1
|
Kamiński P, Szymczak M, Szymczak B. Application of a crude digestive proteases preparation to improve the ripening of marinated fillets from low-technological value Baltic herring (Clupea harengus membras L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5315-5325. [PMID: 38323648 DOI: 10.1002/jsfa.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/05/2024] [Accepted: 02/03/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND As a result of climate change (reduced the oxygen content and food available in the waters) and overfishing, ever larger batches of the herring catch are classified as low-value fish and used for feedstuff or canned food production. Fast and complete ripening of marinated fillets, especially from low-value Baltic herring, poses a problem because of the low muscle protease activity and changes in muscle tissue proteins. RESULTS For the first time, a crude digestive proteases preparation (CDPP) was obtained from herring viscera using a two-stage method consisting of ethanol extraction and then salt precipitation. CDPP had a reduced hemoglobin content, with optimum activity at pH 7.5-8.8 or 60-120 g kg-1 NaCl. At pH 4-5, it still exhibited 24-68% of proteolytic activity. CDPP was used for 4-24 h of brining of fresh and frozen-thawed fillets or injection of fresh fillets before marinating. CDPP-brining increased especially cathepsin D and carboxypeptidase A activities, whereas it decreased cathepsin B and L activities in the marinades. CDPP-brining mitigated the negative effect of freezing-thawing on mass-yield, protease activity, protein hydrolysis, texture profile, colour and sensory quality of the marinated fillets. CDPP-injection was found to be the best method because it increased mass-yield and ripeness of the marinated fillets to a greater extent than CDPP-brining did. The marinades from the CDPP-treated fillets had no bitter taste as a result of the presence of hemoglobin or chymotrypsin, and there were no results indicating lipid oxidation. CONCLUSION The application of CDPP in marinating technology is a viable approach to enable the use of low-value herring in food production, shorten the marinating time, and improve the ripeness and sensory quality of meat. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Patryk Kamiński
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Mariusz Szymczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Barbara Szymczak
- Department of Microbiology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Wu H, Axelsson J, Kuhlin M, Fristedt R, Undeland I. Pilot-Scale Antioxidant Dipping of Herring ( Clupea harengus) Co-products to Allow Their Upgrading to a High-Quality Mince for Food Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4727-4737. [PMID: 37013165 PMCID: PMC10064803 DOI: 10.1021/acssuschemeng.2c07164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Indexed: 06/19/2023]
Abstract
To enable production of high-quality mince from herring backbones, a scalable antioxidant strategy is needed due to the high susceptibility of herring muscle to lipid oxidation. We here measured the stabilizing effect of lab-/pilot-scale predipping of herring backbones (30-500 kg) in antioxidant solutions prior to production of mechanically separated mince (MSM). The antioxidants were (i) Duralox MANC, a mixture of rosemary extract, ascorbic acid, α-tocopherol, and citric acid, and (ii) rosemary extract with or without isoascorbic acid. Delivery of the key rosemary-derived antioxidant components carnosol and carnosic acid was monitored during the dipping process and ice/frozen storage. Predipping in 2% Duralox MANC gave MSM with 26.7-31.7 mg/kg carnosol + carnosic acid and extended the oxidation lag phase from <1 to 12 days during ice storage and from <1 to 6 months during frozen storage compared to control. Dipping in 0.2% rosemary extract with or without 0.5% isoascorbic acid solution gave MSM with 20.6-28.2 mg/kg carnosol + carnosic acid and extended the lag phase to 6 days and 9 months during ice and frozen storage, respectively. Our results confirmed, in pilot scale, that predipping herring coproducts in antioxidant solutions is a promising strategy to utilize these raw materials for, e.g., mince and burger production rather than for low value products as fish meal.
