretely, to better guide the use of NAA in industry and agriculture.
Collapse
Affiliation(s)
- Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoqiao Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhisheng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Rui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yaqin Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Guimei Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Pansare AV, Shedge AA, Sonawale MC, Pansare SV, Mahakal AD, Khairkar SR, Chhatre SY, Kulal DK, Patil VR. Deciphering the sensing of α-amyrin acetate with hs-DNA: a multipronged biological probe. RSC Adv 2022; 12:1238-1243. [PMID: 35425164 PMCID: PMC8978960 DOI: 10.1039/d1ra07195e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we focus on the biomimetic development of small molecules and their biological sensing with DNA. The binding of herring sperm deoxyribonucleic acid (hs-DNA) with naturally occurring bioactive small molecule α-amyrin acetate (α-AA), a biomimetic - isolated from the leaves of Ficus (F.) arnottiana is investigated. Collective information from various imaging, spectroscopic and biophysical experiments provides evidence that α-AA is a minor groove sensor of hs-DNA and preferentially binds to the A-T-rich regions. Interactions of different concentrations of small molecule α-AA with hsDNA were evaluated via various analytical techniques such as UV-Vis, circular dichroism (CD) and fluorescence emission spectroscopy. Fluorescence emission spectroscopy results suggest that α-AA decreases the emission level of hsDNA. DNA minor groove sensor Hoechst 33258 and intercalative sensor EB, melting transition analysis (T M) and viscosity analysis clarified that α-AA binds to hs-DNA via a groove site. Biophysical chemistry and molecular docking studies show that hydrophobic interactions play a major role in this binding. The present research deals with a natural product biosynthesis-linked chemical-biology interface sensor as a biological probe for α-AA: hs-DNA.
Collapse
Affiliation(s)
- Amol V Pansare
- Composite Group, Swiss Federal Laboratories for Materials Science and Technology-Empa 8600 Dübendorf Switzerland
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Amol A Shedge
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | | | - Shubham V Pansare
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Akshay D Mahakal
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Shyam R Khairkar
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Shraddha Y Chhatre
- National Chemical Laboratory (NCL) Dr. Homi Bhabha Road Pune 411008 India
| | - Dnyaneshwar K Kulal
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| |
Collapse
|
29
|
Probing multifunctional azure B conjugated gold nanoparticles with serum protein binding properties for trimodal photothermal, photodynamic, and chemo therapy: Biophysical and photophysical investigations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112678. [DOI: 10.1016/j.msec.2022.112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
30
|
Huang X, Zhan J, Huang Y, Chen H, Liang Z, Gan C. Studies on the interaction between 3-biotinylate-6-benzimidazole B-nor-cholesterol analogs and ct-DNA. NEW J CHEM 2022. [DOI: 10.1039/d2nj00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction mechanism between 3-biotinylate-6-benzimidazole B-nor-cholesterol analogs and ct-DNA was studied under conditions similar to physiological. The interaction mechanism between ct-DNA and three different types of compounds was studied by spectroscopic...
Collapse
|
31
|
Su ZQ, Yin MM, Yang ZQ, Hu AH, Hu YJ. Interactions between Two Kinds of Gold Nanoclusters and Calf Thymus Deoxyribonucleic Acid: Directions for Preparations to Applications. Biomacromolecules 2021; 22:4738-4747. [PMID: 34605641 DOI: 10.1021/acs.biomac.1c01028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gold nanoclusters (AuNCs) have shown promising applications in biotherapy owing to their ultrasmall size and unique molecular-like properties. In order to better guide the preparations and applications of AuNCs, dihydrolipoic acid-protected AuNCs (DHLA-AuNCs) and glutathione-protected AuNCs (GSH-AuNCs) were selected as models and the interactions between them and calf thymus DNA (ctDNA) were studied in detail. The results showed that there was a small difference in the binding mechanisms and forces between both AuNCs and ctDNA. The quenching mechanisms of both AuNCs to (ctDNA-HO) were completely different. The binding constants indicated that the binding strength between DHLA-AuNCs and ctDNA was greater than those of GSH-AuNCs. The conformation investigations showed that GSH-AuNCs had a greater impact on the conformation of ctDNA, and both AuNCs were more inclined to interact with the A-T base pairs of ctDNA. These results indicate that the surface ligand had a significant effect on the interactions between AuNCs and DNA and might also further affect the applications of AuNCs, and these results could guide the preparations of AuNCs. For DHLA-AuNCs, their good biocompatibility made them a potential candidate for application in imaging, drug treatment, sensing, and so on. The resulting base accumulation of ctDNA and weak interactions made GSH-AuNCs have great potential for application in gene therapy, which was consistent with the current reports on the applications of these two AuNCs. This work has pointed out the directions for the preparations and applications of AuNCs.
