1
|
Pierce A, Skonberg D, Calder B, Dumas R, Jin Q. Development of a Whey Protein Recovery Process Using Sugar Kelp ( Saccharina latissima) Extracts. Foods 2024; 13:3663. [PMID: 39594077 PMCID: PMC11594094 DOI: 10.3390/foods13223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Whey is the largest waste product of the cheese-making industry and the current methods of extracting the nutrients from it are costly and inefficient. This study assessed the feasibility of using crude polysaccharides to flocculate proteins from liquid whey waste. The flocculants used were a sugar kelp (Saccharina latissima) extract, as well as commercial seaweed polysaccharides, alginate and k-carrageenan, to recover proteins from the liquid whey waste. Physicochemical and functional parameters including protein content, protein recovery efficiency, mineral content, total phenolic content (TPC), antioxidant capacity, color, water- and oil-holding capacity, gelling capacity, foaming activity and stability, and emulsifying activity and stability were tested on the resulting flocculates. The yield of the dried flocculates by use of alginate, the sugar kelp polysaccharide extract (SKPE), and carrageenan were 1.66, 0.98, and 1.22 g/100 g of liquid whey with protein contents of 27.4%, 45.5%, and 37.5%, respectively. The protein recovery efficiency from the whey was 57.5%, 56.2%, and 57.9% using alginate, SKPE, and carrageenan, respectively. The alginate flocculate had the highest oil-holding capacity and foaming abilities while the carrageenan flocculate had the best gelling ability and the highest emulsifying activity and stability. TPC and antioxidant activity were highest in the SKPE flocculate. All three flocculates presented slightly different compositional and functional qualities, which could be used for a variety of products. This study showed that seaweed polysaccharides present a simple and effective way to extract protein from liquid whey waste while creating a functional and high-protein ingredient.
Collapse
Affiliation(s)
- Alex Pierce
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| | - Denise Skonberg
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| | - Beth Calder
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
- Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Rob Dumas
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| | - Qing Jin
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| |
Collapse
|
2
|
Roy S, Malik B, Chawla R, Bora S, Ghosh T, Santhosh R, Thakur R, Sarkar P. Biocompatible film based on protein/polysaccharides combination for food packaging applications: A comprehensive review. Int J Biol Macromol 2024; 278:134658. [PMID: 39128751 DOI: 10.1016/j.ijbiomac.2024.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Protein and polysaccharides are the mostly used biopolymers for developing packaging film and their combination-based composite produced better quality film compared to their single counterpart. The combination of protein and polysaccharides are superior owing to the better physical properties like water resistance, mechanical and barrier properties of the film. The protein/polysaccharide-based composite film showed promising result in active and smart food packaging regime. This work discussed the recent advances on the different types of protein/polysaccharide combinations used for making bio-based sustainable packaging film formulation and further utilized in food packaging applications. The fabrication and properties of various protein/polysaccharide combination are comprehensively discussed. This review also presents the use of the multifunctional composite film in meat, fish, fruits, vegetables, milk products, and bakery products, etc. Developing composite is a promising approach to improve physical properties and practical applicability of packaging film. The low water resistance properties, mechanical performance, and barrier properties limit the real-time use of biopolymer-based packaging film. The combination of protein/polysaccharide can be one of the promising solutions to the biopolymer-based packaging and thus recently many works has been published which is suitable to preserve the shelf life of food as well trace the food spoilage during food storage.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bhawna Malik
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Rekha Chawla
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Susmita Bora
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - Tabli Ghosh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - R Santhosh
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rahul Thakur
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Wu H, Ma L, Li S, Wang J, Li T, Peng L, Li S, Li Q, Yuan X, Zhou M, Zhang Z, Liu Y. Sustained-release antibacterial gelatin films: Effects of diatomite/carvacrol complex on their structure, physicochemical and antibacterial properties. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Antimicrobial activity of oregano essential oil and resveratrol emulsions co-encapsulated by sodium caseinate with polysaccharides. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Effects of inducer type and concentration on the formation mechanism of W/O/W double emulsion gels. Food Chem 2022; 379:132166. [DOI: 10.1016/j.foodchem.2022.132166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/13/2023]
|
6
|
Hu M, Liu G, Zhang W, Du X, Qi B, Li Y. Co-encapsulation of (-)-epigallocatechin-3-gallate and quercetin in double emulsion hydrogel beads: Microstructures, functional properties, and digestion behaviors. Food Chem 2021; 373:131427. [PMID: 34710677 DOI: 10.1016/j.foodchem.2021.131427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Co-loaded (-)-epigallocatechin-3-gallate (EGCG) and quercetin double emulsions and hydrogel beads were prepared, and their structure, functions, and digestion characteristics were investigated. The double emulsion particles were adsorbed by the cross-linked chains of the hydrogel beads. The encapsulation efficiencies of EGCG and quercetin within the hydrogel beads were higher than those within the double emulsion, while the antioxidant activities of the double emulsions were higher than those of the hydrogel beads. A lower amount of free fatty acids (FFAs) was released from the hydrogel beads than that released from the double emulsions. The bioavailability of EGCG was higher in the hydrogel beads than those in the double emulsions, while the quercetin bioavailability was not significantly different expect for the ratio of 3:7. The hydrogel beads remained intact in the stomach; however, numerous oil spills occurred in the small intestine. These data may improve double-emulsion-based delivery systems for controlled lipolysis and the release of co-encapsulated hydrophilic and lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin 150028, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin 150028, China; Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150028, China.
