1
|
Wang Q, Rao Z, Jiang L, Lei X, Zhao J, Lei L, Zeng K, Ming J. The assembly mechanism of Zein/EGCG/PEG nanoparticles in a water system and their adsorption behavior at the oil-water interface. Food Chem 2025; 463:141051. [PMID: 39241419 DOI: 10.1016/j.foodchem.2024.141051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
In this study, the self-assembly mechanism of Zein/(-)-epigallocatechin-3-gallate/polyethylene glycol (Zein/EGCG/PEG) composite nanoparticles and their interface adsorption behavior at the oil-water interface were investigated by coarse-grained molecular dynamics simulation. Fourier transform infrared spectroscopy and conformation analysis demonstrated that there were electrostatic and hydrogen bond interactions between Zein and EGCG, physical entanglement between PEG and Zein, and hydrogen bond interaction between EGCG and PEG. The nanoparticles accumulated at the oil-water interface, and there was an obvious interface layer between oil phase and water phase, as indicated by confocal laser scanning microscope and scanning electron microscope. The adsorbing of Zein/EGCG/PEG nanoparticles at the oil-water interface was confirmed by coarse-grained molecular dynamics simulation. Further findings confirmed that Zein/EGCG/PEG nanoparticles could serve as stabilizers for oleogels with self-supporting structure, viscoelastic solid behavior and temperature response characteristics. The current research offered a novel approach to enhance protein interface characteristics and create food-grade emulsifiers and oleogelators.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Kaihong Zeng
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
2
|
Rao SQ, Gao XR, Liu H, Wang ZR, Yang ZQ. Contribution of Phosphorylation Modification to Stability and Antibacterial Activity of Egg White Protein Nanogels Loaded with Cinnamon Bark Essential Oil. Gels 2024; 11:12. [PMID: 39851982 PMCID: PMC11765320 DOI: 10.3390/gels11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
This study evaluated the potential usage of phosphorylated egg white protein (P-EWP) nanogels fabricated via microwave-induced phosphorylation modification and gel process and further ultrasonic nanometrization as novel delivery systems for cinnamon bark essential oil (CBEO). Compared to EWP-CBEO nanogels without chemical phosphorylation, the obtained P-EWP-CBEO nanogels have shown smaller average hydrodynamic diameter (133.6 nm), relatively uniform size distribution (polydispersity index around 0.265), enhanced negative surface charge (-35.4 mV), and improved stability under the conditions of high temperature (up to 90 °C) and ionic strength (up to 200 mM NaCl). Moreover, P-EWP-CBEO nanogels, with hydrophobic interactions and disulfide bonds as the main intermolecular forces, exhibited a remarkable conformational change in microstructures. In addition, the results of the antibacterial experiments on Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes showed that the MIC values of P-EWP-CBEO nanogels were two times lower than those of EWP-CBEO nanogels and could completely inhibit the growth of pathogenic bacteria within 108 h. Hence, we have suggested that P-EWP-CBEO nanogels are successfully fabricated with improved physicochemical properties as novel potential natural preservatives in the food industry.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Xin-Ru Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Hui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Zhi-Rong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
3
|
Chapman CM, Srivastava DS, Ward SP, Cui Z, Adamson DH. Hexagonal Boron Nitride as a Two-Dimensional Surfactant: Low-Density Flame-Resistant Composites Based on Boron Nitride Exfoliated by an Interface Trapping Technique. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69901-69907. [PMID: 39644225 DOI: 10.1021/acsami.4c16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Hexagonal boron nitride (hBN) is a two-dimensional material isoelectric to graphene. It has a hexagonal structure with alternating boron and nitrogen atoms and is electrically insulating, thermally conductive, and chemically inert. However, like graphene, its use as a functional nanofiller requires exfoliation. Here, we present a method for exfoliating and dispersing hexagonal boron nitride (hBN) sheets within a polymer matrix. This is achieved by a solvent interface trapping method (SITM), where hBN exfoliates and spreads at a high-energy oil/water interface, separating the two phases and lowering the system's free energy. hBN thus acts as a surfactant, allowing us to form stable water-in-oil emulsions stabilized by films of overlapping hBN sheets. Polymerizing the continuous oil phase results in polymerized high internal phase emulsions (polyHIPE), with the foam cells lined with hBN. In the investigation presented here, we use acoustic spectroscopy, optical and electron microscopy, and image analysis to study the emulsion and polyHIPE formation mechanisms. We find that the amount of hBN used, the flake size of the hBN, the mixing time, the type of initiator used, and the oil-to-water ratio all play a role in the morphology of the final polyHIPE. Lastly, we demonstrate the flame-retardant properties of the hBN polyHIPEs and show that, at 1% loadings, the presence of hBN prevents dripping and relighting of the composites, even when the material is heated to a red glow.
