1
|
Dai Y, Chen Y, Lin X, Zhang S. Recent Applications and Prospects of Enzymes in Quality and Safety Control of Fermented Foods. Foods 2024; 13:3804. [PMID: 39682876 DOI: 10.3390/foods13233804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Fermented foods have gained global attention for their unique flavor and immense health benefits. These flavor compounds and nutrients result from the metabolic activities of microorganism during fermentation. However, some unpleasant sensory characteristics and biohazard substances could also be generated in fermentation process. These quality and safety issues in fermented foods could be addressed by endogenous enzymes. In this review, the applications of enzymes in quality control of fermented foods, including texture improvement, appearance stability, aroma enhancement, and debittering, are discussed. Furthermore, the enzymes employed in eliminating biohazard compounds such as ethyl carbamate, biogenic amines, and nitrites, formed during fermentation, are reviewed. Advanced biological methods used for enhancing the enzymatic activity and stability are also summarized. This review focused on the applications and future prospects of enzymes in the improvement quality and safety qualities of fermented foods.
Collapse
Affiliation(s)
- Yiwei Dai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Mailänder LK, Nosrati Gazafroudi K, Lorenz P, Daniels R, Stintzing FC, Kammerer DR. It Is Not All about Alkaloids-Overlooked Secondary Constituents in Roots and Rhizomes of Gelsemium sempervirens (L.) J.St.-Hil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2208. [PMID: 39204644 PMCID: PMC11358907 DOI: 10.3390/plants13162208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Gelsemium sempervirens (L.) J.St.-Hil. is an evergreen shrub occurring naturally in North and Middle America. So far, more than 120 alkaloids have been identified in this plant in addition to steroids, coumarins and iridoids, and its use in traditional medicine has been traced back to these compound classes. However, a comprehensive phytochemical investigation of the plant with a special focus on further compound classes has not yet been performed. Therefore, the present study aimed at an extensive HPLC-MSn characterization of secondary metabolites and, for the first time, reports the occurrence of various depsides and phenolic glycerides in G. sempervirens roots and rhizomes, consisting of benzoic and cinnamic acid derivatives as well as dicarboxylic acids. Furthermore, mono- and disaccharides were assigned by GC-MS. Applying the Folin-Ciocalteu assay, the phenolic content of extracts obtained with different solvents was estimated to range from 30 to 50% calculated as chlorogenic acid equivalents per g dry weight and was related to the DPPH radical scavenging activity of the respective extracts. Upon lactic acid fermentation of aqueous G. sempervirens extracts, degradation of phenolic esters was observed going along with the formation of low-molecular volatile metabolites.
Collapse
Affiliation(s)
- Lilo K. Mailänder
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Khadijeh Nosrati Gazafroudi
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Peter Lorenz
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Florian C. Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| |
Collapse
|
3
|
Ye Q, Lao L, Zhang A, Qin Y, Zong M, Pan D, Yang H, Wu Z. Multifunctional properties of the transmembrane LPxTG-motif protein derived from Limosilactobacillus reuteri SH-23. J Dairy Sci 2023; 106:8207-8220. [PMID: 37641365 DOI: 10.3168/jds.2023-23440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 08/31/2023]
Abstract
The LPxTG-motif protein is an important transmembrane protein with high hydrophilicity and stability, as evidenced by its stress tolerance and adhesion ability. In this study, a novel LPxTG-motif protein with esterase activity (LEP) was expressed, and the multifunctional properties such as adhesion properties and esterase activity were also investigated. When cocultured with Limosilactobacillus reuteri SH-23, the adhesion ability of L. reuteri SH-23 to HT-29 cells was improved, and this adhesion was further found relating to the potential target protein Pyruvate kinase M1/2 (PKM) of HT-29 cells. In addition, as a multifunctional protein, LEP can promote the hydrolysis of bovine milk lipids with its esterase activity, and the activity was enhanced in the presence of Zn2+ and Mn2+ at pH 7. Furthermore, the polyunsaturated fatty acids (PUFA) such as linoleic acid and eicosapentaenoic acid were found to increase during the hydrolyzing process. These unique properties of LEP provide a comprehensive understanding of the adhesion function and PUFA releasing properties of the multifunctional protein derived from L. reuteri SH-23 and shed light on the beneficial effect of this Lactobacillus strain on the colonization of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianwen Ye
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Lifeng Lao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Ao Zhang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yiman Qin
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Manli Zong
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Hua Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, Zhejiang, P. R. China.
