1
|
Wu ZW, Huang HR, Liao SQ, Cai XS, Liu HM, Ma YX, Wang XD. Evaluation of Quality Properties of Brown Tigernut (Cyperus esculentus L.) Tubers from Six Major Growing Regions of China: A New Source of Vegetable Oil and Starch. J Oleo Sci 2024; 73:147-161. [PMID: 38311405 DOI: 10.5650/jos.ess23123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most β-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.
Collapse
Affiliation(s)
- Zhong-Wei Wu
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Hong-Rui Huang
- College of Food Science and Engineering, Henan University of Technology
| | - Shu-Qiang Liao
- College of Food Science and Engineering, Henan University of Technology
| | - Xiao-Shuang Cai
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Hua-Min Liu
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Yu-Xiang Ma
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| |
Collapse
|
2
|
Zhang X, Tang N, Jia X, Geng D, Cheng Y. Multi-Scale Comparison of Physicochemical Properties, Refined Structures, and Gel Characteristics of a Novel Native Wild Pea Starch with Commercial Pea and Mung Bean Starch. Foods 2023; 12:2513. [PMID: 37444251 DOI: 10.3390/foods12132513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In the present study, the morphology, refined structure, thermal properties, and dynamic rheological, texture, and digestive properties of common vetch starch, a potential new type of legume starch, were systematically investigated, and compared with commercially available pea and mung bean starch. The results showed that the composition and chemical structure of common vetch starch were similar to the pea and mung bean starch. However, the amylose content (35.69), A-chain proportion (37.62), and relative crystallinity (34.16) of common vetch starch were higher, and the particle size and molecular weight (44,042 kDa) were larger. The value of pasting properties and enthalpy change (ΔH) of gelatinization of common vetch starch was lower and higher than mung bean and pea starch, respectively, and a lower swelling power and pasting index indicate that common vetch starch had higher hot-paste and cold-paste stability. In addition, common vetch starch gel exhibited good rheology, cohesiveness, and anti-digestive properties. These results provide new insights into the broader application of common vetch starch.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Donghui Geng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Generating waxy rice starch with target type of amylopectin fine structure and gelatinization temperature by waxy gene editing. Carbohydr Polym 2023; 306:120595. [PMID: 36746586 DOI: 10.1016/j.carbpol.2023.120595] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Waxy rice, which lacks amylose, is an important variant in rice, and its starches have been widely used. New waxy rice varieties generated via the CRISPR/Cas9 gene-editing system is described. Herein, four waxy rice starches with different physicochemical properties were successfully obtained by the CRISPR/Cas9 editing Waxy (Wx) gene. The results showed that the amylose content (AC) of wx mutant starches ranged from 0.26 to 1.78 %, and CZBwx1 starches had the best gel consistency and highest water solubility among all wx mutants. Mutations of Wxb allele produced more short-chains (degree of chain polymerization (DP) 6-11), and less medium- and long-chains (DP12-70) than that of Wxa, while the AC of Wxa allele mutants was higher than the mutations of Wxb allele. The gelatinization temperature (GT) of wxa mutant starches was higher than that of wxb mutant starches. Moreover, we found that the GT and amylopectin fine structure type of waxy rice starch did not change after Wx gene editing. Based on these findings, it is possible to produce waxy rice starch with different physicochemical properties, containing target GT and chain length distributions of amylopectin.
Collapse
|
4
|
Physical and 3D Printing Properties of Arrowroot Starch Gels. Foods 2022; 11:foods11142140. [PMID: 35885383 PMCID: PMC9317205 DOI: 10.3390/foods11142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
This paper aims to investigate the physical and 3D printing properties of arrowroot starch (AS), a natural biopolymer with many potential health benefits. Scanning electron microscopy images showed that AS granules had mixed spherical and elongated geometries, with average sizes of 10.5 ± 2.5 μm. The molecular weight of AS measured by gel permeation chromatography (GPC) was 3.24 × 107 g/mol, and the amylose/amylopectin ratio of AS was approximately 4:11. AS has an A-type crystal structure, with a gelatinization temperature of 71.8 ± 0.2 °C. The overlap concentration (C*) of AS in aqueous solutions was 0.42% (w/v). Temperature-dependent dynamic rheological analyses of 10% to 30% (w/v) AS fluids showed that the storage modulus (G’) reached the maximum values around the gelatinization temperatures, while the yield stress (τy) and flow stress (τf) values all increased with the increase in AS concentration. The printing accuracy of AS gels was found to be associated with the interplay between the G’ values and the restorability after extrusion, determined by the three-interval thixotropy tests (3ITT). The optimum 3D printing condition occurred at 20% (w/v) AS, the nozzle diameter of 0.60 mm, the printing speed of 100 mm/s and the extrusion speed of 100 mm/s. Our research provides a promising biopolymer to be used in the design of novel personalized functional foods.