Collapse
Affiliation(s)
- Christopher M Chapman
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Deep Shikha Srivastava
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shawn P Ward
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhenhua Cui
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Polymer Program, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Douglas H Adamson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Polymer Program, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Tao J, Zhu L, Zhu L, Lei L, Zhao G. Colloidal lignin particle reinforces the stability of Pickering emulsions prepared with zein nanoparticle. Food Chem 2024; 460:140581. [PMID: 39067384 DOI: 10.1016/j.foodchem.2024.140581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Zein nanoparticle (ZNP) is at the forefront of research on Pickering emulsions, valued for its self-assembling and surfactant-free nature. Nevertheless, its emulsion stability is undermined by inadequate amphiphilicity. Colloidal lignin particle (CLP), characterized by its antithetical charge and amphiphilic nature, appears the promising for augmenting the stability of ZNP-based emulsion. This study meticulously investigated the impact of CLP on the colloidal properties and emulsifying performance of ZNP. The results revealed that electrostatic interactions between ZNP and CLP significantly mitigated the charge of ZNP and improved its hydrophilic/lipophilic balance. Under optimized conditions (1.0 wt% particle concentration, pH 4.0, 50% oil content), CLP notably reduced droplet sizes (41-225 μm) and enhanced the stability of ZNP-based Pickering emulsion, particularly at ZNP/CLP ratios of 6:4 and 5:5. In nature, CLP improved the stability ZNP-based Pickering emulsions via increased interfacial adsorption, enhanced steric hindrance, and reinforced viscous structure.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Lijun Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Luyi Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Wang Y, Tian Y, Xie Y, Sun Y, Li T, Zhang X, Wang Y, Huang J, Xia B, Wang S, Dong W. The relationship between the secondary structure and the emulsifying ability of protein-based particles and the Pickering emulsions stabilized by the zein-lysine complex. SOFT MATTER 2024; 20:8089-8097. [PMID: 39356209 DOI: 10.1039/d4sm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Due to the sustainability and widespread use of proteins, protein-based materials are extensively utilized in the preparation of Pickering emulsions. However, the relationship between the secondary structure of proteins and their emulsifying ability has not been further investigated. This study used the addition of three different amino acids to influence the interaction between zein chains, which may induce changes in the secondary structure of the prepared zein complex particles. This study demonstrates that the emulsifying properties of proteins, such as dispersibility, zeta potential, three-phase contact angles, interfacial affinity, adsorption rates, and the volume of the stabilized oil phase, are closely related to the β-sheet content of the complex particles, providing a theoretical reference for protein-based stabilizers. Additionally, amino acids, as the blocks of proteins, have high compatibility with proteins, and using amino acids as modifiers aligns with the safety requirements for food processing. In this study, the prepared zein-lysine complex particles have good emulsifying ability, capable of stabilizing a 50 (v/v)% emulsion at a lower concentration (10 mg mL-1), and the prepared emulsion exhibits high-temperature stability and ionic resistance. This characteristic makes the emulsion potentially valuable for application in systems with high salt concentrations and those that may undergo heat treatment.
Collapse
Affiliation(s)
- Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yunze Tian
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Li M, Yu H, Gantumur MA, Guo L, Lian L, Wang B, Yu C, Jiang Z. Insight into oil-water interfacial adsorption of protein particles towards regulating Pickering emulsions: A review. Int J Biol Macromol 2024; 272:132937. [PMID: 38848834 DOI: 10.1016/j.ijbiomac.2024.132937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.
Collapse
Affiliation(s)
- Meng Li
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Haiying Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Lidong Guo
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Lian Lian
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Bo Wang
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Chunmiao Yu
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Lei Y, Lee Y. Nanoencapsulation and delivery of bioactive ingredients using zein nanocarriers: approaches, characterization, applications, and perspectives. Food Sci Biotechnol 2024; 33:1037-1057. [PMID: 38440671 PMCID: PMC10908974 DOI: 10.1007/s10068-023-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 03/06/2024] Open
Abstract
Zein has garnered widespread attention as a versatile material for nanosized delivery systems due to its unique self-assembly properties, amphiphilicity, and biocompatibility characteristics. This review provides an overview of current approaches, characterizations, applications, and perspectives of nanoencapsulation and delivery of bioactive ingredients within zein-based nanocarriers. Various nanoencapsulation strategies for bioactive ingredients using various types of zein-based nanocarrier structures, including nanoparticles, nanofibers, nanoemulsions, and nanogels, are discussed in detail. Factors affecting the stability of zein nanocarriers and characterization methods of bioactive-loaded zein nanocarrier structures are highlighted. Additionally, current applications of zein nanocarriers loaded with bioactive ingredients are summarized. This review will serve as a guide for the selection of appropriate nanoencapsulation techniques within zein nanocarriers and a comprehensive understanding of zein-based nanocarriers for specific applications in the food, pharmaceutical, cosmetic, and agricultural industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01489-6.