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| |
Collapse
|
4
|
Zhu LX, Wang H, Han PJ, Lan YB. Identification of dominant functional microbes that contribute to the characteristic aroma of Msalais, traditional wine fermented from boiled local grape juice in China. Food Chem X 2023; 19:100778. [PMID: 37780303 PMCID: PMC10534102 DOI: 10.1016/j.fochx.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/10/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023] Open
Abstract
Msalais is a traditional wine produced from naturally fermented boiled local grape juice in China. It has characteristic dried fruit and caramel odors, mainly attributed to aromatic compounds, such as furaneol and 5-methylfurfural. However, it is unclear how microbes involved in the natural fermentation of Msalais contribute to this characteristic aroma. Here, we analyzed the Msalais-fermenting microbes and aromatic compounds formed during natural Msalais fermentation by using high-throughput sequencing and gas chromatography-mass spectrometry, respectively. The analysis revealed that Saccharomyces cerevisiae, Kazachstania humilis, Lactobacillus plantarum, and Lactobacillus farraginis are the dominant and key functional species that produce high amounts of furaneol and 5-methylfurfural during Msalais fermentation. Of these, K. humilis and L. farraginis are rarely detected during regular wine fermentation. The identified functional species could be used to control typical aromatic characteristics of Msalais.
Collapse
Affiliation(s)
- Li-Xia Zhu
- Production and Construction Group, Key Laboratory of High-Quality Agricultural Product Extensive Processing in Southern Xinjiang, Tarim University, Alar, Xinjiang 843300, PR China
| | - Hui Wang
- Production and Construction Group, Key Laboratory of High-Quality Agricultural Product Extensive Processing in Southern Xinjiang, Tarim University, Alar, Xinjiang 843300, PR China
| | - Pei-jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi-Bin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
5
|
Cao Z, Liu Z, Zhang G, Mao X. P mutants with different promoting period and their application for quorum sensing regulated protein expression. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Cold-Active Enzymes and Their Potential Industrial Applications-A Review. Molecules 2022; 27:molecules27185885. [PMID: 36144621 PMCID: PMC9501442 DOI: 10.3390/molecules27185885] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
More than 70% of our planet is covered by extremely cold environments, nourishing a broad diversity of microbial life. Temperature is the most significant parameter that plays a key role in the distribution of microorganisms on our planet. Psychrophilic microorganisms are the most prominent inhabitants of the cold ecosystems, and they possess potential cold-active enzymes with diverse uses in the research and commercial sectors. Psychrophiles are modified to nurture, replicate, and retain their active metabolic activities in low temperatures. Their enzymes possess characteristics of maximal activity at low to adequate temperatures; this feature makes them more appealing and attractive in biotechnology. The high enzymatic activity of psychrozymes at low temperatures implies an important feature for energy saving. These enzymes have proven more advantageous than their mesophilic and thermophilic counterparts. Therefore, it is very important to explore the efficiency and utility of different psychrozymes in food processing, pharmaceuticals, brewing, bioremediation, and molecular biology. In this review, we focused on the properties of cold-active enzymes and their diverse uses in different industries and research areas. This review will provide insight into the areas and characteristics to be improved in cold-active enzymes so that potential and desired enzymes can be made available for commercial purposes.
Collapse
|
7
|
Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. SUSTAINABILITY 2022. [DOI: 10.3390/su14148673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactions catalysed by sustainably produced enzymes can contribute to the bioeconomy supporting several industries. Low-value compounds can be transformed into added-value products or high-resolution chemicals could be prepared in reactions catalysed by biocatalyst esterase enzymes. These enzymes can be synthesised by purposely isolated or genetically modified strains of microorganisms. Enzymes belonging to the hydrolase family catalyse the formation and hydrolysis of ester bonds to produce the desired esterified molecule. The synthesis of homo-chiral compounds can be accomplished either by chemical or biocatalytic processes, the latter being preferred with the use of microbial esterases. For varied applications, esterases with high stability and retained activity at lower and higher temperatures have been produced with strains isolated from extreme environments. For sustainable production of enzymes, higher productivity has been achieved by employing fast-growing Escherichia coli after incorporating plasmids of required characteristics from specific isolates. This is a review of the isolated and engineered strains used in the biosynthesis of esterase of the desired property, with the objective of a sustainable supply of enzymes, to produce products of industrial importance contributing to the economy.
