1
|
Lowithun N, Sagis LMC, Lumdubwong N. Impact of Deformability and Rigidity of Starch Granules on Linear and Non-Linear Rheological Behavior of Waxy Rice Starch Gels and Applicability for Food End Uses. Foods 2024; 13:1864. [PMID: 38928806 PMCID: PMC11202675 DOI: 10.3390/foods13121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The objective of this study was to investigate granule size and distribution and deformability of granules and their effect on the rheological properties of waxy starch gels. Native (granular) waxy rice gels (10%) were prepared, and their response in oscillatory shear was investigated in the linear and non-linear viscoelastic regime. The results show the gels were mainly composed of aggregated and deformed swollen granules. Significance of granule size and its distribution, deformability of granules, and the molecular characteristics of amylopectin (AP) on storage modulus of those gels was demonstrated. A low degree of deformability of granules, typical for small granules with a broad size distribution and small molecular size of AP with short external chains, resulted in rigid and brittle gels. Highly deformed granules and high AP leachates, however, yielded soft gels. It was found that the transition of elastic to plastic behavior in the non-linear regime (LAOS) was gradual when AP had long external chains, but an abrupt transition was observed with the gel with short exterior chains of AP. Differences in rheological properties of cohesive waxy starch gels appear to be mainly impacted by the varying degrees of granule deformability and rigidity, which is further attributed to a combination of factors, including granule size, particle size distribution, molecular size, the external chain length of amylopectin (AP), and lipid content. The significance of this study is that it will assist the food industry in selecting suitable waxy rice starches to gain desired textural properties of end products.
Collapse
Affiliation(s)
- Ngamjit Lowithun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Leonard M. C. Sagis
- Laboratory of Physic and Physical Chemistry of Food, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Namfone Lumdubwong
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Liang C, Xu H, You H, Zhang O, Han Y, Li Q, Hu Y, Xiang X. Physicochemical properties and molecular mechanisms of different resistant starch subtypes in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1313640. [PMID: 38259949 PMCID: PMC10800921 DOI: 10.3389/fpls.2023.1313640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Resistant starch (RS) can help prevent diabetes and decrease calorie intake and that from plants are the main source of mankind consumption. Rice is many people's staple food and that with higher RS will help health management. A significantly positive correlation exists between apparent amylose content (AAC) of rice and its RS content. In this study, 72 accessions with moderate or high AAC were selected to explore the regulatory mechanisms and physicochemical properties on different proceeding types of rice RS. RS in raw milled rice (RSm), hot cooked rice (RSc), and retrogradation rice (RSr) showed a wide variation and distinct controlling mechanisms. They were co-regulated by Waxy (Wx), soluble starch synthase (SS) IIb and SSI. Besides that, RSm was also regulated by SSIIa and SSIVb, RSc by granule-bound starch synthase (GBSS) II and RSr by GBSSII and Pullulanase (PUL). Moreover, Wx had significant interactions with SSIIa, SSI, SSIIb and SSIVb on RSm, but only the dominant interactions with SSIIb and SSI on RSc and RSr. Wx was the key factor for the formation of RS, especially the RSc and RSr. The genes had the highest expression at 17 days after flowering and were beneficial for RS formation. The longer the chain length of starch, the higher the RS3 content. RSc and RSr were likely to be contained in medium-size starch granules. The findings favor understanding the biosynthesis of different subtypes of RS.