Collapse
Affiliation(s)
- Yanlin Lei
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Youngsoo Lee
- Department of Biological Systems Engineering, Washington State University at Pullman, Pullman, WA 203, L.J. Smith Hall, 1935 E. Grimes Way99164-6120 USA
| |
Collapse
|
9
|
Cheng S, Zhang H, Wang H, Mubashar M, Li L, Zhang X. Influence of algal organic matter in the in-situ flotation removal of Microcystis using positively charged bubbles. BIORESOURCE TECHNOLOGY 2024; 397:130468. [PMID: 38378102 DOI: 10.1016/j.biortech.2024.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
Positively charged bubbles efficiently capture and remove negatively charged algal cells without relying on coagulation-flocculation. However, the efficiency is notably influenced by the presence of algal organic matter (AOM). This study investigated the impact of AOM composition on flotation performance by analyzing AOM from various growth phases of Microcystis flos-aquae. The results indicated that low-concentration AOM (<5 mg C L-1), particularly the high molecular weight (>30 kDa) fractions containing high percentages of protein during the exponential growth phase, significantly improved the flotation efficiency by >18%. A high-speed camera system illustrates the pivotal role of low-concentration protein-containing AOM in forming network structures that enhance cell capture. These protein-driven network structures, which enhance the flotation efficiency, provide valuable insights into the development of effective in-situ algal bloom prevention techniques.
Collapse
Affiliation(s)
- Shaozhe Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China
| | - Hailing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Muhammad Mubashar
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China
| | - Lili Li
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China.
| |
Collapse
|
10
|
Sun Y, Wang Y, Xie Y, Li T, Wang Y, Zhang X, Xia B, Huang J, Wang S, Dong W. Ultra-stable pickering emulsion stabilized by anisotropic pea protein isolate-fucoidan conjugate particles through Maillard reaction. Int J Biol Macromol 2024; 264:130589. [PMID: 38437935 DOI: 10.1016/j.ijbiomac.2024.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Bio-based emulsifiers hold significant importance in various industries, particularly in food, cosmetics, pharmaceuticals and other related fields. In this study, pea protein isolate (PPI) and fucoidan (FUD) were conjugated via the Maillard reaction, which is considered safe and widely used in the preparation of food particle. The PPI-FUD conjugated particles exhibit an anisotropic non-spherical structure, thereby possessing a high detachment energy capable of preventing emulsion coalescence and Ostwald ripening. Compared to emulsions previously prepared in other studies (< 500 mM), the Pickering emulsion stabilized by PPI-FUD conjugate particles demonstrates outstanding ionic strength resistance (up to 5000 mM). Furthermore, when encapsulating curcumin, the Pickering emulsion protects the curcumin from oxidation. Additionally, the formulated emulsions demonstrated the capability to incorporate up to 60 % (v/v) oil phase, revealing remarkable performance in terms of storage stability, pH stability, and thermal stability.
Collapse
Affiliation(s)
- Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
11
|
Lin H, Fu S, Hu C, Zhang W, He J. Characterization, interfacial rheology, and storage stability of Pickering emulsions stabilized by complex of whey protein isolate fiber and zein derived from micro-endosperm maize. Int J Biol Macromol 2024; 261:129948. [PMID: 38311140 DOI: 10.1016/j.ijbiomac.2024.129948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
In present study, we characterized the formation, interfacial rheology, and storage stability of emulsions stabilized by microendosperm maize-derived zein (M-Zein)/whey protein isolate fiber (WPIF) nanoparticles. Microendosperm maize is a newly developed, oleic acid-rich oilseed resource. Recent research has shown that M-Zein possesses unique hydrophobic properties. Combining it with WPIF may enhance its performance as a stabilizer. Optimization of weight ratios for M-Zein/WPIF composites, guided by particle size analysis, fluorescence spectroscopy, three-phase contact angle (θ), and interfacial rheological analysis, revealed that a 4: 6 mass ratio at pH 7 yielded favorable wettability (θ = 91.2°). Interfacial rheology analysis showed that the combination of WPIF reduced M-Zein's interfacial tension to 7.2 mN/m and 36.7 mN/m at oil-water and air-water interfaces, respectively. The M-Zein/WPIF complex exhibited an elastic protein layer at the oil-water interface. Further investigations into nanoparticle concentration, oil phase volume, and pH revealed that emulsions containing 3 % nanoparticles (w/w), 50 % oil phase volume, and pH 7 showed the best storage stability. This research highlights the development of M-Zein/WPIF composited nanoparticles with superior storage stability and interfacial rheology. Additionally, it introduces a novel application for M-Zein, which elevates the value proposition of microendosperm maize.