Collapse
Affiliation(s)
- Haizhou Wu
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - John Axelsson
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Martin Kuhlin
- Sweden
Pelagic AB, Hallgrens
väg 1, SE 47431 Ellös, Sweden
| | - Rikard Fristedt
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
Wu H, Bak KH, Goran GV, Tatiyaborworntham N. Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances. Crit Rev Food Sci Nutr 2022; 64:4921-4939. [PMID: 36448306 DOI: 10.1080/10408398.2022.2146654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Kathrine H Bak
- Department of Food Technology and Vetefrinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gheorghe V Goran
- Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, University of Agricultural, Bucharest, Romania
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
4
|
Wu H, Tatiyaborworntham N, Hajimohammadi M, Decker EA, Richards MP, Undeland I. Model systems for studying lipid oxidation associated with muscle foods: Methods, challenges, and prospects. Crit Rev Food Sci Nutr 2022; 64:153-171. [PMID: 35916770 DOI: 10.1080/10408398.2022.2105302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid oxidation is a complex process in muscle-based foods (red meat, poultry and fish) causing severe quality deterioration, e.g., off-odors, discoloration, texture defects and nutritional loss. The complexity of muscle tissue -both composition and structure- poses as a formidable challenge in directly clarifying the mechanisms of lipid oxidation in muscle-based foods. Therefore, different in vitro model systems simulating different aspects of muscle have been used to study the pathways of lipid oxidation. In this review, we discuss the principle, preparation, implementation as well as advantages and disadvantages of seven commonly-studied model systems that mimic either compositional or structural aspects of actual meat: emulsions, fatty acid micelles, liposomes, microsomes, erythrocytes, washed muscle mince, and muscle homogenates. Furthermore, we evaluate the prospects of stem cells, tissue cultures and three-dimensional printing for future model system development. Based on this reviewing of oxidation models, tailoring correct model to different study aims could be facilitated, and readers are becoming acquainted with advantages and shortcomings. In addition, insight into recent technology developments, e.g., stem cell- and tissue-cultures as well as three-dimensional printing could provide new opportunities to overcome the current bottlenecks of lipid oxidation studies in muscle.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mark P Richards
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| |
Collapse
|
5
|
Liu L, Yin J, Richards MP. Role of Maillard Reaction Products as Antioxidants in Washed Cod and Washed Turkey Muscle Oxidized by Added Hemoglobin. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling Liu
- The College of Food Science Shenyang Agricultural University, Shenyang Dongling Street No.120 Shenyang 110866 China
- Meat Science and Animal Biologics Discovery, 1933 Observatory Dr., Department of Animal and Dairy Sciences University of Wisconsin‐Madison Madison WI 53706 USA
| | - Jie Yin
- Meat Science and Animal Biologics Discovery, 1933 Observatory Dr., Department of Animal and Dairy Sciences University of Wisconsin‐Madison Madison WI 53706 USA
| | - Mark P. Richards
- Meat Science and Animal Biologics Discovery, 1933 Observatory Dr., Department of Animal and Dairy Sciences University of Wisconsin‐Madison Madison WI 53706 USA
| |
Collapse
|
6
|
Zhang J, Abdollahi M, Alminger M, Undeland I. Cross-processing herring and salmon co-products with agricultural and marine side-streams or seaweeds produces protein isolates more stable towards lipid oxidation. Food Chem 2022; 382:132314. [PMID: 35149464 DOI: 10.1016/j.foodchem.2022.132314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Herring and salmon filleting co-products were pH-shift processed together with seven antioxidant-containing raw materials ("helpers") including lingonberry-, apple-, oat-, barley- and shrimp-co-products, and two seaweeds (Saccharina latissima, Ulva fenestrata) to produce protein isolates stable towards lipid oxidation. Malondialdehyde (MDA) and 4-hydroxy-(E)-2-hexenal (HHE) levels revealed that all helpers, except shrimp shells, to different extents retarded lipid oxidation both during pH-shift-processing and ice storage. The three helpers performing best were: lingonberry press-cake > apple pomace ∼ Ulva. Color of protein isolates was affected by helper-derived pigments (e.g., anthocyanins, carotenoids, chlorophyll) and lipid oxidation-induced changes (e.g., metHb-formation, pigment-bleaching). In conclusion, combining fish co-products with other food side-streams or seaweeds during pH-shift processing appears a promising new tool to minimize lipid oxidation of protein isolates, both during their production and subsequent storage. Lingonberry press-cake was the most efficient helper but provided dark color which may narrow product development possibilities, something which requires further attention.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Marie Alminger
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
7
|
Wu H, Richards MP, Undeland I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr Rev Food Sci Food Saf 2022; 21:1275-1299. [PMID: 35080797 DOI: 10.1111/1541-4337.12890] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