| |
Collapse
|
7
|
Zhang Z, Hao G, Liu C, Fu J, Hu D, Rong J, Yang X. Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Res Int 2021; 147:110564. [PMID: 34399540 DOI: 10.1016/j.foodres.2021.110564] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Nanogel carriers are rapidly emerged as a major delivery strategy in the fields of food, biology and medicine for small particle size, excellent solubility, high loading, and controlled release. Natural polysaccharides and proteins are selected for the preparation of biocompatible, biodegradable, low toxic, and less immunogenic nanogels. Different polysaccharides and proteins form complex nanogels through different interaction forces (e.g., electrostatic interaction and hydrophobic interaction). The present review pursues three aims: 1) to introduce several well-known dietary polysaccharides (chitosan, dextran and alginate) and proteins (whey protein and lysozyme); 2) to discuss the types, preparation methods, chemical interactions and properties of various biocompatible complex carriers; 3) to present the application and prospect of polysaccharide-protein complex in bioactive ingredient delivery, nutrient encapsulation and flavor protection. We expect that the integration with nano-intelligent technology will improve the functional ingredient loading, recognition specificity and controlled release capabilities of polysaccharide-protein nanocomposites to generate new intelligent nanogels in the field of food industry in the future.
Collapse
Affiliation(s)
- Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Guoying Hao
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chen Liu
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Junqing Fu
- Shandong Institute for Food and Drug Control, Ji'nan, Shandong 250101, China
| | - Dan Hu
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
8
|
Huang Y, Lin J, Tang X, Wang Z, Yu S. Grape seed proanthocyanidin-loaded gel-like W/O/W emulsion stabilized by genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates: Fabrication, stability, and in vitro digestion. Int J Biol Macromol 2021; 186:759-769. [PMID: 34271051 DOI: 10.1016/j.ijbiomac.2021.07.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022]
Abstract
The present work aims to fabricate the genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates (G-AWC) to stabilize W/O/W emulsions for encapsulation and delivery of grape seed proanthocyanidins (GSP). After crosslinking reaction, the molecular weight was increased and surface hydrophobicity was decreased. Then, the G-AWC and polyglycerol polyricinoleate (PGPR, a lipophilic emulsifier) were employed to prepare a GSP-loaded W/O/W emulsion with the addition of gelatin and sucrose in W1 phase via a two-step procedure. Creamed emulsion could be fabricated at W1/O volume fraction (Φ) of 10%-70% and further increased Φ to 75% or even up to 90% could obtain gel-like emulsion with notably elastic behaviors. In the W1/O/W2 emulsion with Φ of 80%, the encapsulation efficiency (EE) of GSP reached up to 95.86%, and decreased by ca. 10% after a week of storage. Moreover, the encapsulated GSP in the emulsion showed a remarkably higher bioaccessibility (40.72%) compared to free GSP (13.11%) in the simulated gastrointestinal digestion. These results indicated that G-AWC-stabilized W/O/W emulsions could be an effective carrier to encapsulate water-soluble bioactive compounds with enhanced stability and bioaccessibility.