Collapse
Affiliation(s)
- Hong Lin
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China.
| | - Sihan Fu
- Wuhan Polytechnic University, School of Food Science and Engineering, China
| | - Chun Hu
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China
| | - Weinong Zhang
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China
| | - Junbo He
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China.
| |
Collapse
|
12
|
Qi L, Hang T, Jiang W, Li S, Zhang H, Liang X, Lei L, Bi Q, Jiang H, Li Y. Proteinaceous Microsphere-Based Water-in-Oil Pickering Emulsions for Preservation of Chlorella Cells. Polymers (Basel) 2024; 16:647. [PMID: 38475330 DOI: 10.3390/polym16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are highly regarded as ideal materials for the creation of liquid biofuels and have substantial potential for growth and utilization. However, traditional storage and culture methods for microalgae are plagued by challenges such as uncontrolled growth, bacterial contamination, and self-shading among algae. These issues severely impede the photosynthetic process and the efficient extraction of biomass energy. This study tackles these problems by utilizing magnetic hydrophobic protein particles to stabilize water-in-oil Pickering emulsions. This allows for the micro-compartment storage and magnetic transfer of algae. Additionally, the successful encapsulation of Chlorella cells in high-internal-phase water-in-oil Pickering emulsions effectively mitigates the settling problem of Chlorella cells in the liquid phase, thereby enabling the potential use of Pickering emulsions for the confined cultivation of microalgae.
Collapse
Affiliation(s)
- Lin Qi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Teng Hang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Sinong Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiang Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Lei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiangqiang Bi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Wang Q, Rao Z, Chen Y, Jiang L, Lei X, Zhao J, Li F, Lei L, Ming J. Fabrication and characterization of oleogels stabilized by metal-phenolic network coatings-decorated zein nanoparticles. Food Chem 2024; 430:137025. [PMID: 37549630 DOI: 10.1016/j.foodchem.2023.137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Self-assembly coatings are used to functionalize the surface structures of protein. Herein, emulsion-templated approach was adopted to obtain oleogels using metal-phenolic network coatings-decorated zein nanoparticles. Two self-assembly strategies were used to decorate zein nanoparticles: 1) adding (-)-epigallocatechin-3-gallate (EGCG) first and then calcium ions (Ca2+) (zein/EGCG/Ca2+ nanoparticles). 2) adding Ca2+ first and then EGCG (zein/Ca2+/EGCG nanoparticles). The formation of nanoparticles, the stability of emulsions and the rheological behaviors of oleogels were modulated by using different adding sequences of EGCG and Ca2+. Nanoparticles prepared by two self-assembly strategies exhibited increasing diameter (340-360 nm). More Ca2+ participated in the formation of zein/EGCG/Ca2+ nanoparticles, as described by X-ray photoelectron spectroscopy analysis. Metal-phenolic network coatings facilitated the formation of well-structured emulsions and oleogels, which were candidates for fat substitutes and stable carriers. Findings confirmed metal-phenolic network coatings-decorated zein nanoparticles were effective stabilizers for emulsions and oleogels, further expanding the selectivity of oleogelators.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
14
|
Farahmand M, Golmakani MT, Niakousari M, Majdinasab M, Hosseini SMH. Designing ultra-stable linseed oil-in-water Mickering emulsions using whey protein isolate cold-set microgels containing marjoram aqueous extract: Effect of pH and extract on rheological, physical, and chemical properties. Curr Res Food Sci 2023; 7:100553. [PMID: 37575130 PMCID: PMC10412869 DOI: 10.1016/j.crfs.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
In this study, whey protein isolate (WPI) cold-set microgels containing marjoram (Origanum majorana) aqueous extract (MAE) were prepared at different pHs (4.0, 5.0, and 6.0). After characterization, the microgel dispersion was used to stabilize linseed oil-in-water Mickering emulsions (MEs). The resultant MEs were then characterized in terms of physicochemical and rheological properties under the effect of pH and MAE addition. The morphology, particle size, zeta potential, and interfacial tension of microgels were affected by pH and MAE. XRD patterns showed the amorphous structure. Microgel-stabilized MEs did not reveal any significant sign of instability under gravity during 6 months of storage. All MEs had dominant elastic character. Despite the lowest zeta potential values, MEs prepared at pH 4 showed the highest physical stability against gravity but the lowest centrifugal stability against oiling off, which indicated that both viscous and elastic components are required for MEs stability. This sample had the highest apparent viscosity and the strongest viscoelastic properties. Rheological data were best fitted with Herschel-Bulkley and Power Law models. An increase in pH and presence of MAE improved the oxidative stability of MEs. The results of this study showed that WPI microgels are appropriate candidate for long-term stabilization of linseed oil-in-water MEs. The presence of MAE is useful in designing special emulsions in which the aqueous phase is partially replaced by the aqueous extract of medicinal plants.