Collapse
|
8
|
Li BC, Guo TT, Ding GB. Characteration of a novel arylesterase from probiotics Lacticaseibacillus rhamnosus GG with the preference for medium- and long-chain p-Nitrophenyl esters. 3 Biotech 2021; 11:496. [PMID: 34881159 DOI: 10.1007/s13205-021-03053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
We prospected a novel arylesterase LggEst from the probiotics Lacticaseibacillus rhamnosus GG by genome mining strategy, and characterized the enzymatic properties in detail. Biochemical characterization revealed that arylesterase LggEst presented high activity at a wide range of temperatures from 25 to 65 °C with maximum activity at 50 °C. LggEst maintained high activity in the pH range from 5.5 to 7.5 with optimum pH of 6.5. LggEst might efficiently hydrolyze a series of aryl substrates p-nitrophenyl esters with different acyl chain lengths. LggEst displayed the Vmax from 2.8 to 77.3 μmol min-1 mg-1 protein and the k cat from 1.8 to 48.8 s-1 with the highest catalytic activity on pNPC6. The K M of LggEst on different substrates varied significantly from 4.9 μM to 5.6 mM with the highest affinity on pNPC10. LggEst exhibited the preference for medium- and long-chain p-nitrophenyl esters. LggEst showed remarkable thermostability at 45 °C. LggEst could be tolerant of several organic solvents at the concentration of 10% and DMSO and methanol at the concentration of 20%. Catalytic activity of LggEst was improved by 12% in the presence of 20% ethylene glycol. LggEst was resistant to high concentrations of sodium citrate and sodium chloride. Notably, enzymatic activity of LggEst was significantly enhanced in the presence of 0.1% sodium deoxycholate at high temperatures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03053-7.
Collapse
|
9
|
Wei X, Wang YL, Wen BT, Liu SJ, Wang L, Sun L, Gu TY, Li Z, Bao Y, Fan SL, Zhou H, Wang F, Xin F. The α-Helical Cap Domain of a Novel Esterase from Gut Alistipes shahii Shaping the Substrate-Binding Pocket. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6064-6072. [PMID: 33979121 DOI: 10.1021/acs.jafc.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The human gut microbiota regulates nutritional metabolism, especially by encoding specific ferulic acid esterases (FAEs) to release functional ferulic acid (FA) from dietary fiber. In our previous study, we observed seven upregulated FAE genes during in vitro fecal slurry fermentation using wheat bran. Here, a 29 kDa FAE (AsFAE) from Alistipes shahii of Bacteroides was characterized and identified as the type-A FAE. The X-ray structure of AsFAE has been determined, revealing a unique α-helical domain comprising five α-helices, which was first characterized in FAEs from the gut microbiota. Further molecular docking analysis and biochemical studies revealed that Tyr100, Thr122, Tyr219, and Ile220 are essential for substrate binding and catalytic efficiency. Additionally, Glu129 and Lys130 in the cap domain shaped the substrate-binding pocket and affected the substrate preference. This is the first report on A. shahii FAE, providing a theoretical basis for the dietary metabolism in the human gut.
Collapse
Affiliation(s)
- Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu-Lu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo-Ting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shu-Jun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyao Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian-Yi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Long Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fengzhong Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res Int 2020; 137:109553. [DOI: 10.1016/j.foodres.2020.109553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
|
11
|
Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Purpose
The aim of this study was to identify salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains, isolated from Chinese traditional fermented food, by genomic analysis.
Methods
Tolerance of L. plantarum D31 and T9 strains was evaluated at different stress conditions (temperatures, acid, osmolality, and artificial gastrointestinal fluids). Draft genomes of the two strains were determined using the Illumina sequencing technique. Comparative genomic analysis and gene transcriptional analysis were performed to identify and validate the salt tolerance-related genes.
Results
Both L. plantarum D31 and T9 strains were able to withstand high osmotic pressure caused by 5.0% NaCl, and L. plantarum D31 even to tolerate 8.0% NaCl. L. plantarum D31 genome contained 3,315,786 bp (44.5% GC content) with 3106 predicted protein-encoding genes, while L. plantarum T9 contained 3,388,070 bp (44.1% GC content) with 3223 genes. Comparative genomic analysis revealed a number of genes involved in the maintenance of intracellular ion balance, absorption or synthesis of compatible solutes, stress response, and modulation of membrane composition in L. plantarum D31 and or T9 genomes. Gene transcriptional analysis validated that most of these genes were coupled with the stress-resistance phenotypes of the two strains.
Conclusions
L. plantarum D31 and T9 strains tolerated 5.0% NaCl, and D31 even tolerated 8.0% NaCl. The draft genomes of these two strains were determined, and comparative genomic analysis revealed multiple molecular coping strategies for the salt stress tolerance in L. plantarum D31 and T9 strains.