Collapse
|
5
|
Richter JK, Gu BJ, Ek P, Dey D, Saunders SR, Ganjyal GM. Potential interactions between starch and fruit pomace may impact the expansion ratio of direct expanded extrudates. J Food Sci 2022; 87:3513-3527. [PMID: 35822450 DOI: 10.1111/1750-3841.16240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Due to their dense characteristics, direct-expanded products fortified with insoluble fiber are generally not well accepted. Understanding the interactions between starch and fiber could help to effectively choose and modify ingredients to produce products containing high amounts of fiber. Therefore, this study aims to explain the interplay between two starches (native and waxy corn) and two pomace types (blueberry and cranberry). Blends up to 100% of pomace were extruded using a co-rotating twin-screw extruder. Raw material and milled extrudates were analyzed for their pasting and hydration properties. Fourier-transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy were conducted to observe molecular changes. The expansion ratio (ER) significantly decreased as pomace was added and ranged from 3.85 for pure waxy corn starch to approximately 1 for blends that contained 80% pomace. Distinctions between the blends were observed. Particularly, at 20% of pomace inclusion, native corn starch with cranberry pomace showed a significantly higher ER. Different behaviors were also detected during the physicochemical analyses. A nonlinear trend between pomace level and water solubility as well as absorption was observed for native corn starch blends, suggesting that molecular interactions between the biopolymers occur. FTIR and NMR results give no evidence for new covalent bonds; hence, the most likely interactions occurring are hydrogen bonds. In addition to the dilution effect of pomace addition, the enhancement or weakening of such interactions between starch molecules by pomace compounds may reduce the ER.
Collapse
Affiliation(s)
- Jana K Richter
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Bon-Jae Gu
- School of Food Science, Washington State University, Pullman, Washington, USA.,Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Pichmony Ek
- School of Food Science, Washington State University, Pullman, Washington, USA.,Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Debomitra Dey
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Steven R Saunders
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Fu Y, Luo T, Hua Y, Yan X, Liu X, Liu Y, Liu Y, Zhang B, Liu R, Zhu Z, Zhu J. Assessment of the Characteristics of Waxy Rice Mutants Generated by CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2022; 13:881964. [PMID: 35755680 PMCID: PMC9226628 DOI: 10.3389/fpls.2022.881964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The cooking and eating quality of rice grains is a major focus from a consumer's perspective and is mainly determined by the apparent amylose content (AAC) of the starch. Waxy rice, a type of rice with an AAC of less than 2%, is an important goal for the breeding of high-quality rice. In recent years, the cloning of the Waxy (Wx) gene has revealed the molecular mechanism of the formation of waxy traits in rice. However, there have been limited studies on the physicochemical properties, such as gelatinization temperature, rapid viscosity analyzer profile, and amylopectin fine structure of wx mutants. In the current study, a rapid and highly efficient strategy was developed through the CRISPR/Cas9 gene-editing system for generating wx mutants in the background of five different rice varieties. The wx mutation significantly reduced the AAC and starch viscosity but did not affect the major agronomic traits (such as plant height, panicle number per plant, grain number per panicle, and seed-setting frequency). Incorporation of the wx mutation into varieties with low initial AAC levels resulted in further reduction in AAC, but without significantly affecting the original, desirable gelatinization traits and amylopectin structure types, suggesting that parents with low initial AAC should be preferred in breeding programs.
Collapse
Affiliation(s)
- Yuhao Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Luo
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yonghuan Hua
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xuehai Yan
- Leshan Municipal Bureau of Agriculture and Rural Affairs, Leshan, China
| | - Xu Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Baoli Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Zizhong Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Okamoto Y, Ono M, Nakamura Y, Seki M. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava. PLANT MOLECULAR BIOLOGY 2022; 108:413-427. [PMID: 34767147 DOI: 10.1007/s11103-021-01209-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Suppression of starch branching enzymes 1 and 2 in cassava leads to increased resistant starch content through the production of high-amylose and modification of the amylopectin structure. Cassava (Manihot esculenta Crantz) is a starchy root crop used for human consumption as a staple food and industrial applications. Starch is synthesized by various isoforms of several enzymes. However, the function of starch branching enzymes (SBEs) in starch biosynthesis and mechanisms of starch regulation in cassava have not been understood well. In this study, we aimed to suppress the expression of SBEs in cassava to generate starches with a range of distinct properties, in addition to verifying the functional characteristics of the SBEs. One SBE1, two SBE2, and one SBE3 genes were classified by phylogenetic analysis and amino acid alignment. Quantitative real-time RT-PCR revealed tissue-specific expression of SBE genes in the tuberous roots and leaves of cassava. We introduced RNAi constructs containing fragments of SBE1, SBE2, or both genes into cassava by Agrobacterium-mediated transformation, and assessed enzymatic activity of SBE using tuberous roots and leaves from these transgenic plants. Simultaneous suppression of SBE1 and SBE2 rendered an extreme starch phenotype compared to suppression of SBE2 alone. Degree of polymerization of 6-13 chains in amylopectin was markedly reduced by suppression of both SBE1 and SBE2 in comparison to the SBE2 suppression; however, no change in chain-length profiles was observed in the SBE1 suppression alone. The role of SBE1 and SBE2 may have functional overlap in the storage tissue of cassava. Simultaneous suppression of SBE1 and SBE2 resulted in highly resistant starch with increased apparent amylose content compared to suppression of SBE2 alone. This study provides valuable information for understanding starch biosynthesis and suggests targets for altering starch quality.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshie Okamoto
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Ono
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
8
|
Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice. Foods 2021; 10:foods10112562. [PMID: 34828843 PMCID: PMC8622339 DOI: 10.3390/foods10112562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A novel rice germplasm sbeIIb/Lgc1 producing grains rich in resistant starch (RS) but low in glutelin has been developed through CRISPR/Cas9-mediated targeted mutagenesis for its potential benefits to patients with diabetes and kidney diseases. In this study, a hydrothermal approach known as heat-moisture treatment (HMT) was identified as a simple and effective method in reinforcing the nutritional benefits of sbeIIb/Lgc1 rice. As a result of HMT treatment at 120 °C for 2 h, significant reductions in in vitro digestibility and enhancements in RS content were observed in sbeIIb/Lgc1 rice flour when the rice flour mass fraction was 80% and 90%. The low-glutelin feature of sbeIIb/Lgc1 rice was not compromised by HMT. The potential impacts of HMT on a range of physicochemical properties of sbeIIb/Lgc1 rice flour have also been analyzed. HMT resulted in a darker color of rice flour, alteration in the semi-crystalline structure, an increase in gelatinization temperatures, and reductions in the pasting viscosities as the moisture content increased. This study provides vital data for the food industry to facilitate the application of this dual-functional rice flour as a health food ingredient.