Collapse
Affiliation(s)
- Yaocheng Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangyi Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujuan Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
9
|
Huang H, Wang D, Belwal T, Dong L, Lu L, Zou Y, Li L, Xu Y, Luo Z. A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chem 2021; 356:129704. [PMID: 33831827 DOI: 10.1016/j.foodchem.2021.129704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
The postharvest senescence accompanied by yellowing limited the shelf-life of broccoli. In this study, we developed a novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil and applied it to broccoli for preservation. Results showed that double emulsion prepared by whey protein concentrate-high methoxyl pectin (1:3) exhibited best storage stability with largest particle size (581.30 nm), lowest PDI (0.23) and zeta potential (-40.31 mV). This double emulsion also exhibited highest encapsulation efficiency of brassinolide (92%) and cinnamon essential oil (88%). The broccoli coated with double emulsion maintained higher chlorophyll contents and activities of chlorophyllase and magnesium-dechelatase were reduced by 9% and 24%, respectively. The energy metabolic enzymes (SDH, CCO, H+-ATPase, Ca2+-ATPase) were also activated, inducing higher level of ATP and energy charge. These results demonstrated W/O/W double emulsion co-delivering brassinolide and cinnamon essential delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism.
Collapse
Affiliation(s)
- Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Di Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Li Dong
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ling Lu
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ying Zou
- Wenzhou Vocational College of Science and Technology, Wenzhou 325000, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
10
|
Das A, Das A, Basu A, Datta P, Gupta M, Mukherjee A. Newer guar gum ester/chicken feather keratin interact films for tissue engineering. Int J Biol Macromol 2021; 180:339-354. [PMID: 33711372 DOI: 10.1016/j.ijbiomac.2021.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/09/2023]
Abstract
This work intends to synthesis newer guar gum indole acetate ester and design film scaffolds based on protein-polysaccharide interactions for tissue engineering applications. Guar gum indole acetate(GGIA) was synthesized for the first time from guar gum in presence of aprotic solvent activated hofmeister ions. The newer biopolymer was fully characterized in FT-IR,13C NMR, XRD and TGA analysis. High DS (Degree of Substitution, DS = 0.61) GGIA was cross-linked with hydrolyzed keratin, extracted from chicken feather wastes. Films were synthesized from different biopolymer ratios and the surface chemistry appeared interesting. Physicochemical properties for GGIA-keratin association were notable. Fully bio-based films were non-cytotoxic and exhibited excellent biocompatibility for human dermal fibroblast cell cultivations. The film scaffold showed 63% porosity and the recorded tensile strength at break was 6.4 MPa. Furthermore, the standardised film exerted superior antimicrobial activity against both the Gram-positive and Gram-negative bacteria. MICs were recorded at 130 μg/mL and 212 μg/mL for E. coli and S. aureus respectively. In summary, GGIA-keratin film scaffolds represented promising platforms for skin tissue engineering applications.
Collapse
Affiliation(s)
- Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Aalok Basu
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India; Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Bidhannagar, Durgapur 713206, West Bengal, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Mradu Gupta
- Dravyaguna Department, Institute of Post Graduate Ayurvedic Education and Research, 294/3/1, A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Arup Mukherjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 721249, West Bengal, India.
| |
Collapse
|
11
|
Song X, Chen Y, Sun H, Liu X, Leng X. Physicochemical stability and functional properties of selenium nanoparticles stabilized by chitosan, carrageenan, and gum Arabic. Carbohydr Polym 2021; 255:117379. [DOI: 10.1016/j.carbpol.2020.117379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
|
12
|
Sahani S, Sharma YC. Advancements in applications of nanotechnology in global food industry. Food Chem 2020; 342:128318. [PMID: 33189478 DOI: 10.1016/j.foodchem.2020.128318] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022]
Abstract
Nanotechnology has several applications in food industry and it significantly helps in characterization, fabrication, and manipulation of nanostructures. The nanostructures improve the solubility of food ingredients in vivo, along with enhancement in their bioavailability and controlled release at the target site. These nanostructures also serve as anticaking agents, nano-additives, delivery systems for nutraceuticals, etc. Present study highlights different forms of nanoengineered structures applied in food nanotechnology to tune the characteristics of conventional food ingredients and their applications. Literature survey highlighted the application of various types of nanostructures in the food industry. The study focusses on recent advancements in preparation methods of nanostructures as food additives and packaging stuffs along with pros and cons of their application in food industry. The shortcomings associated to nanotechnology in food science have illustrated along with its tentative future perespective. The impact of eco-toxicity due to application of nanostructures has also been discussed based on recent observations. This can suppressed by the application of bioedible polymers instead of synthetic polymers.
