1
|
Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Res Rev 2023; 86:101888. [PMID: 36806379 DOI: 10.1016/j.arr.2023.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Vascular ageing is an important factor in the morbidity and mortality of the elderly. Atherosclerosis is a characteristic disease of vascular ageing, which is closely related to the enhancement of vascular inflammation. Phospholipid oxidation products are important factors in inducing cellular inflammation. Through interactions with vascular cells and immune cells, they regulate intracellular signaling pathways, activate the expression of various cytokines, and affect cell behavior, such as metabolic level, proliferation, apoptosis, etc. Intervention in lipid metabolism and anti-inflammation are the two key pathways of drugs for the treatment of atherosclerosis. This review aims to sort out the signaling pathway of oxidized phospholipids-induced inflammatory factors in vascular cells and immune cells and the mechanism leading to changes in cell behavior, and summarize the therapeutic targets in the inflammatory signaling pathway for the development of atherosclerosis drugs.
Collapse
|
2
|
Guo S, Zhou Y, Xie X. Resveratrol inhibiting TGF/ERK signaling pathway can improve atherosclerosis: backgrounds, mechanisms and effects. Biomed Pharmacother 2022; 155:113775. [DOI: 10.1016/j.biopha.2022.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022] Open
|
3
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wu M, Li X, Wang S, Yang S, Zhao R, Xing Y, Liu L. Polydatin for treating atherosclerotic diseases: A functional and mechanistic overview. Biomed Pharmacother 2020; 128:110308. [PMID: 32480216 DOI: 10.1016/j.biopha.2020.110308] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
With the advancement of science and technology, the living standards of human beings have continuously improved, but the incidence and mortality from atherosclerosis worldwide have also increased by year. Although interventional surgery and the continuous development of new drugs have significant therapeutic effects, their side effects cannot be ignored. Polydatin, an active ingredient isolated from the natural medicine Polygonum cuspidatum, has been shown to have a prominent role in the treatment of cardiovascular diseases. Polydatin treats atherosclerosis mainly from three aspects: anti-inflammatory, regulating lipid metabolism and anti-oxidative stress. This article will review the pharmacological mechanism of polydatin in anti-atherosclerosis, the biological characteristics of Polygonum cuspidatum, the toxicology and pharmacokinetics of polydatin and will provide ideas for further research.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Songzi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Zou J, Wang G, Li H, Yu X, Tang C. IgM natural antibody T15/E06 in atherosclerosis. Clin Chim Acta 2020; 504:15-22. [DOI: 10.1016/j.cca.2020.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
|
6
|
Wang M, Wu Y, Yu Y, Fu Y, Yan H, Wang X, Li T, Peng W, Luo D. Rutaecarpine prevented ox-LDL-induced VSMCs dysfunction through inhibiting overexpression of connexin 43. Eur J Pharmacol 2019; 853:84-92. [DOI: 10.1016/j.ejphar.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/29/2023]
|
7
|
Huang BR, Tsai CH, Chen CC, Way TD, Kao JY, Liu YS, Lin HY, Lai SW, Lu DY. Curcumin Promotes Connexin 43 Degradation and Temozolomide-Induced Apoptosis in Glioblastoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:657-674. [PMID: 30974966 DOI: 10.1142/s0192415x19500344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most commonly occurring tumor in the cerebral hemispheres. Currently, temozolomide (TMZ), an alkylating agent that induces DNA strand breaks, is considered the frontline chemotherapeutic agent for GBM. Despite its frontline status, GBM patients commonly exhibit resistance to TMZ treatment. We have recently established and characterized TMZ-resistant human glioma cells. The aim of this study is to investigate whether curcumin modulates cell apoptosis through the alternation of the connexin 43 (Cx43) protein level in TMZ-resistant GBM. Overexpression of Cx43, but not ATP-binding cassette transporters (ABC transporters), was observed (approximately 2.2-fold) in TMZ-resistant GBM cells compared to the Cx43 levels in parental GBM cells. Furthermore, at a concentration of 10 μ M, curcumin significantly reduced Cx43 protein expression by about 40%. In addition, curcumin did not affect the expression of other connexins like Cx26 or epithelial-to-mesenchymal transition (EMT) proteins such as β -catenin or α E-catenin. Curcumin treatment led to an increase in TMZ-induced cell apoptosis from 4% to 8%. Importantly, it did not affect the mRNA expression level of Cx43. Concomitant treatment with the translation inhibitor cycloheximide (CHX) exerted additional effects on Cx43 degradation. Treatment with the autophagy inhibitor 3-MA (methyladenine) did not affect the curcumin-induced Cx43 degradation. Interestingly, treatment with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-leucinal) significantly negated the curcumin-induced Cx43 degradation, which suggests that curcumin-induced Cx43 degradation occurs through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Bor-Ren Huang
- * Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,¶ Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,∥ School of Medicine, Tzu Chi University, Taichung, Taiwan
| | - Chon-Haw Tsai
- ** Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chuan Chen
- †† Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Tzong-Der Way
- † Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Jung-Yie Kao
- †† Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Shu Liu
- ‡ Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- ‡ Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- § Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- ‡ Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,‡‡ Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
9
|
Du C, Dong MH, Ren YJ, Jin L, Xu C. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:890-902. [PMID: 27809606 DOI: 10.1080/10286020.2016.1250747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
A new series of resveratrol heterocyclic analogs (4a-m) were designed and synthesized, and their inhibitiory effects on MCF-7 cells were evaluated to investigate structure-activity relationship. The effects of these analogs on human breast cancer MCF-7 cells were also determined. Results showed that MCF-7 cells could be inhibited more potently by these analogs than by resveratrol (IC50 = 80.0 μM). Among the analogs, compounds 4c, 4e, and 4k showed a significantly higher activity (IC50 = 42.7, 48.1, and 43.4 μM) than resveratrol. Furthermore, the derivatives without additional heterocyclic structure in the 4'-OH position exhibited a more potent activity than that with addition heterocyclic structure. In addition, docking simulation was performed to adequately position compound 4c in a human F1-ATPase active site to determine a probable binding model. These heterocyclic analogs could be effective candidates for the chemoprevention of human breast cancer.