Collapse
|
9
|
Zhang Y, Zhao X, Bao X, Xiao J, Liu H. Effects of pectin and heat-moisture treatment on structural characteristics and physicochemical properties of corn starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106664] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zhong Y, Li Y, Qu J, Zhang X, Seytahmetovna SA, Blennow A, Guo D. Structural features of five types of maize starch granule subgroups sorted by flow cytometry. Food Chem 2021; 356:129657. [PMID: 33836359 DOI: 10.1016/j.foodchem.2021.129657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 01/21/2023]
Abstract
Subgroups of starch granules from five maize phenotypes including waxy-, normal-, popcorn-, sweet corn- and high-amylose maize were sorted by flow cytometry (FC) utilizing the side scatter channel (SSC) and forward scatter channel (FSC). SSC and FSC mainly reflecting internal object complexity, and object size, respectively. Subgroups with higher FSC signal always showed higher SSC signal, indicating larger granules exhibited higher internal structural complexity. Wide-angle and small-angle X-ray scattering analysis showed that the subgroups showing high SSC signal intensity also had high lamellar scattering intensity, and low crystallinity. Vibrational transitions of bonds analyzed by Fourier Transform Infrared Spectroscopy (FT-IR) showed that the subgroups of maize starches, except sweet corn starch, with high SSC signal had high intensities at 1045 and 1022 cm-1. Hence, our data demonstrate that the structural complexity detected by the SSC signal is mainly associated with lamellar and crystalline features of starch granules.
Collapse
Affiliation(s)
- Yuyue Zhong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling Shaanxi 712100, China; Department of Environmental and Plant Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yibo Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Xudong Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling Shaanxi 712100, China
| | | | - Andreas Blennow
- Department of Environmental and Plant Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling Shaanxi 712100, China.
| |
Collapse
|
11
|
Nakamura Y, Ono M, Hatta T, Kainuma K, Yashiro K, Matsuba G, Matsubara A, Miyazato A, Mizutani G. Effects of BEIIb-Deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-Type Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:571346. [PMID: 33312184 DOI: 10.3389/fpls.2020.571346.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null be2b mutant called amylose-extender (ae) mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of japonica rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin. These differences in the cluster structure of amylopectin between Kinmaze and EM10 endosperm were considered to be responsible for the differences in the A-type and B-type crystalline structures of starch granules between Kinmaze and EM10, respectively. The changes in internal structure of starch granules caused by BEIIb were analyzed by wide angle X-ray diffraction, small-angle X-ray scattering, solid state 13C NMR, and optical sum frequency generation spectroscopy. It was noted that the size the amylopectin cluster in ae endosperm (approximately 8.24 nm) was significantly smaller than that in WT endosperm (approximately 8.81 nm). Based on the present results, we proposed a model for the cluster structure of amylopectin in WT and ae mutant of rice endosperm. We also hypothesized the role of BEIIa in amylopectin biosynthesis in culm where BEIIb was not expressed and instead BEIIa was the major BE component in WT of rice.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd., Akita Prefectural University, Akita, Japan
- Akita Natural Science Laboratory, Katagami, Japan
| | - Masami Ono
- Akita Natural Science Laboratory, Katagami, Japan
| | - Tamao Hatta
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi, Japan
| | | | - Kazuki Yashiro
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Akira Matsubara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Akio Miyazato
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Goro Mizutani
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
12
|
Guo D, Ling X, Zhou X, Li X, Wang J, Qiu S, Yang Y, Zhang B. Evaluation of the Quality of a High-Resistant Starch and Low-Glutelin Rice ( Oryza sativa L.) Generated through CRISPR/Cas9-Mediated Targeted Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9733-9742. [PMID: 32786832 DOI: 10.1021/acs.jafc.0c02995] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A high-resistant starch (RS) and low-glutelin diet is beneficial for the health of patients with diabetes and kidney diseases. Rice is an important food crop worldwide. Previous studies have demonstrated that downregulating the expression of rice starch branching enzyme IIb (SBEIIb) affected the composition and the structure of starch. However, there has been no report about generating the loss-of-function mutants of SBEIIb using low-glutelin rice cultivars as recipients. In this study, we adopted a CRISPR/Cas9 system to induce site-specific mutations at the SBEIIb locus in an elite low-glutelin japonica rice cultivar derived from Low Glutelin Content-1 (LGC-1) and successfully obtained two independent transgene-free sbeIIb/Lgc1 mutant lines. In the mutant lines, the apparent amylose content (AAC) was increased by approximately 1.8-fold and the RS content reached approximately 6%. The glutelin content was approximately 2%, maintaining the low-glutelin trait of the recipient cultivar. The formation mechanism of RS was explored by analyzing the fine structures and the properties of starch. According to the X-ray diffraction pattern and the increased lipid content, the high RS content of the sbeIIb/Lgc1 lines was attributed to the increased content of amylose-lipid complex. Further analyses of the nutritional quality revealed that the soluble sugar and lipid contents, especially sucrose and unsaturated fatty acids, increased in the sbeIIb/Lgc1 lines significantly. This research is expected to facilitate the cultivation and the application of functional rice suitable for patients with diabetes and kidney diseases.