Collapse
Affiliation(s)
- Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Hui You
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Ouling Zhang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Yiman Han
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Qingyu Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Yungao Hu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| |
Collapse
|
3
|
Huang L, Liu Q. High-resistant starch crops for human health. Proc Natl Acad Sci U S A 2023; 120:e2305990120. [PMID: 37216520 PMCID: PMC10235962 DOI: 10.1073/pnas.2305990120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou225009, China
- Zhongshan Biological Breeding Laboratory, Nanjing210014, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou225009, China
- Zhongshan Biological Breeding Laboratory, Nanjing210014, China
| |
Collapse
|
4
|
Guo J, Wang Z, Qu L, Hao D, Lu D. Comparison of the physicochemical properties of starches from maize reciprocal F1 hybrids and their parental lines. Food Chem X 2023; 17:100561. [PMID: 36845522 PMCID: PMC9943765 DOI: 10.1016/j.fochx.2023.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Heterosis on maize yield and quality is highly variable and depends on parental selection. This study investigated and compared the starch structure and physicochemical properties among four sweet-waxy maize lines, four waxy maize lines, and their eight reciprocal F1 hybrids. Compared with the sweet-waxy maize, waxy maize and F1 hybrids had lower extent of branching of amylopectin and relative crystallinity, and larger starch granule size. Waxy maize starch had higher breakdown viscosity and retrogradation percentage, and lower setback viscosity and gelatinization enthalpy than the sweet-waxy maize starch. Meanwhile, the peak and setback viscosities, and retrogradation enthalpy of most F1 hybrid starches were higher than those of their female parent, while gelatinization enthalpy was the opposite. The F1 hybrid starches had higher onset temperature and retrogradation percentage and lower gelatinization enthalpy than their male parent in general. In conclusion, this study provides a framework for the production of new hybrids.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, PR China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
5
|
High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr Polym 2023; 299:120185. [PMID: 36876800 DOI: 10.1016/j.carbpol.2022.120185] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
High-amylose maize refers to a special type of maize cultivar with a 50 %-90 % amylose content of the total starch. High-amylose maize starch (HAMS) is of interest because it possesses unique functionalities and provides many health benefits for humans. Therefore, many high-amylose maize varieties have been developed via mutation or transgenic breeding approaches. From the literature reviewed, the fine structure of HAMS is different from the waxy and normal corn starches, influencing its gelatinization, retrogradation, solubility, swelling power, freeze-thaw stability, transparency, pasting and rheological properties, and even in vitro digestion. HAMS has undergone physical, chemical, and enzymatical modifications to enhance its characteristics and thereby broaden its possible uses. HAMS has also been used for the benefit of increasing resistant starch levels in food products. This review summarizes the recent developments in our understanding of the extraction and chemical composition, structure, physicochemical properties, digestibility, modifications, and industrial applications of HAMS.
Collapse
|
6
|
Effects of growth temperature on multi-scale structure of root tuber starch in sweet potato. Carbohydr Polym 2022; 298:120136. [DOI: 10.1016/j.carbpol.2022.120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022]
|
7
|
Fahy B, Gonzalez O, Savva GM, Ahn-Jarvis JH, Warren FJ, Dunn J, Lovegrove A, Hazard BA. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Sci Rep 2022; 12:10806. [PMID: 35752653 PMCID: PMC9233681 DOI: 10.1038/s41598-022-14995-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Starch synthase III plays a key role in starch biosynthesis and is highly expressed in developing wheat grains. To understand the contribution of SSIII to starch and grain properties, we developed wheat ssIIIa mutants in the elite cultivar Cadenza using in silico TILLING in a mutagenized population. SSIIIa protein was undetectable by immunoblot analysis in triple ssIIIa mutants carrying mutations in each homoeologous copy of ssIIIa (A, B and D). Loss of SSIIIa in triple mutants led to significant changes in starch phenotype including smaller A-type granules and altered granule morphology. Starch chain-length distributions of double and triple mutants indicated greater levels of amylose than sibling controls (33.8% of starch in triple mutants, and 29.3% in double mutants vs. 25.5% in sibling controls) and fewer long amylopectin chains. Wholemeal flour of triple mutants had more resistant starch (6.0% vs. 2.9% in sibling controls) and greater levels of non-starch polysaccharides; the grains appeared shrunken and weighed ~ 11% less than the sibling control which was partially explained by loss in starch content. Interestingly, our study revealed gene dosage effects which could be useful for fine-tuning starch properties in wheat breeding applications while minimizing impact on grain weight and quality.
Collapse
Affiliation(s)
| | - Oscar Gonzalez
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | - Frederick J Warren
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | | | - Brittany A Hazard
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
8
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
9
|
Sun L, Sun X, Du Y, Fang Y, Yang W, Hu Q, Pei F. Effect of the starch structure fermented by Lactobacillus plantarum LB-1 and yeast on rheological and thermomechanical characteristics of dough. Food Chem 2022; 369:130877. [PMID: 34455327 DOI: 10.1016/j.foodchem.2021.130877] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
This study focused on exploring the structural variations of starch co-fermented by Lactobacillus plantarum LB-1 and yeast (Saccharomyces cerevisiae), and the relationship between fermented starch structure and dough characteristics. Co-fermentation resulted in the increased short chain content and crystallinity (32.07%) of starch with lower molecular weight. A higher content of fingerprint A-chains of amylopectin and fingerprint B-chains of α, β-limited dextrin in the co-fermented starch endowed dough with excellent anti-retrogradation ability. Moreover, the co-fermented starch with higher swelling power (9.44 g/g) and solubility (20.40%) had a rough and irregular structure and many gaps in the appearance, which were conducive to binding water, thus promoting high dough elasticity and strength. These results extended the knowledge of starch structure-property relationship under the microbial activities, which may be beneficial to promote better flour products.