Collapse
Affiliation(s)
- Maryam Farahmand
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
15
|
Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023; 28:molecules28062504. [PMID: 36985475 PMCID: PMC10054141 DOI: 10.3390/molecules28062504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Pickering emulsions (PEs) have attracted attention in different fields, such as food, pharmaceuticals and cosmetics, mainly due to their good physical stability. PEs are a promising strategy to develop functional products since the particles’ oil and water phases can act as carriers of active compounds, providing multiple combinations potentiating synergistic effects. Moreover, they can answer the sustainable and green chemistry issues arising from using conventional emulsifier-based systems. In this context, this review focuses on the applicability of safe inorganic solid particles as emulsion stabilisers, discussing the main stabilisation mechanisms of oil–water interfaces. In particular, it provides evidence for hydroxyapatite (HAp) particles as Pickering stabilisers, discussing the latest advances. The main technologies used to produce PEs are also presented. From an industrial perspective, an effort was made to list new productive technologies at the laboratory scale and discuss their feasibility for scale-up. Finally, the advantages and potential applications of PEs in the food industry are also described. Overall, this review gathers recent developments in the formulation, production and properties of food-grade PEs based on safe inorganic solid particles.
Collapse
|
16
|
Depletion attraction driven formation of Spirulina emulsion gels for 3D printing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
17
|
Development of Zein/tannic acid nanoparticles as antioxidants for oxidation inhibition of blackberry seed oil emulsions. Food Chem 2023; 403:134236. [DOI: 10.1016/j.foodchem.2022.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022]
|
18
|
Edible oil to powder technologies: Concepts and advances. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
19
|
Wang Y, Wusigale, Luo Y. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Comprehensive application possibility: Construction hydrophilic, amphiphilic and hydrophobic system of modified zein by enzymatic or cysteine modification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Li J, Zhang Y, Jin W, Wang Y, Yang L, Zhang Z, Yan Z. Preparation and characterization of zein-lecithin-total flavonoids from Smilax glabra complex nanoparticles and the study of their antioxidant activity on HepG2 cells. Food Chem X 2023; 17:100579. [PMID: 36845521 PMCID: PMC9945631 DOI: 10.1016/j.fochx.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Total flavonoids from Smilax glabra (TFSG) exhibit several biological activities; however, their poor stability limits their application. In this work, zein-lecithin-TFSG complex nanoparticles (Z-L-TFSG NPs) were prepared using the anti-solvent coprecipitation technique. The prepared Z-L-TFSG NPs were spherical with an encapsulation efficiency of 98.0%. Differential scanning calorimetry, Fourier transform infrared spectroscopy, and morphology tests revealed that the TFSG were successfully encapsulated by Z-L NPs. Z-L-TFSG NPs showed superior stability and better controlled release characteristics in simulated gastrointestinal digestion. The encapsulation of TFSG by Z-L NPs could improve their antioxidant capacity in vitro. Moreover, Z-L-TFSG NPs could enhance the protective effects of TFSG against H2O2-induced oxidative damage to HepG2 cells. The results indicated that the Z-L self-assembled NPs could serve as a promising drug delivery system through the integrated encapsulation of multiple flavonoids.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
| | - Yingxiu Zhang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Wenfang Jin
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Yue Wang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Li Yang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Zhifeng Zhang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
- Corresponding authors.
| | - Zhigang Yan
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Corresponding authors.