Collapse
Affiliation(s)
- Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogeng Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Li
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shi Qiu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Effects of various oil extraction methods on the gelatinization and retrogradation properties of starches isolated from tigernut (Cyperus esculentus) tuber meals. Int J Biol Macromol 2020; 156:144-152. [PMID: 32251750 DOI: 10.1016/j.ijbiomac.2020.03.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/29/2023]
Abstract
Gelatinization and retrogradation characteristics of starches from tigernut (Cyperus esculentus) tuber before and after various oil extraction processes were studied in this investigation. The results indicated that starches isolated from tigernut tuber after the various oil extraction processes varied significantly in gelatinization and retrogradation properties. The starches isolated from the cakes of tigernut tuber after hot press extraction exhibited higher retrogradation tendency and relatively less shear-thinning than other starch samples. The results of FT-IR, XRD, and NMR analysis indicated that oil extraction had an unfavorable influence on starch retrogradation, which may be due to structural changes caused by oil extraction processes. In particular, oil extraction led to more efficient packing of double helices in the crystalline lamella of the starches during storage. Retrogradation of the starch gels also reduced the water holding capacities of the starches. The starch sample isolated from the cake after cold press extraction exhibited the highest water absorption capacity among the five samples for all storage times. This investigation provides valuable novel information for the industrial utilization of tigernut tuber starches isolated from meals and cakes after oil extraction.
Collapse
|
14
|
He W, Liu X, Lin L, Xu A, Hao D, Wei C. The defective effect of starch branching enzyme IIb from weak to strong induces the formation of biphasic starch granules in amylose-extender maize endosperm. PLANT MOLECULAR BIOLOGY 2020; 103:355-371. [PMID: 32193789 DOI: 10.1007/s11103-020-00998-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 05/07/2023]
Abstract
Biphasic starch granules in maize ae mutant underwent the weak to strong SBEIIb-defective effect during endosperm development, leading to no birefringence in their exterior due to extended long branch-chains of amylopectin. Biphasic starch granules are usually detected regionally in cereal endosperm lacking starch branching enzyme (SBE). However, their molecular structure, formation mechanism, and regional distribution are unclear. In this research, biphasic starch granules were observed in the inner region of crown endosperm of maize ae mutant, and had poorly oriented structure with comb-like profiles in their exterior. The inner endosperm (IE) rich in biphasic starch granules and outer endosperm (OE) without biphasic starch granules were investigated. The starch had lower amylose content and higher proportion of long branch-chains of amylopectin in IE than in OE, and the exterior of biphasic starch granules had less amylose and more long branch-chains of amylopectin than the interior. Compared with OE, the expression pattern of starch synthesis related enzymes changed significantly in IE. The granule-bound starch synthase I activity within biphasic starch granules decreased slightly. The IE experienced more severe hypoxic stress than OE, and the up-regulated anaerobic respiration pathway indicated an increase in carbon consumption. The starch in IE underwent the SBEIIb-defective effect from weak to strong due to the lack of sufficient carbon inflow, leading to the formation of biphasic starch granules and their regional distribution in endosperm. The results provided information for understanding the biphasic starch granules.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiangguo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, 130033, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ahui Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dongyun Hao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, 130033, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Nakamura Y, Ono M, Hatta T, Kainuma K, Yashiro K, Matsuba G, Matsubara A, Miyazato A, Mizutani G. Effects of BEIIb-Deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-Type Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:571346. [PMID: 33312184 PMCID: PMC7704622 DOI: 10.3389/fpls.2020.571346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 05/04/2023]
Abstract
It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null be2b mutant called amylose-extender (ae) mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of japonica rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin. These differences in the cluster structure of amylopectin between Kinmaze and EM10 endosperm were considered to be responsible for the differences in the A-type and B-type crystalline structures of starch granules between Kinmaze and EM10, respectively. The changes in internal structure of starch granules caused by BEIIb were analyzed by wide angle X-ray diffraction, small-angle X-ray scattering, solid state 13C NMR, and optical sum frequency generation spectroscopy. It was noted that the size the amylopectin cluster in ae endosperm (approximately 8.24 nm) was significantly smaller than that in WT endosperm (approximately 8.81 nm). Based on the present results, we proposed a model for the cluster structure of amylopectin in WT and ae mutant of rice endosperm. We also hypothesized the role of BEIIa in amylopectin biosynthesis in culm where BEIIb was not expressed and instead BEIIa was the major BE component in WT of rice.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd., Akita Prefectural University, Akita, Japan