Collapse
Affiliation(s)
- Shalini Sahani
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India.
| |
Collapse
|
13
|
Formation and Characterization of β-Lactoglobulin and Gum Arabic Complexes: the Role of pH. Molecules 2020; 25:molecules25173871. [PMID: 32854454 PMCID: PMC7504125 DOI: 10.3390/molecules25173871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/20/2022] Open
Abstract
Protein–polysaccharide complexes have received increasing attention as delivery systems to improve the stability and bioavailability of multiple bioactive compounds. However, deep and comprehensive understanding of the interactions between proteins and polysaccharides is still required for enhancing their loading efficiency and facilitating targeted delivery. In this study, we fabricated a type of protein–polysaccharide complexes using food-grade materials of β-lactoglobulin (β-Lg) and gum arabic (GA). The formation and characteristics of β-Lg–GA complexes were investigated by determining the influence of pH and other factors on their turbidity, zeta-potential, particle size and rheology. Results demonstrated that the β-Lg and GA suspension experienced four regimes including co-soluble polymers, soluble complexes, insoluble complexes and co-soluble polymers when the pH ranged from 1.2 to 7 and that β-Lg–GA complexes formed in large quantities at pH 4.2. An increased ratio of β-Lg in the mixtures was found to promote the formation of β-Lg and GA complexes, and the optimal β-Lg/GA ratio was found to be 2:1. The electrostatic interactions between the NH3+ group in β-Lg and the COO− group in GA were confirmed to be the main driving forces for the formation of β-Lg/GA complexes. The formed structure also resulted in enhanced thermal stability and viscosity. These findings provide critical implications for the application of β-lactoglobulin and gum arabic complexes in food research and industry.
Collapse
|
14
|
Sogut E. Fabrication of κ‐carrageenan and whey protein isolate‐based films reinforced with nanocellulose: optimization via RSM. J Appl Polym Sci 2020. [DOI: 10.1002/app.48902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ece Sogut
- Food Engineering DepartmentSuleyman Demirel University Isparta 32260 Turkey
| |
Collapse
|
15
|
Carboxymethylcellulose hybrid nanodispersions for edible coatings with potential anti-cancer properties. Int J Biol Macromol 2020; 157:350-358. [PMID: 32348862 DOI: 10.1016/j.ijbiomac.2020.04.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Curcumin loaded lipid-polymer hybrid nanoparticles dispersions were fabricated from carboxymethylcellulose, stearic acid, polyethylene glycol and sesame oil using emulsion solvent evaporation method for their possible application as edible coatings for fresh vegetables and fruits. They were characterized by FTIR and TEM analysis. In addition, anti-bacterial, blood compatibility, cytotoxicity and anticancer studies were also carried out. The prepared nanodispersions showed excellent mixed nanostructured morphology with an average size of 94.96 nm. The hybrid nanodispersions showed excellent blood compatibility, non-toxicity and antitumor activity. The synthesized nanoparticle dispersion was employed as an edible coating solution for fresh apples and tomatoes. The hybrid system coated vegetables and fruits shows minimal weight loss after 15 days of storage. Hence, the formulated hybrid nanostructures of CMC are promising as edible coating solution, in addition to possessing the properties to fight cancer.