| |
Collapse
|
22
|
Han Y, Zhu L, Qi X, Zhang H, Wu G. Characteristics of low‐fat whipped cream containing protein‐based fat replacers. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ya‐Meng Han
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Ling Zhu
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Xi‐Guang Qi
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Hui Zhang
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Gang‐Cheng Wu
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| |
Collapse
|
23
|
Keshanidokht S, Via MA, Falco CY, Clausen MP, Risbo J. Zein-stabilized emulsions by ethanol addition; stability and microstructure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Wang Q, Rao Z, Chen Y, Lei X, Zhao J, Li F, Lei L, Zeng K, Ming J. Characterization of responsive zein-based oleogels with tunable properties fabricated from emulsion-templated approach. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Garavand F, Khodaei D, Mahmud N, Islam J, Khan I, Jafarzadeh S, Tahergorabi R, Cacciotti I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:3639-3659. [PMID: 36222362 DOI: 10.1080/10408398.2022.2133080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biopolymers are important due to their exceptional functional and barrier properties and also their non-toxicity and eco-friendly nature for various food, biomedical, and pharmaceutical applications. However, biopolymers usually need reinforcement strategies to address their poor mechanical, thermal, and physical properties as well as processability aspects. Several natural nanoparticles have been proposed as reinforcing agents for biopolymeric food packaging materials. Among them, zein nanoparticles (ZNPs) have attracted a lot of interest, being an environmentally friendly material. The purpose of the present review paper is to provide a comprehensive overview of the ZNPs-loaded nanocomposites for food packaging applications, starting from the synthesis, characteristics and properties of ZNPs, to the physicochemical properties of the ZNPs-loaded nanocomposites, in terms of morphology, permeability, solubility, optical features, hydrophobic/hydrophilic behavior, structural characteristics, thermal features, and mechanical attributes. Finally, at the end of this review, some considerations about the safety issues and gastrointestinal fate of ZNPs, as well as the use of ZNPs-based nanocomposites as food packaging, are reported, taking into account that, despite the enormous benefits, nanotechnology also presents some risks associated to the use of nanometric materials.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Co. Cork, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Atlantic Technological University, Galway, Ireland
| | - Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Injeela Khan
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy
| |
Collapse
|
26
|
Souza EM, Ferreira MR, Soares LA. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Li S, Jiao B, Faisal S, Zhang Y, Wu B, Li W, Shi A, Liu H, Wang Q. 50/50 oil/water emulsion stabilized by pea protein isolate microgel particles/xanthan gum complexes and co-emulsifiers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Edible Oleogels Fabricated by Dispersing Cellulose Particles in Oil Phase: Effects from the Water Addition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Effects of zein modifying polar amino acids as surface stabilizers on the emulsification stability of milk cream diacylglycerol. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Wang H, Li HM, Li ZZ, Liang XY, Lei L, Yuan Y. Novel strategy for color-controllable Pickering emulsion: Location control of pigments at different phase. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Soy oil and SPI based-oleogels structuring with glycerol monolaurate by emulsion-templated approach: Preparation, characterization and potential application. Food Chem 2022; 397:133767. [PMID: 35905623 DOI: 10.1016/j.foodchem.2022.133767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
In this study, soybean oil-based oleogels were prepared using soy-protein isolate (SPI) and glycerol monolaurate (GML) in an emulsion-template approach. The rheological, texture, microstructure, and oil-retention properties of the obtained oleogels were analyzed. Results showed that the soy oil-based oleogel prepared with 6 wt% GML exhibited high oil loss, low-hardness, and needle-like morphology compared to the soy-oil/SPI-based oleogel. On the other hand, soy oil-based /SPI-based oleogels structured by 3 or 6 wt% GML presented moderate thermal-stability and lowest oil loss than those prepared without GML. Furthermore, SPI-based oleogel containing 6 wt% GML showed highest free fatty acids release (62.07%) with significantly improved elastic modulus and apparent viscosity. Additionally, the obtained oleogels displayed the occurrence of van der Waals interactions and intermolecular hydrogen bonds, presenting enhanced thermal stability. These results contribute to a better understanding of oleogelation-based emulsions for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.
Collapse
|
32
|
Liu Z, Cao Z, Zhao M, Zhang H, Wang J, Sun B. Synergistic influence of protein particles and low-molecular-weight emulsifiers on the stability of a milk fat-based whippable oil-in-water emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Influence of xanthan gum on properties and stability of oil-in-water Pickering emulsions stabilized by zein colloidal particles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Chen W, Ma H, Wang YY. Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. ULTRASONICS SONOCHEMISTRY 2022; 85:105993. [PMID: 35367738 PMCID: PMC8983432 DOI: 10.1016/j.ultsonch.2022.105993] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 05/21/2023]
Abstract
High intensity ultrasound (HIU) is an efficient and green technology that has recently received enormous research attention for modification of food proteins. However, there are still several knowledge gaps in the possible mechanisms, synergistic effects of HIU with other strategies and improvement of HIU equipment that contribute to its application in the food industry. This review focuses on the recent research progress on the effects and potential mechanisms of HIU on the structure (including secondary and tertiary structure) and functionality (including solubility, emulsibility, foamability, and gelability) of proteins. Furthermore, the combination methods and innovations of HIU equipment for proteins modification in recent years are also detailed. Meanwhile, the possible future trends of food proteins modification by HIU are also considered and proposed.