Collapse
Affiliation(s)
- Zheng-Qi Su
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Zi-Qing Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Ao-Hong Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| |
Collapse
|
32
|
Kaczkowska E, Panuszko A, Bruździak P. Interactions in Ternary Aqueous Solutions of NMA and Osmolytes-PARAFAC Decomposition of FTIR Spectra Series. Int J Mol Sci 2021; 22:ijms222111684. [PMID: 34769114 PMCID: PMC8584171 DOI: 10.3390/ijms222111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Intermolecular interactions in aqueous solutions are crucial for virtually all processes in living cells. ATR-FTIR spectroscopy is a technique that allows changes caused by many types of such interactions to be registered; however, binary solutions are sometimes difficult to solve in these terms, while ternary solutions are even more difficult. Here, we present a method of data pretreatment that facilitates the use of the Parallel Factor Analysis (PARAFAC) decomposition of ternary solution spectra into parts that are easier to analyze. Systems of the NMA–water–osmolyte-type were used to test the method and to elucidate information on the interactions between N-Methylacetamide (NMA, a simple peptide model) with stabilizing (trimethylamine N-oxide, glycine, glycine betaine) and destabilizing osmolytes (n-butylurea and tetramethylurea). Systems that contain stabilizers change their vibrational structure to a lesser extent than those with denaturants. Changes in the latter are strong and can be related to the formation of direct NMA–destabilizer interactions.
Collapse
|
33
|
Yin H, Chen H, Yan M, Li Z, Yang R, Li Y, Wang Y, Guan J, Mao H, Wang Y, Zhang Y. Efficient Bioproduction of Indigo and Indirubin by Optimizing a Novel Terpenoid Cyclase XiaI in Escherichia coli. ACS OMEGA 2021; 6:20569-20576. [PMID: 34396002 PMCID: PMC8359145 DOI: 10.1021/acsomega.1c02679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Blue indigo dye, an important natural colorant, is used for textiles and food additives worldwide, while another red isomer, indirubin, is the major active ingredient of a traditional Chinese medicine named "Danggui Longhui Wan" for treating various diseases including granulocytic leukemia, cancer, and Alzheimer's disease. In this work, we constructed a new and highly efficient indigoid production system by optimizing a novel terpenoid cyclase, XiaI, from the xiamycin biosynthetic pathway. Through introducing the flavin-reducing enzyme Fre, tryptophan-lysing and -importing enzymes TnaA and TnaB, and H2O2-degrading enzyme KatE and optimizing the fermentation parameters including temperature, the concentration of isopropyl-β-d-thiogalactopyranoside, and feeding of the l-tryptophan precursor, the final maximum productivity of indigoids by the recombinant strain Escherichia coli BL21(DE3) (XiaI-Fre-TnaAB-KatE) was apparently improved to 101.9 mg/L, an approximately 60-fold improvement to that of the starting strain E. coli BL21(DE3) (XiaI) (1.7 mg/L). In addition, when the fermentation system was enlarged to 1 L in the flask (feeding with 5 mM tryptophan and 10 mM 2-hydroxyindole), the indigoid productivity further increased to 276.7 mg/L at 48 h, including an indigo productivity of 26.0 mg/L and an indirubin productivity of 250.7 mg/L, which has been the highest productivity of indirubin so far. This work provided a basis for the commercial production of bio-indigo and the clinical drug indirubin in the future.