Collapse
|
16
|
Selenium-Nanoparticles-Loaded Chitosan/Chitooligosaccharide Microparticles and Their Antioxidant Potential: A Chemical and In Vivo Investigation. Pharmaceutics 2020; 12:pharmaceutics12010043. [PMID: 31947874 PMCID: PMC7022253 DOI: 10.3390/pharmaceutics12010043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted attention due to their favorable properties, unique bioactivities, and potential for use in nutritional supplements and nanomedicine applications. However, the application of SeNPs in the clinic has been greatly hindered by their poor stability, and their potential to protect against alcohol-induced oxidative stress has not been fully investigated. Herein, SeNPs were synthesized in the presence of chitosan (CS) or chitooligosaccharide (COS), and a mixture of SeNPs, CS, and COS was spray-dried to prepare selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles (SeNPs-CS/COS-Ms). Their physicochemical properties, including morphology, elemental state, size distribution, surface potential, and characteristic structure, were investigated. The release of SeNPs from the vehicle and the free radical scavenging ability of SeNPs-CS/COS-Ms were also studied. Furthermore, the safety of SeNPs-CS/COS-Ms and their antioxidant activity against alcohol were evaluated in mice. The results indicate that SeNPs-CS/COS-Ms, with a novel structure characterized by their smooth or wrinkled surface, hollow core, and COS body filled with SeNPs-CS nanobeads, were able to release SeNPs and scavenge DPPH and superoxide anion radicals. SeNPs-CS/COS-Ms were found to be much safer than selenite, and they might protect mice from ethanol-induced oxidative stress by reducing lipid and protein oxidation and by boosting glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT). In conclusion, SeNPs-CS/COS-Ms offer a new way to develop stable SeNPs with higher efficacy and better biosafety, and the antioxidant potential of SeNPs-CS/COS-Ms against ethanol deserves further development.
Collapse
|
17
|
Controlling the rheological properties of W1/O/W2 multiple emulsions using osmotic swelling: Impact of WPI-pectin gelation in the internal and external aqueous phases. Colloids Surf B Biointerfaces 2020; 185:110629. [DOI: 10.1016/j.colsurfb.2019.110629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023]
|
18
|
Affiliation(s)
- Kambiz Sadeghi
- Department of Packaging, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Jongchul Seo
- Department of Packaging, Yonsei University, Wonju, Gangwon-do, South Korea
| |
Collapse
|
19
|
Weiss J, Salminen H, Moll P, Schmitt C. Use of molecular interactions and mesoscopic scale transitions to modulate protein-polysaccharide structures. Adv Colloid Interface Sci 2019; 271:101987. [PMID: 31325651 DOI: 10.1016/j.cis.2019.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Mixed protein-polysaccharide structures have found widespread applications in various fields, such as in foods, pharmaceuticals or personal care products. A better understanding and a more precise control over the molecular interactions between the two types of macromolecules leading to an engineering of nanoscale and colloidal building blocks have fueled the design of novel structures with improved functional properties. However, these building blocks often do not constitute the final matrix. Rather, further process operations are used to transform the initially formed structural entities into bulk matrices. Systematic knowledge on the relation between molecular structure design and subsequent mesoscopic scale transitions induced by processing is scarce. This article aims at establishing a connection between these two approaches. Therefore, it reviews not only studies on the underlying molecular interaction phenomena leading to either a segregative or associative phase behavior and nanoscale or colloidal structures, but also looks at the less systematically studied approach of using macroscopic processing operations such as shearing, heating, crosslinking, and concentrating/drying to transform the initially generated structures into bulk matrices. Thereby, a more comprehensive look is taken at the relationship between different influencing factors, namely solvent conditions (i.e. pH, ionic strength), biopolymer characteristics (i.e. type, charge density, mixing ratio, biopolymer concentration), and processing parameters (i.e. temperature, mechanical stresses, pressure) to generate bulk protein-polysaccharide matrices with different morphological features. The need for a combinatorial approach is then demonstrated by reviewing in detail current mixed protein-polysaccharide applications that increasingly make use of this. In the process, open scientific questions that will need to be addressed in the future are highlighted.
Collapse
Affiliation(s)
- Jochen Weiss
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Hanna Salminen
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Pascal Moll
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Christophe Schmitt
- Nestec Research, Nestlé Institute of Material Sciences, Department of Chemistry, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| |
Collapse
|
20
|
Chen X, McClements DJ, Wang J, Zou L, Deng S, Liu W, Yan C, Zhu Y, Cheng C, Liu C. Coencapsulation of (-)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3691-3699. [PMID: 29578697 DOI: 10.1021/acs.jafc.7b05161] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Particle-stabilized W1/O/W2 emulsion gels were fabricated using a two-step procedure: ( i) a W1/O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W1/O emulsion was then homogenized with another water phase (W2) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W1/O/W2 emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jian Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Sumeng Deng
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Chi Yan
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Yuqing Zhu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Ce Cheng
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| |
Collapse
|
21
|
Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int J Mol Sci 2018; 19:ijms19030705. [PMID: 29494548 PMCID: PMC5877566 DOI: 10.3390/ijms19030705] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/28/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022] Open
Abstract
Currently, nanotechnology represents an important tool and an efficient option for extending the shelf life of foods. Reducing particle size to nanometric scale gives materials distinct and improved properties compared to larger systems. For food applications, this technology allows the incorporation of hydrophilic and lipophilic substances with antimicrobial and antioxidant properties that can be released during storage periods to increase the shelf life of diverse products, including whole and fresh-cut fruits and vegetables, nuts, seeds, and cheese, among others. Edible coatings are usually prepared with natural polymers that are non-toxic, economical, and readily available. Nanosystems, in contrast, may also be prepared with biodegradable synthetic polymers, and liquid and solid lipids at room temperature. In this review, recent developments in the use of such nanosystems as nanoparticles, nanotubes, nanocomposites, and nanoemulsions, are discussed critically. The use of polymers as the support matrix for nanodispersions to form edible coatings for food preservation is also analyzed, but the central purpose of the article is to describe available information on nanosystems and their use in different food substrates to help formulators in their work.