Collapse
Affiliation(s)
- Wenqing Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yao-Yao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
35
|
Honciuc A, Negru OI. Role of Surface Energy of Nanoparticle Stabilizers in the Synthesis of Microspheres via Pickering Emulsion Polymerization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:995. [PMID: 35335808 PMCID: PMC8949673 DOI: 10.3390/nano12060995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Polymer microspheres are important for a variety of applications, such as ion exchange chromatography, catalyst supports, absorbents, etc. Synthesis of large microspheres can be challenging, because they cannot be obtained easily via classic emulsion polymerization, but rather by more complex methods. Here, we present a facile method for obtaining polymer microspheres, beyond 50 μm, via Pickering emulsion polymerization. The method consists in creating oil-in-water (o/w) Pickering emulsion/suspension from vinyl bearing monomers, immiscible with water, whereas silica nanoparticles (NPs), bearing glycidyl functionalities, have a stabilizing role by adsorbing at the monomer/water interface of emulsion droplets. The emulsion is polymerized under UV light, and polymer microspheres decorated with NPs are obtained. We discovered that the contact angle of the NPs with the polymer microsphere is the key parameter for tuning the size and the quality of the obtained microspheres. The contact angle depends on the NPs' interfacial energy and its polar and dispersive contributions, which we determine with a newly developed NanoTraPPED method. By varying the NPs' surface functionality, we demonstrate that when their interfacial energy with water decreases, their energy of adhesion to water increases, causing the curvature of the polymer/water interface to decrease, resulting in increasingly larger polymer microspheres.
Collapse
Affiliation(s)
- Andrei Honciuc
- Electroactive Polymers and Plasmochemistry Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania;
| | | |
Collapse
|
36
|
Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Chang C, Li J, Su Y, Gu L, Yang Y, Zhai J. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Tangsrianugul N, Winuprasith T, Suphantharika M, Wongkongkatep J. Effect of hydrocolloids on physicochemical properties, stability, and digestibility of Pickering emulsions stabilized by nanofibrillated cellulose. Food Funct 2022; 13:990-999. [PMID: 35015014 DOI: 10.1039/d1fo02933a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, the effect of hydrocolloids with different electrostatic characteristics, namely negatively charged xanthan gum (XG), positively charged chitosan (CH), and non-ionic guar gum (GG), on the physicochemical properties, stability, and lipid digestibility of 10% (w/w) soybean oil-in-water Pickering emulsions stabilized by nanofibrillated cellulose (NFC) was investigated. Addition of XG and CH to the NFC-stabilized emulsions significantly increased the oil droplet sizes and apparent viscosity at high shear rates as compared with the addition of GG. The XG added emulsion showed the lowest rate and extent of creaming, whereas the CH added emulsion gave the highest extent of creaming. The addition of XG and CH led to a more pronounced effect on in vitro lipid digestion, i.e. changes in droplet sizes, surface charges, microstructure, and free fatty acid (FFA) release, than the addition of GG. The XG added emulsion showed the lowest rate and extent of lipid digestion possibly due to the high viscosity of the aqueous phase, large oil droplet sizes, and interaction of XG and calcium, resulting in the reduction of lipase activity. The CH added emulsion exhibited the highest extent of lipid digestion possibly due to binding between CH and FFAs and move away from the droplet surfaces, thereby facilitating the lipase activity. In summary, it can be concluded that ionic hydrocolloids exerted more influence on NFC-stabilized Pickering emulsions than non-ionic ones. These results may facilitate the design of highly stable emulsion-based functional food products with added hydrocolloids to promote health and wellness.