Collapse
Affiliation(s)
- Huifang Yin
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| | - Hongping Chen
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Meng Yan
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Zhikun Li
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Rongdi Yang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Yanjiao Li
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Yanfang Wang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Jianyi Guan
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| | - Huili Mao
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Yan Wang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| | - Yuyang Zhang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| |
Collapse
|
34
|
Cuartas V, Aragón-Muriel A, Liscano Y, Polo-Cerón D, Crespo-Ortiz MDP, Quiroga J, Abonia R, Insuasty B. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: synthesis, DNA binding and molecular docking. RSC Adv 2021; 11:23310-23329. [PMID: 35479808 PMCID: PMC9036565 DOI: 10.1039/d1ra03509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023] Open
Abstract
Multidrug resistance to chemotherapy is a critical health problem associated with mutation of the therapeutic target. Therefore, the development of anticancer agents remains a challenge to overcome cancer cell resistance. Herein, a new series of quinazoline-based pyrimidodiazepines 16a-g were synthesized by the cyclocondensation reaction of 2-chloro-4-anilinoquinazoline-chalcones 14a-g with 2,4,5,6-tetraaminopyrimidine. All quinazoline derivatives 14a-g and 16a-g were selected by the U.S. National Cancer Institute (NCI) for testing their anticancer activity against 60 cancer cell lines of different panels of human tumors. Among the tested compounds, quinazoline-chalcone 14g displayed high antiproliferative activity with GI50 values between 0.622-1.81 μM against K-562 (leukemia), RPMI-8226 (leukemia), HCT-116 (colon cancer) LOX IMVI (melanoma), and MCF7 (breast cancer) cancer cell lines. Additionally, the pyrimidodiazepines 16a and 16c exhibited high cytostatic (TGI) and cytotoxic activity (LC50), where 16c showed high cytotoxic activity, which was 10.0-fold higher than the standard anticancer agent adriamycin/doxorubicin against ten cancer cell lines. COMPARE analysis revealed that 16c may possess a mechanism of action through DNA binding that is similar to that of CCNU (lomustine). DNA binding studies indicated that 14g and 16c interact with the calf thymus DNA by intercalation and groove binding, respectively. Compounds 14g, 16c and 16a displayed strong binding affinities to DNA, EGFR and VEGFR-2 receptors. None of the active compounds showed cytotoxicity against human red blood cells.
Collapse
Affiliation(s)
- Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665.,Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle Cali 760001 Colombia
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Universidad Santiago de Cali Cali 760035 Colombia
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle Cali 760001 Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Grupo de Biotecnología e Infecciones Bacterianas, Departamento de Microbiología, Universidad del Valle Cali 760043 Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665.,Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| |
Collapse
|
35
|
Ponkarpagam S, Mahalakshmi G, Vennila KN, Elango KP. Concentration-dependent mode of binding of drug oxatomide with DNA: multi-spectroscopic, voltammetric and metadynamics simulation analysis. J Biomol Struct Dyn 2021; 40:8394-8404. [PMID: 33896411 DOI: 10.1080/07391102.2021.1911860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interaction between antihistaminic drug oxatomide (OXT) and calf-thymus DNA (CT-DNA) has been investigated in a physiological buffer (pH 7.4) using UV-Vis, fluorescence, 1H NMR and circular dichroism spectral techniques coupled with viscosity measurements, KI quenching, voltammetry and in silico molecular modeling studies. OXT binds with CT-DNA in a concentration-dependent manner. At a lower [Drug]/[CT-DNA] molar ratio (0.6-0.1), OXT intercalates into the base pairs of CT-DNA, while at a higher [Drug]/[CT-DNA] molar ratio (13-6), the drug binds in the minor grooves of CT-DNA. The binding constants for the interaction are found to be in the order of 103-105 M-1, and the groove binding mode of interaction exhibits a slightly higher binding constant than that of intercalative mode. Thermodynamic analysis of binding constants at three different temperatures suggests that both these modes of binding are mainly driven by hydrophobic interactions (ΔHo > 0 and ΔSo > 0). Voltammetric investigations indicate that the electro-reduction of OXT is an adsorption controlled process and shifts in reduction peak potentials reiterate the concentration-dependent mode of binding of the drug with CT-DNA. The free energy landscape obtained at the all-atom level, using metadynamics simulation studies, revealed two major binding forces: partial intercalation and minor groove binding, which corroborate well with the experimental results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sundararajan Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Govindaraj Mahalakshmi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kailasam N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