Collapse
|
22
|
Preparation and characterization of antioxidant edible chitosan films incorporated with epigallocatechin gallate nanocapsules. Carbohydr Polym 2017; 171:300-306. [DOI: 10.1016/j.carbpol.2017.04.081] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/20/2022]
|
23
|
|
24
|
Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Adv Colloid Interface Sci 2017; 239:136-145. [PMID: 27296302 DOI: 10.1016/j.cis.2016.05.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Polysaccharide-protein complex coacervates are amongst the leading pair of biopolymer systems that has been used over the past decades for encapsulation of numerous active ingredients. Complex coacervation of polysaccharides and proteins has received increasing research interest for the practical application in encapsulation industry since the pioneering work of complex coacervation by Bungenburg de Jong and co-workers on the system of gelatin-acacia, a protein-polysaccharide system. Because of the versatility and numerous potential applications of these systems essentially in the fields of food, pharmaceutical, cosmetics and agriculture, there has been intense interest in recent years for both fundamental and applied studies. Precisely, the designing of the micronscale and nanoscale capsules for encapsulation and control over their properties for practical applications garners renewed interest. This review discusses on the overview of polysaccharide-protein complex coacervates and their use for the encapsulation of diverse active ingredients, designing and controlling of the capsules for delivery systems and developments in the area.
Collapse
|
25
|
Liu F, Avena-Bustillos RJ, Chiou BS, Li Y, Ma Y, Williams TG, Wood DF, McHugh TH, Zhong F. Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food Chem 2016; 212:138-45. [DOI: 10.1016/j.foodchem.2016.05.172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 01/20/2023]
|
27
|
Zhang C, Zhai X, Zhao G, Ren F, Leng X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr Polym 2015; 134:158-66. [DOI: 10.1016/j.carbpol.2015.07.065] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/12/2015] [Accepted: 07/19/2015] [Indexed: 01/08/2023]
|
28
|
Xu W, Jin W, Zhang C, Liang H, Shah BR, Li B. Environment induced self-aggregation behavior of κ-carrageenan/lysozyme complex. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Lam RSH, Nickerson MT. Effect of the biopolymer mixing ratio on the formation of electrostatically coupled whey protein-κ- and ι-carrageenan networks in the presence and absence of oil droplets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8730-8739. [PMID: 25101482 DOI: 10.1021/jf5023669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The rheological properties of 1.0% (w/w) whey protein isolate (WPI)-κ-/ι-carrageenan (CG) mixtures were investigated during a slow acidification process by glucono-δ-lactone from pH 7.00 to ∼4.20 as a function of biopolymer mixing ratio and in the presence and absence of oil droplets. In all cases, electrostatic coupled biopolymer and emulsion gel networks were formed at pH values corresponding to where attractive interactions between WPI and CG began. Formed WPI-CG complexes were found to be surface active, capable of lowering interfacial tension and forming viscoelastic interfacial films within emulsion-based systems. Both biopolymer and emulsion-based gels increased in strength and elasticity as the CG content increased, regardless of the type of CG present. However, WPI-ι-CG coupled networks were stronger than WPI-κ-CG networks, presumably due to the higher number of sulfate groups attracting the WPI molecules.
Collapse
Affiliation(s)
- Ricky S H Lam
- Department of Food and Bioproduct Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
| | | |
Collapse
|