- Akita Natural Science Laboratory, Katagami, Japan
- *Correspondence: Yasunori Nakamura,
| | - Masami Ono
- Akita Natural Science Laboratory, Katagami, Japan
| | - Tamao Hatta
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi, Japan
| | | | - Kazuki Yashiro
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Akira Matsubara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Akio Miyazato
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Goro Mizutani
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
16
|
Lin L, Huang J, Zhang L, Liu Q, Wei C. Effects of inhibition of starch branching enzymes on starch ordered structure and component accumulation in developing kernels of rice. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnol Adv 2019; 37:107422. [DOI: 10.1016/j.biotechadv.2019.107422] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023]
|
18
|
Lin L, Huang J, Zhang L, Zhang C, Liu Q, Wei C. Effects of inhibiting starch branching enzymes on molecular and crystalline structures of starches from endosperm different regions in rice. Food Chem 2019; 301:125271. [DOI: 10.1016/j.foodchem.2019.125271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
|
19
|
Zhang L, Zhao L, Zhang J, Cai X, Liu Q, Wei C. Relationships between transparency, amylose content, starch cavity, and moisture of brown rice kernels. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Xu J, Ma Z, Ren N, Li X, Liu L, Hu X. Understanding the multi-scale structural changes in starch and its physicochemical properties during the processing of chickpea, navy bean, and yellow field pea seeds. Food Chem 2019; 289:582-590. [PMID: 30955652 DOI: 10.1016/j.foodchem.2019.03.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
This study aimed to isolate starch from three types of untreated and autoclaved pulse seeds including chickpea, navy bean, and yellow field pea and to characterize their multi-scale structure and the associated physicochemical properties. Autoclaving of pulse seeds tended to significantly decrease the relative crystallinity, the Mw value, and degree of order of starch samples measured by X-ray diffraction, size exclusion chromatography, and FT-IR. Simultaneously, double helix content, and degree of double helix obtained from solid-state 13CNMR and FT-IR were relatively higher (P < 0.05) for autoclaved pulse seeds than their native counterparts. The structural characteristics also corroborated well with the obtained results of resistant starch content, gelatinization behavior, swelling power, solubility, and bile acid binding capacity. This research gave insights into the structural characteristics of starch from pulses and their changes that occurred following processing of seeds, aiming to provide information for the future study on their processing-structure-function relationship.
Collapse
Affiliation(s)
- Jiangbin Xu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Namei Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
21
|
Anacleto R, Badoni S, Parween S, Butardo VM, Misra G, Cuevas RP, Kuhlmann M, Trinidad TP, Mallillin AC, Acuin C, Bird AR, Morell MK, Sreenivasulu N. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1261-1275. [PMID: 30549178 PMCID: PMC6575982 DOI: 10.1111/pbi.13051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 11/15/2018] [Accepted: 11/25/2018] [Indexed: 05/19/2023]
Abstract
Reliably generating rice varieties with low glycaemic index (GI) is an important nutritional intervention given the high rates of Type II diabetes incidences in Asia where rice is staple diet. We integrated a genome-wide association study (GWAS) with a transcriptome-wide association study (TWAS) to determine the genetic basis of the GI in rice. GWAS utilized 305 re-sequenced diverse indica panel comprising ~2.4 million single nucleotide polymorphisms (SNPs) enriched in genic regions. A novel association signal was detected at a synonymous SNP in exon 2 of LOC_Os05g03600 for intermediate-to-high GI phenotypic variation. Another major hotspot region was predicted for contributing intermediate-to-high GI variation, involves 26 genes on chromosome 6 (GI6.1). These set of genes included GBSSI, two hydrolase genes, genes involved in signalling and chromatin modification. The TWAS and methylome sequencing data revealed cis-acting functionally relevant genetic variants with differential methylation patterns in the hot spot GI6.1 region, narrowing the target to 13 genes. Conversely, the promoter region of GBSSI and its alternative splicing allele (G allele of Wxa ) explained the intermediate-to-high GI variation. A SNP (C˃T) at exon-10 was also highlighted in the preceding analyses to influence final viscosity (FV), which is independent of amylose content/GI. The low GI line with GC haplotype confirmed soft texture, while other two low GI lines with GT haplotype were characterized as hard and cohesive. The low GI lines were further confirmed through clinical in vivo studies. Gene regulatory network analysis highlighted the role of the non-starch polysaccharide pathway in lowering GI.