Collapse
Affiliation(s)
- Lei Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yifei Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Hu Y, Wang J, Chi M, Yang S, Lu D. Morphological, Structural, and Physicochemical Properties of Starch in Hybrids and Inbred Lines from Sweet–Waxy Maize. STARCH-STARKE 2021. [DOI: 10.1002/star.202100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of China Yangzhou University Yangzhou 225009 China
| | - Jun Wang
- Lianyungang Academy of Agricultural Sciences Lianyungang 222000 China
| | - Ming Chi
- Lianyungang Academy of Agricultural Sciences Lianyungang 222000 China
| | - Siling Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of China Yangzhou University Yangzhou 225009 China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of China Yangzhou University Yangzhou 225009 China
| |
Collapse
|
12
|
Li G, Hemar Y, Zhu F. Relationships between supramolecular organization and amylopectin fine structure of quinoa starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Starch physicochemical properties of double recessive sweet-waxy maize. Int J Biol Macromol 2021; 173:219-224. [PMID: 33482214 DOI: 10.1016/j.ijbiomac.2021.01.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
Sweet-waxy is a new type of maize with waxy and sugary double recessive genes. This study aims to clarify starch structural and functional properties of this maize type. Grains with sweet-waxy and waxy phenotypes were separated from an ear using the two sweet-waxy maize hybrids of ATN and NKY as materials. Compared with waxy maize starch, the sweet-waxy maize starch mainly comprises small-sized round granules despite the typical waxy character of both starches. Mw, Mn, and relative crystallinity of sweet-waxy starch were higher than those of waxy starch in both hybrids. The average chain length of waxy starch was higher in ATN but lower in NKY compared with that of sweet-waxy starch. However, polydispersity (Mw/Mn) and F1 fraction were high in sweet-waxy and waxy starches in ATN and NKY, respectively. Breakdown viscosity, gelatinization enthalpy and temperatures of both hybrids were low in sweet-waxy starch. Peak viscosity was higher in waxy starch in NKY and similar between sweet-waxy and waxy starches in ATN. Retrogradation percentage was high and low for sweet-waxy starches in ATN and NKY, respectively.
Collapse
|
14
|
Reyniers S, Ooms N, Gomand SV, Delcour JA. What makes starch from potato (Solanum tuberosumL.) tubers unique: A review. Compr Rev Food Sci Food Saf 2020; 19:2588-2612. [DOI: 10.1111/1541-4337.12596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| | - Sara V. Gomand
- Department of Agriculture and FisheriesGovernment of Flanders Brussels Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| |
Collapse
|
15
|
Vamadevan V, Bertoft E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105663] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Li G, Zhu F, Mo G, Hemar Y. Supramolecular structure of high hydrostatic pressure treated quinoa and maize starches. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
18
|
Xie Y, Barb AW, Hennen-Bierwagen TA, Myers AM. Direct Determination of the Site of Addition of Glucosyl Units to Maltooligosaccharide Acceptors Catalyzed by Maize Starch Synthase I. FRONTIERS IN PLANT SCIENCE 2018; 9:1252. [PMID: 30233610 PMCID: PMC6127246 DOI: 10.3389/fpls.2018.01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Starch synthase (SS) (ADP-glucose:1,4-α-D-glucan 4-α-D-glucosyltransferase) elongates α-(1→4)-linked linear glucans within plastids to generate the storage polymers that constitute starch granules. Multiple SS classes are conserved throughout the plant kingdom, indicating that each provides a unique function responsible for evolutionary selection. Evidence has been presented arguing for addition of glucosyl units from the ADPglucose donor to either the reducing end or the non-reducing end of the acceptor substrate, although until recently direct evidence addressing this question was not available. Characterization of newly incorporated glucosyl units determined that recombinant maize (Zea mays L.) SSIIa elongates its substrates at the non-reducing end. However, the possibility remained that other SSs might utilize distinct mechanisms, and that one or more of the conserved enzyme classes could elongate acceptors at the reducing end. This study characterized the reaction mechanism of recombinant maize SSI regarding its addition site. Newly incorporated residues were labeled with 13C, and reducing ends of the elongation products were labeled by chemical derivitization. Electrospray ionization-tandem mass spectroscopy traced the two parameters, i.e., the newly added residue and the reducing end. The results determined that SSI elongates glucans at the non-reducing end. The study also confirmed previous findings showing recombinant SSI can generate glucans of at least 25 units, that it is active using acceptors as short as maltotriose, that recombinant forms of the enzyme absolutely require an acceptor for activity, and that it is not saturable with maltooligosaccharide acceptor substrates.