36
|
Zhu S, Bai X, Zhu J, Li W, Wang B. Multi-spectral techniques and molecular docking to investigation of the interaction between ferulic acid and pepsin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119442. [PMID: 33461141 DOI: 10.1016/j.saa.2021.119442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this work, the interaction between ferulic acid (FA) and pepsin was explored by UV-visible absorption spectroscopy, fluorescence spectroscopy, synchronous fluorescence, circular dichroism (CD) spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and molecular docking. The results of fluorescence revealed that FA had a strong ability to quench the intrinsic fluorescence of pepsin through a static quenching procedure. The binding constant and the number of binding sites were determined. Thermodynamic dates and docking information suggest that FA combine with pepsin is mainly driven via electrostatic force. It also requires synergistic drive of hydrophobic and hydrogen bonding. The consequences from UV-Vis, synchronous, CD and FT-IR spectra measurements manifested that the secondary structure of pepsin was changed and the microenvironments of certain amino acid residues was modulated by the binding of FA. FA induced conformational changes in pepsin. The β-sheet, α-Helix, and Random fractions of pepsin increased and the β-turn decreased with the treatment of FA. In addition, analysis of pepsin activity assay measurements confirmed that FA reduced enzymatic activity of pepsin within the investigated concentrations. This work studied the inhibitory effects and revealed mechanisms of the interaction between FA and pepsin in vitro, and suggested that FA could be a potential component to affect the structure and properties of digestive enzyme.
Collapse
Affiliation(s)
- Sujuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xuexue Bai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jing Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Wen Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Bing Wang
- Center for Disease Control and Prevention, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
37
|
Mondal P, Sengupta P, Pal U, Saha S, Bose A. Biophysical and theoretical studies of the interaction between a bioactive compound 3,5-dimethoxy-4-hydroxycinnamic acid with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118936. [PMID: 32977108 DOI: 10.1016/j.saa.2020.118936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
3,5-Dimethoxy-4-hydroxycinnamic acid commonly known as Sinapic acid is a well-known derivative of hydroxycinnamic acids, is commonly present in human diet. Due to its wide variety of pharmacological activities like antioxidant, antimicrobial, anti-inflammatory, anticancer, and anti-anxiety, it has attracted much attention for the researchers. In our previous published work we have already analyzed the interaction between sinapic acid (SA) with a model transport protein. In this work our aim is to demonstrate a detailed investigation of the binding interaction between sinapic acid with another carrier of genetic information in a living cell, the DNA. Here we have used calf thymus DNA (ct-DNA) as a model. The binding characteristic of SA with ct-DNA was investigated by different spectroscopic and theoretical tools. The spectroscopic investigation revealed that quenching of intrinsic fluorescence of SA by ct-DNA occurs through dynamic quenching mechanism. The thermodynamic parameters established the involvement of hydrogen bonding and weak van der Waals forces in the interaction. Further, the circular dichroism, competitive binding experiment with ethidium bromide and potassium iodide quenching experiment suggested that SA possibly binds to the groove position of the ct-DNA. Finally, molecular docking analysis established the SA binds to minor groove position of ct-DNA in G-C rich region through hydrogen bonding interaction. Additionally, gel electrophoresis analysis has been performed to determine the protective efficacy of SA against UVB induced DNA damage and 50 μM of SA was found to protect the DNA from UVB induced damage. We hope that our study could provide the validation of SA on behalf of therapeutics and development of next generation therapeutic drug as well as designing new efficient drug molecule and methodology for the interaction study of the drug with DNA.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Priti Sengupta
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, India
| | - Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Adity Bose
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India.
| |
Collapse
|
38
|
Shu J, Yue J, Qiu X, Liu X, Ren W, Li Q, Li Y, Xu B, Zhang K, Jiang W. Binuclear metal complexes with a novel hexadentate imidazole derivative for the cleavage of phosphate diesters and biomolecules: distinguishable mechanisms. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative cleavage of phosphate diesters (HPNP, BNPP) is highly faster than the hydrolytic one by binuclear metal complexes with novel imidazole derivative, producing a non-lactone phosphate monoester due to the direct attack of free radicals.