Collapse
Affiliation(s)
| | - Saurabh Badoni
- International Rice Research InstituteLos BañosPhilippines
| | - Sabiha Parween
- International Rice Research InstituteLos BañosPhilippines
| | - Vito M. Butardo
- International Rice Research InstituteLos BañosPhilippines
- Department of Chemistry and BiotechnologyFaculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornVic.Australia
| | - Gopal Misra
- International Rice Research InstituteLos BañosPhilippines
| | | | - Markus Kuhlmann
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | | | | | - Cecilia Acuin
- International Rice Research InstituteLos BañosPhilippines
| | | | | | | |
Collapse
|
22
|
Lin L, Pan T, Liu Q, Wei C. Cooking, morphological, mechanical and digestion properties of cooked rice with suppression of starch branching enzymes. Int J Biol Macromol 2019; 137:187-196. [PMID: 31255622 DOI: 10.1016/j.ijbiomac.2019.06.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Kernel components and some physicochemical properties of cooked rice were investigated and compared between a popular japonica rice Wu-xiang 9915 (WX) and its transgenic line (WX-SBEI/IIb-) with suppression of starch branching enzyme I/IIb. The starch content, especially amylopectin content, was significantly lower in WX-SBEI/IIb- than in WX. Brown rice flour had markedly higher gelatinization temperature in WX-SBEI/IIb- than in WX. The cooked kernels of WX-SBEI/IIb- had significantly lower volume swelling, leached material amount and wet weight than those of WX during cooking. Starch granules in WX kernel could be gelatinized completely and gradually from the exterior to the interior of endosperm, leading to breakage of cooked kernels. However, aggregate, elongated and small starch granules in the exterior of WX-SBEI/IIb- endosperm could not be gelatinized completely and remained their morphologies during cooking, leading to a high resistance of kernels to cooking. Brown rice flour of WX-SBEI/IIb- had significantly lower pasting viscosities, storage modulus and loss modulus but higher loss angle tangent than that of WX. The cooked kernels of WX-SBEI/IIb- had considerably higher hardness, springiness and cohesiveness but lower adhesiveness than those of WX. The starch in cooked kernels was more resistant to digestion in WX-SBEI/IIb- than in WX.
Collapse
Affiliation(s)
- Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ting Pan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Lin L, Guo K, Zhang L, Zhang C, Liu Q, Wei C. Effects of molecular compositions on crystalline structure and functional properties of rice starches with different amylopectin extra-long chains. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
He W, Lin L, Wang J, Zhang L, Liu Q, Wei C. Inhibition of starch branching enzymes in waxy rice increases the proportion of long branch-chains of amylopectin resulting in the comb-like profiles of starch granules. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:177-187. [PMID: 30466583 DOI: 10.1016/j.plantsci.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/10/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Starches with comb-like profiles have been detected in some cereal endosperms with inhibiting expression of starch branching enzyme (SBE). Although amylose is considered to be an important factor in the formation of the comb-like profile, the details remain unclear. In this study, a transgenic rice line (GLXN-SBEI/IIb-) was derived from japonica waxy rice cultivar Guang-ling-xiang-nuo (GLXN) through antisense RNA inhibition of both SBEI and SBEIIb. The expression and activity of SBEI, SBEIIb and SBEIIa were declined. The GLXN-SBEI/IIb- endosperm contained large and small starch granules, and these starch granules had the comb-like profiles. The comb-like profiles of starches were detected in GLXN-SBEI/IIb- endosperm after 10 days after flowering with gradually increasing proportion of long branch-chains of amylopectin. The long branch-chains of amylopectin were responsible for forming the comb-like profiles at the outer region of starch granules. The gradually decreasing expression of SBEs influenced the synthesis of amylopectin during endosperm development, resulting in different structure between the inner and outer regions of starch granules from GLXN-SBEI/IIb- endosperm. The above results indicated that the long branch-chains of amylopectin, not amylose, led to the formation of comb-like profiles of starch granules in cereal crops with inhibiting expression of SBEs.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
25
|
In situ Degradation and Characterization of Endosperm Starch in Waxy Rice with the Inhibition of Starch Branching Enzymes during Seedling Growth. Int J Mol Sci 2018; 19:ijms19113397. [PMID: 30380735 PMCID: PMC6274872 DOI: 10.3390/ijms19113397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
High-resistant starch cereal crops with the inhibition of the starch branching enzyme (SBE) have been widely studied. However, the effects of the inhibition of SBE on waxy cereal crops are unclear. A transgenic rice line (GTR) derived from a japonica waxy rice cultivar Guang-ling-xiang-nuo (GLXN) has been developed through antisense RNA inhibition of both SBEI and SBEIIb. In this study, GLXN and GTR were cultivated in the dark only in deionized H2O, and their shoot and root growth, starch in situ degradation, and starch property changes were investigated during seedling growth. Compared with GLXN, GTR showed a significantly slow seedling growth, which was not due to the embryo size and vitality. The slow degradation of starch in the seed restrained the seedling growth. GLXN starch was completely degraded gradually from the proximal to distal region of the embryo and from the outer to inner region in the endosperm, but GTR starch in the peripheral region of the endosperm was not completely degraded, and the starch residual was located in the outside of the compound starch though its degradation pattern was similar to GLXN. During seedling growth, GLXN starch had the same A-type crystallinity and a similar ordered structure, but the crystallinity changed from the CA-type to B-type and the ordered structure gradually increased in the GTR starch. The above results indicated that GTR had a heterogeneous starch distributed regionally in the endosperm. The starch in the peripheral region of the endosperm had a B-type crystallinity, which was located in the outside of the compound starch and significantly increased the resistance to in situ degradation, leading to the seedling slow growth.