Collapse
Affiliation(s)
- Nuttinee Tangsrianugul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| | | | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| | - Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| |
Collapse
|
40
|
Ye L, Huang W, Deng Y, Li Z, Jiang Y, Xie Q. Development of a pluronic-zein-curcumin drug delivery system with effective improvement of hydrophilicity, stability and sustained-release. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Gao Z, Zhang C, Wu Y, Chen F, Hu B, Wang R, Yang J, Nishinari K. Composite oleogels formed by cellulose particles and sorbitan acid esters. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2021.100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Koroleva MY, Yurtov EV. Pickering emulsions: properties, structure, using as colloidosomes and stimuli-responsive emulsions. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Li M, He S. Utilization of zein-based particles in Pickering emulsions: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ming Li
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin, PR China
- Development Engineering Center of Edible Plant Resources of Changbai Mountain, Tonghua Normal University, Tonghua, Jilin, PR China
| | - Shudong He
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
44
|
Li S, Jiao B, Meng S, Fu W, Faisal S, Li X, Liu H, Wang Q. Edible mayonnaise-like Pickering emulsion stabilized by pea protein isolate microgels: Effect of food ingredients in commercial mayonnaise recipe. Food Chem 2021; 376:131866. [PMID: 34974399 DOI: 10.1016/j.foodchem.2021.131866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
Particle stabilized O/W Pickering emulsion has great potential for making egg-free mayonnaise. In this study, we fabricated pea protein isolate (PPI) microgels by gel-breaking method and applied in mayonnaise-like Pickering emulsion. The effects of acetic acid (pH), sodium chloride (NaCl), and sucrose, which are typically used in commercial mayonnaise were studied. The minimum droplet size (47.0 μm) was found below isoelectric point. The NaCl decreased ζ-potential to almost 0 and risen droplet size to 75.9 μm. The sucrose enhanced the emulsion's viscosity while lowering thixotropic recovery rate. Based on droplet size, viscosity, thixotropic recovery, and microstructure; 350 mmol NaCl and 4 wt% sucrose was finally used to make egg-free mayonnaise-like Pickering emulsion, and showed similar properties compared with commercial mayonnaise, and the thixotropy recovery rate was near 100%. A plant-scale test further confirmed the feasibility. The results showed the PPI microgels had a strong application prospect to form egg-free mayonnaise.
Collapse
Affiliation(s)
- Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Shi Meng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Nestle R&D (China) Limited, Beijing 100015, China.
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaomin Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
45
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Liu G, Li B. Characteristics of Pickering emulsions stabilized by tea water-insoluble protein nanoparticles at different pH values. Food Chem 2021; 375:131795. [PMID: 34922274 DOI: 10.1016/j.foodchem.2021.131795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
This study aimed to explore the characteristics of Pickering emulsions stabilized by tea water-insoluble protein nanoparticles (TWIPNs) at different pH values. The characteristics of TWIPNs at different pH values were analysed first. The average hydrodynamic diameter of TWIPNs in the suspension was smaller than 400 nm at pH 7-11. TWIPNs at pH 3 could not be used to stabilize Pickering emulsions. The flocculation index (FI) of fresh TWIPN-stabilized Pickering emulsions (TWIPNPEs) at pH 5 was higher than those of TWIPNPEs at pH 7-11 (FI < 5%), indicating that bridging flocculation led to the aggregation of small emulsion droplets. The zeta potential of TWIPNPEs at pH 7-11 did not change after 7 d. In addition, the TWIPNPEs showed gel-like properties under neutral and alkaline conditions. These results will be helpful for broadening the application of TWIPNPEs at different pH values.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Wuyin Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, China
| | - Guangming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
46
|
|
47
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
48
|
Ribeiro E, Morell P, Nicoletti V, Quiles A, Hernando I. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Chang C, Li J, Su Y, Yang Y. Effect of preparation procedure on properties of egg white protein and the fibrous microparticle stabilized complex emulsions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3798-3806. [PMID: 34471303 PMCID: PMC8357902 DOI: 10.1007/s13197-020-04840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 06/13/2023]
Abstract
This study, three different procedures were used for preparation of egg white protein (E) and egg white protein fibrous microparticle (EM) complex emulsions, to modify the interfacial and aqueous composition. According to the adding order of EM and E during emulsification, the emulsions were named as type I (EM and E mixed firstly, followed by emulsification), type II (emulsified with EM firstly, followed by the addition of E) and type III (emulsified with EM firstly, followed by the addition of E). The particle size, creaming stability at various salt concentration, elastic module (G'), and lipid oxidation degree were investigated. The results showed that, EM at interface is beneficial for improving salt resistance of the complex emulsions, while E was more effective in terms of preventing oxidation of oil, attributed to the possibility to form continuous elastic interface film. The type III complex emulsion at EM:E ratio of 2:1 showed both improved creaming and oxidation stability, behaving the potential to be used as carrier of lipo-nutrients.
Collapse
Affiliation(s)
- Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| |
Collapse
|
50
|
Valarini Junior O, Cardoso FAR, Souza GBM, Machado Giufrida W, Cardozo‐Filho L. Single step encapsulation process of ivermectin in biocompatible polymer using a supercritical antisolvent system process. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Osvaldo Valarini Junior
- Department of Chemical Engineering, Center of Technology State University of Maringá Maringá Brazil
- Post‐Graduation Program of Agrochemistry Federal Goiano Institute Rio Verde Brazil
| | | | | | | | - Lucio Cardozo‐Filho
- Department of Chemical Engineering, Center of Technology State University of Maringá Maringá Brazil
- Center for Research Octavio Bastos University Center (UNIFEOB) São João da Boa Vista Brazil
| |
Collapse
|