Collapse
Affiliation(s)
- Jun Shu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Jian Yue
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Xin Qiu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Wang Ren
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Qianli Li
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Shandong Liaocheng 252059
- P. R. China
| | - Yulong Li
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Bin Xu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| |
Collapse
|
39
|
Kaur B, Kaur G, Chaudhary GR, Sharma VK, Srinivasan H, Mitra S, Sharma A, Gawali SL, Hassan P. An investigation of morphological, microscopic dynamics, fluidity, and physicochemical variations in Cu-decorated metallosomes with cholesterol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Ataci N, Kazancioglu EO, Kalındemirtas FD, Kuruca SE, Arsu N. The interaction of light-activatable 2-thioxanthone thioacetic acid with ct-DNA and its cytotoxic activity: Novel theranostic agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118491. [PMID: 32485605 DOI: 10.1016/j.saa.2020.118491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, a thioxanthone derivative, 2-Thioxanthone Thioacetic Acid (TXSCH2COOH) was used to analyze the type of binding to calf thymus DNA in a physiological buffer (Tris-HCl buffer solution, pH:7.0). Several spectroscopic techniques were employed including UV-Vis absorption and fluorescence emission spectroscopy and viscosity measurements were also used to clarify the binding mode of TXSCH2COOH to ct-DNA. The intrinsic binding constant Kb of TXSCH2COOH-ct-DNA was found as 2.5 × 103 M-1 from the absorption studies. Increasing of fluorescence emission intensity was found approximately 74.4% by adding ct-DNA to the TXSCH2COOH solution. Fluorescence microscopy was employed to display imaging of the TXSCH2COOH-ct-DNA solution. Increasing of the iodide quenching effect was observed when TXSCH2COOH was added to the double stranded DNA and the calculated quenching constants of TXSCH2COOH and TXSCH2COOH-ct-DNA were found to be 1.89 × 103 M-1 and 1.19 × 104 M-1, respectively. Additionally, the iodide quenching experiment was conducted with single stranded DNA which led to a high Ksv value. All the experimental results including the viscosity values of ct-DNA with TXSCH2COOH demonstrated that the binding of TXSCH2COOH to ct-DNA was most likely groove binding. Furthermore, TXSCH2COOH was found to be an A-T rich minor groove binder. This was confirmed by the displacement assays with Hoechst 33258 compared to Ethidium Bromide. The in vitro cytotoxic activity measurements were performed by MTT assay on HT29 cell line for 72 h. TXSCH2COOH exhibited notable cytotoxic activities compared to the standard chemotherapy drugs, fluorouracil (5-FU), cisplatin in tumorigenic HT29 cell line. The 50% growth-inhibitory concentration (IC50) for TXSCH2COOH was 19,8 μg/mL while 5-FU and cisplatin were 28.9 μg/mL, 20 μg/mL, respectively. The increase in cytotoxic effect when TXSCH2COOH is activated by light indicates the potential of being theranostic cancer drug candidate.
Collapse
Affiliation(s)
- Nese Ataci
- Yildiz Technical University, Davutpasa Campus, Department of Chemistry, 34220 Istanbul, Turkey
| | | | | | - Serap Erdem Kuruca
- Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Davutpasa Campus, Department of Chemistry, 34220 Istanbul, Turkey.
| |
Collapse
|
41
|
Verebová V, Želonková K, Holečková B, Staničová J. The effect of neonicotinoid insecticide thiacloprid on the structure and stability of DNA. Physiol Res 2020; 68:S459-S466. [PMID: 32118477 DOI: 10.33549/physiolres.934385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The application of pesticides and chemical fertilizers constitutes a potential risk to human and animals due to the presence of their residues in the food. Thiacloprid belongs to a group of neonicotinoid insecticides. It shows a cytotoxic/cytostatic effect in human peripheral blood lymphocytes probably due to DNA damage. The use of thiacloprid is increasingly widespread worldwide, therefore is very important the assessment of its possible genotoxic and cytotoxic effects on a living organism. That is the reason why we studied the thiacloprid influence on the structure and stability of DNA in presented work. We have been studied the thiacloprid interaction with calf thymus DNA. Association constant was determined by fluorescence spectroscopy using equilibrium receptor-ligand binding analysis. The thermal denaturation of DNA was used to identify the mode of interaction. Viscosity changes were recorded to confirm/disconfirm the intercalation mode of interaction. Given the results, we can conclude that neonicotinoid pesticide thiacloprid destabilizes DNA. It changes the structure and stability of DNA through binding into the minor groove by hydrophobic or hydrogen interactions.