Lipid oxidation accelerates quality deterioration in muscle-based foods (fish, red meat, and poultry), resulting in off-odors/flavors, color problems, texture defects, and safety concerns. Adding antioxidants is one approach to control lipid oxidation, and several delivery strategies have been applied, such as supplementing antioxidants to the feed, direct mixing into minces, or, for whole muscle pieces; spraying, glazing, and injection. However, some issues linked to these technologies hinder their wide utilization, such as low effectiveness, noncompatibility with clean label, and off-flavor. These shortcomings have promoted the development of new antioxidant delivery technologies. In this review, the main focus is on the principles, characteristics, and implementation of five novel antioxidant delivery methods in different types of muscle food products. Their advantages and drawbacks are also summarized, plus comments about future trends in this area. Among novel routes to deliver antioxidants to muscle foods are, for whole tissues, recyclable dipping solutions; for minces, encapsulation; and, for both minces and whole tissues, cross-processing with nonmuscle antioxidant-containing raw materials as well as applications of edible films/coatings and active packaging. Advantages of these technologies comprise, for example, low price, the possibility to control the antioxidant release rate, overcoming strong aromas from natural antioxidants, and allowing antioxidant-containing raw materials from the food industry to be valorized, providing an opportunity for more circular food production.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark P Richards
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
GÜner S, YaĞiz Y, Topalcengİz Z, Kristinsson HG, Baker G, Sarnoski P, Welt BA, Simonne A, Marshall MR. Effect of pH on lipid oxidation of red onion skin extracts treated with washed tilapia (Oreochromis niloticus) muscle model systems. Turk J Chem 2021; 44:1528-1538. [PMID: 33488249 PMCID: PMC7763107 DOI: 10.3906/kim-2004-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to investigate the effect of pH on the lipid oxidation of red onion skin extracts (ROSEs) treated with washed tilapia muscle model systems (WTMS). Minced and buffered washed samples were prepared at pH 6.3 and 6.8. The WTMS were treated with2 different concentrations of red onion skin prior to storage for 5 days. Lipid oxidation was investigated via peroxide values (PVs), thiobarbituric acid reactive substances (TBARS), and the formation of volatile compounds. Fatty acid profiles of the samples were also identified. The ROSEs were able to significantly suppress the PV (~71%) and TBARS (~42%) formation. Hexanal and octanal formations in the WTMS were relatively less in the ROSE-treated samples. The WTMS samples prepared at pH 6.3 were more vulnerable to lipid oxidation than those prepared at pH 6.8. Red onion skin polyphenols may increase the lag phase of lipid oxidation, depending on pH levels, resulting in the shelf life extension of raw fish.
Collapse
Affiliation(s)
- Senem GÜner
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL USA
| | - Yavuz YaĞiz
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL USA
| | - Zeynal Topalcengİz
- Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University,Muş Turkey
| | - Hordur G Kristinsson
- Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University,Muş Turkey
| | - George Baker
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL USA
| | - Paul Sarnoski
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL USA
| | - Bruce A Welt
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL USA
| | - Amarat Simonne
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL USA
| | - Maurice R Marshall
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL USA
| |
Collapse
|
9
|
Harrysson H, Swolin B, Axelsson M, Undeland I. A trout (
Oncorhynchus mykiss
) perfusion model approach to elucidate the role of blood removal for lipid oxidation and colour changes in ice‐stored fish muscle. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanna Harrysson
- Department of Biology and Biological Engineering‐Food and Nutrition Science Chalmers University of Technology S‐41296Gothenburg Sweden
| | - Birgitta Swolin
- Department of Clinical Chemistry and Transfusion Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Box 100S‐405 30Gothenburg Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences University of Gothenburg Box 100S-405 30Gothenburg Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering‐Food and Nutrition Science Chalmers University of Technology S‐41296Gothenburg Sweden
| |
Collapse
|
10
|
Tatiyaborworntham N, Richards MP. Mechanisms involved in hemoglobin-mediated oxidation of lipids in washed fish muscle and inhibitory effects of phospholipase A2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2816-2823. [PMID: 29134657 DOI: 10.1002/jsfa.8779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/14/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Hemoglobin (Hb) is a lipid oxidation promoter in fish muscle. Phospholipase A2 (PLA2; EC 3.1.1.4) is linked to an increased resistance to lipid oxidation of frozen-thawed cod fillets via an unknown mechanism. The present study aimed to investigate the mechanism of Hb-mediated lipid oxidation with a focus on ferryl Hb and methemoglobin (metHb), the pro-oxidative Hb species, and to examine how porcine pancreatic PLA2 inhibits Hb-mediated lipid oxidation in washed cod muscle (WCM). Lipid hydroperoxides (LOOHs) and thiobarbituric acid reactive substances (TBARS) were measured as primary and secondary lipid oxidation products, respectively. The formation of metHb and ferryl Hb was also monitored. RESULTS Ferryl Hb and metHb formed during the Hb-mediated lipid oxidation. PLA2 inhibited the formation of LOOHs and TBARS and suppressed the formation of metHb and ferryl Hb. WCM was pre-oxidized by hemin to increase the amount of LOOHs. PLA2 promoted the depletion of LOOHs in the pre-oxidized WCM with limited TBARS formation at the expense of the heme moiety of Hb. CONCLUSION The results of the present study suggest that ferryl Hb may play a role in Hb-mediated lipid oxidation and that PLA2 from pig pancreas may work together with Hb as a novel antioxidant with an ability to remove pre-formed LOOHs from a lipid substrate. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nantawat Tatiyaborworntham
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Richards
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Rapid and Non-destructive Detection of Iron Porphyrin Content in Pork Using Multispectral Imaging Approach. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0298-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|