Collapse
Affiliation(s)
- Ying Xie
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Adam W. Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Tracie A. Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Alan M. Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
|
20
|
Li D, Zhu F. Characterization of polymer chain fractions of kiwifruit starch. Food Chem 2018; 240:579-587. [DOI: 10.1016/j.foodchem.2017.07.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 11/26/2022]
|
21
|
Han W, Zhang B, Li J, Zhao S, Niu M, Jia C, Xiong S. Understanding the fine structure of intermediate materials of maize starches. Food Chem 2017; 233:450-456. [DOI: 10.1016/j.foodchem.2017.04.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 01/29/2023]
|
22
|
|
23
|
Abstract
Starch is a major food supply for humanity. It is produced in seeds, rhizomes, roots and tubers in the form of semi-crystalline granules with unique properties for each plant. Though the size and morphology of the granules is specific for each plant species, their internal structures have remarkably similar architecture, consisting of growth rings, blocklets, and crystalline and amorphous lamellae. The basic components of starch granules are two polyglucans, namely amylose and amylopectin. The molecular structure of amylose is comparatively simple as it consists of glucose residues connected through α-(1,4)-linkages to long chains with a few α-(1,6)-branches. Amylopectin, which is the major component, has the same basic structure, but it has considerably shorter chains and a lot of α-(1,6)-branches. This results in a very complex, three-dimensional structure, the nature of which remains uncertain. Several models of the amylopectin structure have been suggested through the years, and in this review two models are described, namely the “cluster model” and the “building block backbone model”. The structure of the starch granules is discussed in light of both models.
Collapse
|
24
|
Molecular structure of quinoa starch. Carbohydr Polym 2017; 158:124-132. [DOI: 10.1016/j.carbpol.2016.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
|
25
|
Zhu F, Bertoft E, Li G. Morphological, Thermal, and Rheological Properties of Starches from Maize Mutants Deficient in Starch Synthase III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6539-6545. [PMID: 27523327 DOI: 10.1021/acs.jafc.6b01265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were studied and compared with the wild type. SSIII deficiency reduced granule size of the starches from 16.7 to ∼11 μm (volume-weighted mean). Thermal analysis showed that SSIII deficiency decreased the enthalpy change of starch during gelatinization. Steady shear analysis showed that SSIII deficiency decreased the consistency coefficient and yield stress during steady shearing, whereas additional deficiency in granule-bound starch synthase (GBSS) increased these values. Dynamic oscillatory analysis showed that SSIII deficiency decreased G' at 90 °C during heating and increased it when the paste was cooled to 25 °C at 40 Hz during a frequency sweep. Additional GBSS deficiency further decreased the G'. Structural and compositional bases responsible for these changes in physical properties of the starches are discussed. This study highlighted the relationship between SSIII and some physicochemical properties of maize starch.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Eric Bertoft
- Department of Food Science and Nutrition, University of Minnesota , 1334 Eckles Avenue, St. Paul, Minnesota 55455, United States
| | - Guantian Li
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
26
|
Kong X, Chen Y, Zhu P, Sui Z, Corke H, Bao J. Relationships among Genetic, Structural, and Functional Properties of Rice Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6241-8. [PMID: 26083191 DOI: 10.1021/acs.jafc.5b02143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We determined the relationships among the structural properties, in vitro digestibility, and genetic factors in starches of 14 rice cultivars. Weight-based chain-length distributions in amylopectin ranged from 18.07% to 24.71% (fa, DP 6-12), 45.01% to 55.67% (fb1, DP 13-24), 12.72% to 14.05% (fb2, DP 25-36), and 10.80 to 20.72% (fb3, DP > 36), respectively. The contents of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) ranged from 78.5% to 87.5%, 1.2% to 6.0%, and 10.1% to 18.0%, respectively. AAC was negatively correlated with RDS content but positively correlated with RS content in rice starch. The proportion of short chains in amylopectin, i.e. the amount of fraction IIa (FrIIa) fractionated by gel permeation chromatography (GPC), was positively correlated with RDS. Starch synthase IIa (SSIIa) gene controlled the degree of crystallinity, the amount of fa chains of amylopectin. SSIIIa gene controlled the amount of fb1 chains. Wx gene controlled the FrI, FrIIa, RDS, and RS. Starch debranching enzyme isoamylase II (ISA2) gene also controlled the RDS, which may suggest that RDS was also affected by amylopectin structure, although no correlation between them was found. This study indicated that genetics (i.e., starch biosynthesis related genes) controlled the structural properties of starch, and both amylose content and amylopectin fine structure determined functional properties of rice starch (i.e., the digestion), each in a different way. Understanding the "genetics-structure-function" relationships in rice starches will assist plant breeders and food processors in developing new rice varieties and functional foods.