Collapse
Affiliation(s)
- V Verebová
- Department of Chemistry, Biochemistry and Biophysics, Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic.
| | | | | | | |
Collapse
|
42
|
Arif A, Ahmad A, Ahmad M. Toxicity assessment of carmine and its interaction with calf thymus DNA. J Biomol Struct Dyn 2020; 39:5861-5871. [DOI: 10.1080/07391102.2020.1794962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amin Arif
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| | - Ajaz Ahmad
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
43
|
Auria-Luna F, Fernández-Moreira V, Marqués-López E, Gimeno MC, Herrera RP. Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Sci Rep 2020; 10:11594. [PMID: 32665694 PMCID: PMC7360557 DOI: 10.1038/s41598-020-68076-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
A simple approach to synthesize new highly substituted 4H-pyran derivatives is described. Efficient Et3N acts as a readily accessible catalyst of this process performed in pure water and with only a 20 mol% of catalyst loading. The extremely simple operational methodology, short reaction times, clean procedure and excellent product yields render this new approach extremely appealing for the synthesis of 4H-pyrans, as potentially biological scaffolds. Additionally, DNA interaction analysis reveals that 4H-pyran derivatives behave preferably as minor groove binders over major groove or intercalators. Therefore, this is one of the scarce examples where pyrans have resulted to be interesting DNA binders with high binding constants (Kb ranges from 1.53 × 104 M-1 to 2.05 × 106 M-1).
Collapse
Affiliation(s)
- Fernando Auria-Luna
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain.
| |
Collapse
|
44
|
Li X, Yang L, Wang Y, Du Z, Mao X, Sun D, Liu J, Zhou Y, Xu X. Studies on binding of single-stranded DNA with reduced graphene oxide-silver nanocomposites. IET Nanobiotechnol 2020; 14:308-313. [PMID: 32463021 PMCID: PMC8676041 DOI: 10.1049/iet-nbt.2019.0377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 11/20/2022] Open
Abstract
The binding reaction of reduced graphene oxide-silver nanocomposites (rGO-AgNCs) with calf thymus single-stranded DNA (ssDNA) was studied by ultraviolet-visible absorption, fluorescence spectroscopy and circular dichroism (CD), using berberine hemisulphate (BR) dye as a fluorescence probe. The absorbance of ssDNA increases, but the fluorescence intensity is quenched with the addition of rGO-AgNCs. The binding of rGO-AgNCs with ssDNA was able to increase the quenching effects of BR and ssDNA, and induce the changes in CD spectra. All of the evidence indicated that there was a relatively strong interaction between ssDNA and rGO-AgNCs. The data obtained from fluorescence experiments revealed that the quenching process of ssDNA caused by rGO-AgNCs is primarily due to complex formation, i.e. static quenching. The increasing trend of the binding equilibrium constant (Ka) with rising temperature indicated that the binding process was an endothermic reaction. The calculated thermodynamic parameters showed that the binding process was thermodynamically spontaneous, and hydrophobic association played predominant roles in the binding of ssDNA to the surface of rGO-AgNCs.
Collapse
Affiliation(s)
- Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Linqing Yang
- Program for Scientific Research Innovation Team in Precision Medicine of Gynecologic Oncology, Affiliated Hospital of Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Yunfei Wang
- Program for Scientific Research Innovation Team in Precision Medicine of Gynecologic Oncology, Affiliated Hospital of Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Zhongyu Du
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Xuyan Mao
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Dezhi Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province, People's Republic of China
| | - Jun Liu
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Yu Zhou
- School of Public Health, Jining Medical College, Jining 272067, Shandong Province, People's Republic of China
| | - Xiangyu Xu
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China.