Collapse
|
26
|
Sawada T, Itoh M, Nakamura Y. Contributions of Three Starch Branching Enzyme Isozymes to the Fine Structure of Amylopectin in Rice Endosperm. FRONTIERS IN PLANT SCIENCE 2018; 9:1536. [PMID: 30405671 PMCID: PMC6206275 DOI: 10.3389/fpls.2018.01536] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/28/2018] [Indexed: 05/07/2023]
Abstract
Three starch branching enzyme (BE) isozymes, BEI, BEIIa, and BEIIb, are involved in starch biosynthesis in rice endosperm. Past in vivo and in vitro studies have suggested that each BE isozyme plays a distinct role in forming the fine structure of amylopectin. To elucidate more details of their roles, we prepared DNA constructs in which all the possible combinations of the expressions of these three isozymes were suppressed in developing rice endosperm. Analysis of the chain-length distributions of amylopectin produced under these various conditions confirmed the contributions of the individual BE isozymes to the fine structure of amylopectin in rice endosperm. Among these isozymes, the impact of loss of BEIIb activity on amylopectin fine structure was most remarkable and indicated that it plays a specific role in the synthesis of short chains with a 6-13 degree of polymerization (DP). The contribution of BEI to the amylopectin synthesis was unclear when only BEI activity was reduced. It was clear, however, when both BEI and BEIIb activities were substantially inhibited. The DP11-22 intermediate chains were markedly reduced in the ΔBEI/BEIIb line compared with the ΔBEIIb line, indicating that BEI plays a distinct role in the synthesis of these intermediate chains. Although no substantial change in amylopectin chain profile was detected in the ΔBEIIa line, the role of BEIIa could be deciphered by analyzing amylopectin fine structure from the ΔBEI/BEIIa/BEIIb line in comparison to that from ΔBEI/BEIIb line. This strongly suggests that BEIIa compensates for the role of BEI, rather than that of BEIIb, by forming intermediate chains of DP11-22. In addition, the new possibility that BEIIa is involved in the formation of starch granules in rice endosperm was suggested because the onset temperature for gelatinization of starch granules in the ΔBEIIa/BEIIb line was significantly higher than that in the ΔBEIIb line. In summary, the present study highlights the distinct roles of BEI, BEIIa, and BEIIb in the synthesis of amylopectin in developing rice endosperm.
Collapse
Affiliation(s)
- Takayuki Sawada
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Mizuho Itoh
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
- Akita Natural Science Laboratory, Akita, Japan
| |
Collapse
|
27
|
Yin X, Ma Z, Hu X, Li X, Boye JI. Molecular rearrangement of Laird lentil (Lens culinaris Medikus) starch during different processing treatments of the seeds. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Li Q, Liu X, Zhang C, Jiang L, Jiang M, Zhong M, Fan X, Gu M, Liu Q. Rice Soluble Starch Synthase I: Allelic Variation, Expression, Function, and Interaction With Waxy. FRONTIERS IN PLANT SCIENCE 2018; 9:1591. [PMID: 30483281 PMCID: PMC6243471 DOI: 10.3389/fpls.2018.01591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/15/2018] [Indexed: 05/07/2023]
Abstract
Starch, which is composed of amylose and amylopectin, is the key determinant of rice quality. Amylose is regulated by the Waxy (Wx) gene, whereas amylopectin is coordinated by various enzymes including eight soluble starch synthases (SSSs), of which SSSI accounts for ∼70% of the total SSS activity in cereal endosperm. Although great progress has been made in understanding SSSI gene expression and function, allelic variation and its effects on gene expression, rice physicochemical properties and qualities, and interactions with the Wx gene remain unclear. Herein, SSSI nucleotide polymorphisms were analyzed in 165 rice varieties using five distinct molecular markers, three of which reside in an SSSI promoter and might account for a higher expression of the SSSIi allele in indica ssp. than of the SSSIj allele in japonica ssp. The results of SSSI promoter-Beta-Glucuronidase (β-GUS) analysis were consistent with the expression results. Moreover, analysis of near isogenic lines (NILs) in the Nipponbare (Nip) background showed that Nip (SSSIi ) and Nip (SSSIj ) differed in their thermal properties, gel consistency (GC), and granule crystal structure. Knockdown of SSSI expression using the SSSI-RNA interference (RNAi) construct in both japonica and indica backgrounds caused consistent changes in most tested physicochemical characteristics except GC. Moreover, taste value analysis (TVA) showed that introduction of the SSSI allele in indica or knockdown of SSSI expression in japonica cultivars significantly reduced the comprehensive taste value, which was consistent with the superior taste of japonica against indica. Furthermore, to test the potential interaction between SSSI and different Wx alleles, three NILs within the Wx locus were generated in the indica cv. Longtefu (LTF) background, which were designated as LTF (Wxa ), LTF (Wxb ), and LTF (wx). The SSSI-RNAi construct was also introduced into these three NILs, and physiochemical analysis confirmed that the knockdown of SSSI significantly increased the rice apparent amylose content (AAC) only in the Wxa and Wxb background and caused different changes in GC in the NILs. Therefore, the effect of SSSI variation on rice quality also depends on its crosstalk with other factors, especially the Wx gene. These findings provide fundamental knowledge for future breeding of rice with premium eating and cooking qualities.