Collapse
Affiliation(s)
- Xiangli Kong
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Yaling Chen
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Ping Zhu
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Zhongquan Sui
- ‡Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Harold Corke
- §School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
- ∥Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jinsong Bao
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| |
Collapse
|
27
|
The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydr Polym 2015; 129:92-100. [PMID: 26050893 DOI: 10.1016/j.carbpol.2015.04.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022]
Abstract
The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes.
Collapse
|
28
|
Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases. Carbohydr Res 2015; 401:96-108. [DOI: 10.1016/j.carres.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
|
29
|
Zhu F, Bertoft E, Wang Y, Emes M, Tetlow I, Seetharaman K. Structure of Arabidopsis leaf starch is markedly altered following nocturnal degradation. Carbohydr Polym 2014; 117:1002-1013. [PMID: 25498728 DOI: 10.1016/j.carbpol.2014.09.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
Abstract
Little is known about the thermal properties and internal molecular structure of transitory starch. In this study, granule morphology, thermal properties, and the cluster structure of Arabidopsis leaf starch at beginning and end of the light period were explored. The structural properties of building blocks and clusters were evaluated by using diverse chromatographic techniques. On the granular level, starch from end of day had larger granule size, thinner crystalline lamellae thickness, lower free surface energy of crystals, and lower tendency to retrograde than that from end of night. On the molecular level, the starch had lower amylose content, larger cluster size, and higher number of blocks per cluster at the end of day than at end of night. It is concluded that the core of the granules contains a more permanent molecular and less-ordered physical structure different from the transitory layers laid down around the core at daytime.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Eric Bertoft
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St Paul, MN, USA
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael Emes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian Tetlow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Koushik Seetharaman
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St Paul, MN, USA
| |
Collapse
|
30
|
|
31
|
Zhu F, Bertoft E, Seetharaman K. Distribution of branches in whole starches from maize mutants deficient in starch synthase III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4577-4583. [PMID: 24684540 DOI: 10.1021/jf500697g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An earlier study explored the possibility of analyzing the distribution of branches directly in native, whole starch without isolating the amylopectin component. The aim of this study was to explore if this approach can be extended to include starch mutants. Whole starches from du1 maize mutants deficient in starch synthase III (SSIII) with amylose content of ∼30-40% were characterized and compared with the wild type of the common genetic background W64A. Clusters were produced from whole starch by hydrolysis with α-amylase of Bacillus amyloliquefaciens. Their compositions of building blocks and chains were analyzed further by complete α-amylolysis and by debranching, respectively, whereafter the products were subjected to gel permeation and anion exchange chromatography. The size and structure of the clusters were compared with those of their isolated amylopectin component. Whereas the whole starch of the wild type sample had a branched structure similar to that of its amylopectin component, the results showed that the du1 mutation resulted in more singly branched building blocks in the whole starch compared to the isolated amylopectin. This suggested that amylose and/or intermediate materials in whole du1 starches likely contributed to the composition of branches. This study explored an alternative procedure to characterize the composition of branches in the whole starch without fractionating the components.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
32
|
Waterschoot J, Gomand SV, Fierens E, Delcour JA. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. STARCH-STARKE 2014. [DOI: 10.1002/star.201300238] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmien Waterschoot
- Laboratory of Food Chemistry and Biochemistry; Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Leuven Belgium
| | - Sara V. Gomand
- Laboratory of Food Chemistry and Biochemistry; Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Leuven Belgium
| | - Ellen Fierens
- Laboratory of Food Chemistry and Biochemistry; Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Leuven Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry; Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Leuven Belgium
| |
Collapse
|
33
|
Zhu F, Bertoft E, Seetharaman K. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12345-12355. [PMID: 24229421 DOI: 10.1021/jf403865n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | | | | |
Collapse
|