| |
Collapse
|
45
|
Exploring the interaction of copper-esculetin complex with ct-DNA: Insight from spectroscopic and docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Dareini M, Amiri Tehranizadeh Z, Marjani N, Taheri R, Aslani-Firoozabadi S, Talebi A, NayebZadeh Eidgahi N, Saberi MR, Chamani J. A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: Experimental and in silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117528. [PMID: 31718965 DOI: 10.1016/j.saa.2019.117528] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
DNA stands as the primary purpose of many anticancer drugs and according to the performed research on this field, some certain changes contain crucial functionalities in the regulated transcription of DNA. Therefore, the interaction between anticancer drugs and DNA play an important role in understanding their function and also provide a better groundwork for producing more efficient and newer drugs. Here, the interaction between Docetaxel (DO) and calf thymus DNA (ct DNA), in the presence and absence of Anastrozole (AN), has been examined through the usage of different methods that include isothermal titration calorimetry, multi-spectroscopic, viscometry, and molecular docking techniques. Interaction studies have been performed by preparing different molar ratios of DO with the constant ct DNA and AN concentration at pH = 6.8. The binding constants have been calculated to be 7.93 × 104 M-1 and 6.27 × 104 M-1, which indicate the strong binding of DO with ct DNA double helix in the absence and presence of AN, respectively. Thermodynamic parameters, which were obtained from fluorescence spectroscopy and isothermal titration calorimetry, have suggested that the binding of DO and AN to ct DNA as binary and ternary systems have been mainly driven by the electrostatic interactions. The relative viscosity of ct DNA has increased upon the addition of DO and AN, which confirms the interaction mode. A competitive binding study has reported that the enhanced emission intensity of ethidium bromide (EB) and acridine orange (AO), in the presence of ct DNA, have been quenched through the addition of DO and Anastrozole as binary and ternary systems. As it is indicated by these findings, DO is capable of displacing EB and AO from their binding site in ct DNA; hence, it can be concluded that DO and AN are able to intercalate into the base pairs of ct DNA in binary and ternary systems. Molecular docking studies have corroborated the mentioned experimental results.
Collapse
Affiliation(s)
- Maryam Dareini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Narges Marjani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Atiye Talebi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Negar NayebZadeh Eidgahi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Saberi
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
47
|
Kumari S, Halder S, Aggrawal R, Sundar G, Saha SK. Effect of gemini surfactants on binding interactions of Coumarin 485 with calf thymus deoxyribonucleic acid in presence of nanotubes of β-cyclodextrin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Hu Y, Xie M, Wu X. Interaction studies of sodium cyclamate with DNA revealed by spectroscopy methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117085. [PMID: 31146213 DOI: 10.1016/j.saa.2019.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The interaction between sodium cyclamate (SC) and calf thymus DNA in simulated physiological buffer (pH 7.4) using ethidium bromide (EB) as fluorescence probe was investigated by UV-vis spectrometry (UV), fluorescence, resonance light scattering (RLS) and Fourier transform infrared (FT-IR) spectroscopy, along with DNA melting studies and cyclic voltammetric (CV) measurements. The results indicate that SC can not only bind into the minor groove of DNA, but also intercalate into the DNA Base pairs. Based on UV data, the binding constant K and binding sites n of the formed DNA/SC complex were estimated to be 2.83 × 103 mol/L and 2.0, respectively. Fluorescence results demonstrate that the quenching of DNA/EB induced by SC can mainly be attributed to static procedure. The melting studies and CV analysis further confirm that the interaction mechanism between the SC and DNA is similar to that of DNA intercalator.The results of FT-IR spectra show that a specific interaction mainly exist between SC and adenine and guanine bases of DNA, which resulting in potential damage due to some change in the information structure. The DNA saturation binding value estimated to be 1.67 based on the RLS data also indicated that SC may cause damage of DNA.
Collapse
Affiliation(s)
- Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhong Shan 528458, PR China.
| | - Meiyi Xie
- School of Food Science, Guangdong Pharmaceutical University, Zhong Shan 528458, PR China
| | - Xiaoyong Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhong Shan 528458, PR China
| |
Collapse
|
49
|
|
50
|
Kundu P, Das S, Chattopadhyay N. Managing efficacy and toxicity of drugs: Targeted delivery and excretion. Int J Pharm 2019; 565:378-390. [DOI: 10.1016/j.ijpharm.2019.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
|