Collapse
Affiliation(s)
- Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xinyan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Li Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Meiyan Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Min Zhong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiaolei Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Qiaoquan Liu,
| |
Collapse
|
29
|
Affiliation(s)
- Yasunori Nakamura
- Akita Natural Science Laboratory; Tennoh, Katagami, Akita Japan
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo-Nakano, Akita Japan
| |
Collapse
|
30
|
HU P, FAN X, LIN L, WANG J, ZHANG L, WEI C. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.35016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Pan HU
- Yangzhou University, China; Yangzhou University, China
| | - Xiaoxu FAN
- Yangzhou University, China; Yangzhou University, China
| | - Lingshang LIN
- Yangzhou University, China; Yangzhou University, China
| | - Juan WANG
- Yangzhou University, China; Yangzhou University, China
| | - Long ZHANG
- Yangzhou University, China; Yangzhou University, China
| | - Cunxu WEI
- Yangzhou University, China; Yangzhou University, China
| |
Collapse
|
31
|
Wang J, Hu P, Chen Z, Liu Q, Wei C. Progress in High-Amylose Cereal Crops through Inactivation of Starch Branching Enzymes. FRONTIERS IN PLANT SCIENCE 2017; 8:469. [PMID: 28421099 PMCID: PMC5379859 DOI: 10.3389/fpls.2017.00469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
High-amylose cereal starches provide many health benefits for humans. The inhibition or mutation of starch branching enzyme (SBE) genes is an effective method to develop high-amylose cereal crops. This review summarizes the development of high-amylose cereal crops through the inactivation of one or more SBE isoforms or combination with other genes. This review also reveals the causes of increase in amylose content in high-amylose crops. A series of changes, including amylopectin structure, crystalline structure, thermal properties, and hydrolysis properties, occurs as amylose content increases. The different morphological starch granules nominated as heterogeneous starch granules or differently stained starch granules are detected in high-amylose cereal crops. Detailed studies on four heterogeneous starch granules in high-amylose rice, which is developed by antisense RNA inhibition of SBEI/IIb, indicate that granules with different morphologies possess various molecular structures and physicochemical and functional properties. This variation diversifies their applications in food and non-food industries. However, current knowledge regarding how these heterogeneous starch granules form and why they exhibit regional distribution in endosperm remain largely unknown.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou UniversityYangzhou, China
| | - Pan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou UniversityYangzhou, China
| | - Zichun Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou UniversityYangzhou, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou UniversityYangzhou, China
| | - Cunxu Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou UniversityYangzhou, China
| |
Collapse
|
32
|
|
33
|
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges in improving the nutritional quality of rice (Oryza sativaL.). Crit Rev Food Sci Nutr 2015; 57:2455-2481. [DOI: 10.1080/10408398.2015.1084992] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deep Shikha Birla
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Kapil Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
34
|
Jiang H, Zhang Y, Hong Y, Bi Y, Gu Z, Cheng L, Li Z, Li C. Digestibility and changes to structural characteristics of green banana starch during in vitro digestion. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Liu D, Wang W, Cai X. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1297-307. [PMID: 25052102 DOI: 10.1111/pbi.12228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/21/2014] [Accepted: 06/12/2014] [Indexed: 05/23/2023]
Abstract
The rice Waxy (Wx) gene encodes granule-bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site-directed mutated Wx gene constructs into the wx mutant glutinous rice. The eight amino acid residues are suspected to play roles in OsGBSS1 structure maintenance or function based on homologous enzyme sequence alignment and homology modelling. Both OsGBSS1 activity and amylose content were analysed in homozygous transgenic lines carrying the mutated OsGBSS1 (Wx) genes. Our results indicate that mutations at diverse sites in OsGBSS1 reduces its activity by affecting its starch-binding capacity, its ADP-glucose-binding capability or its protein stability. Our results shed new light on the structural basis of OsGBSS1 activity and the mechanisms of OsGBSS1 activity on amylose synthesis in vivo. This study also demonstrates that it is feasible to finely modulate amylose content in rice grains by modifying the OsGBSS1 activity.
Collapse
Affiliation(s)
- Derui Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
36
|
Man J, Lin L, Wang Z, Wang Y, Liu Q, Wei C. Different structures of heterogeneous starch granules from high-amylose rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11254-63. [PMID: 25373551 DOI: 10.1021/jf503999r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-amylose cereal starches usually have heterogeneous starch granules in morphological structure. In the present study, the polygonal, aggregate, elongated, and hollow starch granules were separated from different regions of the kernels of high-amylose rice, and their structures were investigated. The results showed that the polygonal starch granules had low amylose content and high short branch-chain and branching degree of amylopectin, and exhibited A-type crystallinity. The aggregate starch granules had high long branch-chain of amylopectin, relative crystallinity, and double helix content, and exhibited C-type crystallinity. The elongated starch granules had high amylose content and low branching degree of amylopectin and relative crystallinity, and exhibited C-type crystallinity. The hollow starch granules had very high amylose content, proportion of amorphous conformation, and amylose-lipid complex, and very low branch-chain of amylopectin, branching degree of amylopectin, and double helix content, and exhibited no crystallinity. The different structures of heterogeneous starch granules from high-amylose rice resulted in significantly different thermal properties.
Collapse
Affiliation(s)
- Jianmin Man
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, ‡Co-Innovation Center for Modern Production Technology of Grain Crops, and §Testing Center, Yangzhou University , Yangzhou 225009, China
| | | | | | | | | | | |
Collapse
|