Collapse
Affiliation(s)
- Cheng Du
- a School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , China
| | - Ming-Hui Dong
- a School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , China
| | - Yu-Jie Ren
- a School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , China
| | - Lu Jin
- a School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , China
| | - Cheng Xu
- a School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , China
| |
Collapse
|
10
|
Sun W, Huang Y, Yin T, Wang J, Du R, Qiu J, Zhang Y, Wang Y, Chen J, Wang G. Effects of elemene on inhibiting proliferation of vascular smooth muscle cells and promoting reendothelialization at the stent implantation site. Biomater Sci 2017; 5:1144-1155. [DOI: 10.1039/c7bm00190h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elemene coated stents prepared by electrospray could inhibit proliferation of VSMCs and promote endothelialization after implantation into rabbit iliac arteries.
Collapse
|
11
|
Saleh Al-Shehabi T, Iratni R, Eid AH. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1068-1081. [PMID: 26776961 DOI: 10.1016/j.phymed.2015.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. PURPOSE Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. CONCLUSION Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy.
Collapse
Affiliation(s)
- Tuqa Saleh Al-Shehabi
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon ; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
MA YI, GONG XUN, MO YINGLI, WU SAIZHU. Polydatin inhibits the oxidative stress-induced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway. Int J Mol Med 2016; 37:1652-60. [DOI: 10.3892/ijmm.2016.2554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
|
13
|
HAN XIAOJIAN, HE DAN, XU LIANGJING, CHEN MIN, WANG YIQI, FENG JIUGENG, WEI MINJUN, HONG TAO, JIANG LIPING. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells. Int J Mol Med 2015; 36:1361-8. [DOI: 10.3892/ijmm.2015.2346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
|
14
|
Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1155-77. [DOI: 10.1016/j.bbadis.2014.10.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
|
15
|
Abstract
PURPOSE OF REVIEW Intake of dietary phytochemicals has frequently been associated with health benefits. Noninfectious diseases including cardiovascular disease (CVD), cancer and diabetes are major causes of death, whereas dementia cases are also increasing to 'epidemic' proportion. This review will focus on recent progress on mechanisms underlying the potential role of dietary phytochemicals in CVD, diabetes, cancer and dementia, with consideration of the latest clinical data. RECENT FINDINGS The association of tea (Camellia sinensis), particularly catechins, with reported mechanistic effects for CVD, diabetes, cancer and cognition contributes to our understanding of the suggested benefits of tea consumption on health from limited and inconclusive clinical trial and epidemiological data. Resveratrol, which occurs in grapes (Vitis vinifera) and wine, and curcumin, a component of turmeric (Curcuma longa), are also emerging as potentially relevant to health, particularly for CVD and dementia, with some promising data also concluded for curcumin in cancer. Other phytochemicals mechanistically relevant for health include anthocyanins, isoflavones and glucosinolates, which are also discussed. SUMMARY Evidence for the role of phytochemicals in health and disease is growing, but associations between phytochemicals and disease need to be more firmly understood and established from more robust clinical data using preparations that have been phytochemically characterized.
Collapse
|
16
|
Rodrigo R, Libuy M, Feliú F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. DISEASE MARKERS 2013; 35:773-90. [PMID: 24347798 PMCID: PMC3856219 DOI: 10.1155/2013/974358] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases are a leading cause of mortality and morbidity worldwide, with hypertension being a major risk factor. Numerous studies support the contribution of reactive oxygen and nitrogen species in the pathogenesis of hypertension, as well as other pathologies associated with ischemia/reperfusion. However, the validation of oxidative stress-related biomarkers in these settings is still lacking and novel association of these biomarkers and other biomarkers such as endothelial progenitor cells, endothelial microparticles, and ischemia modified albumin, is just emerging. Oxidative stress has been suggested as a pathogenic factor and therapeutic target in early stages of essential hypertension. Systolic and diastolic blood pressure correlated positively with plasma F2-isoprostane levels and negatively with total antioxidant capacity of plasma in hypertensive and normotensive patients. Cardiac surgery with extracorporeal circulation causes an ischemia/reperfusion event associated with increased lipid peroxidation and protein carbonylation, two biomarkers associated with oxidative damage of cardiac tissue. An enhancement of the antioxidant defense system should contribute to ameliorating functional and structural abnormalities derived from this metabolic impairment. However, data have to be validated with the analysis of the appropriate oxidative stress and/or nitrosative stress biomarkers.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| | - Matías Libuy
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| | - Felipe Feliú
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| | - Daniel Hasson
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| |
Collapse
|