Collapse
|
12
|
Shang F, Lan J, Liu W, Chen Y, Wang L, Zhao J, Chen J, Gao P, Ha NC, Quan C, Nam KH, Xu Y. Structural and functional analyses of the lipase CinB from Enterobacter asburiae. Biochem Biophys Res Commun 2019; 519:274-279. [DOI: 10.1016/j.bbrc.2019.08.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
13
|
Screening, Isolation and Identification of Thermophilic Esterase Enzyme Isolated from Rhodococcus SP: LKE-021. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
15
|
Fan X, Liang M, Wang L, Chen R, Li H, Liu X. Aii810, a Novel Cold-Adapted N-Acylhomoserine Lactonase Discovered in a Metagenome, Can Strongly Attenuate Pseudomonas aeruginosa Virulence Factors and Biofilm Formation. Front Microbiol 2017; 8:1950. [PMID: 29067011 PMCID: PMC5641347 DOI: 10.3389/fmicb.2017.01950] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022] Open
Abstract
The pathogen Pseudomonas aeruginosa uses quorum sensing (QS) to control virulence and biofilm formation. Enzymatic disruption of quorum sensing is a promising anti-infection therapeutic strategy that does not rely on antibiotics. Here, a novel gene (aii810) encoding an N-acylhomoserine lactonase was isolated from the Mao-tofu metagenome for the first time. Aii810 encoded a protein of 269 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. It showed the highest activity at 20°C, and it maintained 76.5% of activity at 0°C and more than 50% activity at 0–40°C. The optimal pH was 8.0. It was stable in both neutral and slightly alkaline conditions and at temperatures below 40°C. The enzyme hydrolyzed several ρ-nitrophenyl esters, but its best substrate was ρ-nitrophenyl acetate. Its kcat and Km values were 347.7 S-1 and 205.1 μM, respectively. It efficiently degraded N-butyryl-L-homoserine lactone and N-(3-oxododecanoyl)-L-homoserine lactone, exceeding hydrolysis rates of 72.3 and 100%, respectively. Moreover, Aii810 strongly attenuated P. aeruginosa virulence and biofilm formation. This enzyme with high anti-QS activity was the most cold-adapted N-acylhomoserine lactonase reported, which makes it an attractive enzyme for use as a therapeutic agent against P. aeruginosa infection.
Collapse
Affiliation(s)
- Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingjun Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ruo Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - He Li
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Fan X, Liang W, Li Y, Li H, Liu X. Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microb Cell Fact 2017; 16:149. [PMID: 28893251 PMCID: PMC5594479 DOI: 10.1186/s12934-017-0767-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pyrethroids are potentially harmful to living organisms and ecosystems. Thus, concerns have been raised about pyrethroid residues and their persistence in agricultural products. To date, although several pyrethroid-hydrolyzing enzymes have been cloned, very few reports are available on pyrethroid-hydrolyzing enzymes with cold adaptation, high hydrolytic activity and good reusability, indispensable properties in practical bioremediation of pyrethroid-contaminated vegetables. RESULTS Here, a novel gene (est684) encoding pyrethroid-hydrolyzing esterase was isolated from the Mao-tofu metagenome for the first time. Est684 encoded a protein of 227 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. The optimum temperature was 18 °C. It maintained 46.1% of activity at 0 °C and over 50% of its maximal activity at 4-35 °C. With the goal of enhancing stability and recycling biocatalysts, we used mesoporous silica SBA-15 as a nanometer carrier for the efficient immobilization of Est684 by the absorption method. The best conditions were an esterase-to-silica ratio of 0.96 mg/g (w/w) and an adsorption time of 30 min at 10 °C. Under these conditions, the recovery of enzyme activity was 81.3%. A large improvement in the thermostability of Est684 was achieved. The half-life (T1/2) of the immobilized enzyme at 35 °C was 6 h, 4 times longer than the soluble enzyme. Interestingly, the immobilized Est684 had less loss in enzyme activity up to 12 consecutive cycles, and it retained nearly 54% of its activity after 28 cycles, indicating excellent operational stability. Another noteworthy characteristic was its high catalytic activity. It efficiently hydrolyzed cyhalothrin, cypermethrin, and fenvalreate in pyrethroid-contaminated cucumber within 5 min, reaching over 85% degradation efficiency after four cycles. CONCLUSIONS A novel cold-adapted pyrethroid-hydrolyzing esterase was screened from the Mao-tofu metagenome. This report is the first on immobilizing pyrethroid-hydrolyzing enzyme on mesoporous silica. The immobilized enzyme with high hydrolytic activity and outstanding reusability has a remarkable potential for bioremediation of pyrethroid-contaminated vegetables, and it is proposed as an industrial enzyme.
Collapse
Affiliation(s)
- Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Weiqu Liang
- Dongguan Agriculture Research Center, Dongguan, 523079, Guangdong, People's Republic of China
| | - Yanfang Li
- Dongguan Agriculture Research Center, Dongguan, 523079, Guangdong, People's Republic of China
| | - He Li
- School of Basic Courses, Guangdong Pharmaceutical University, 280 E. Outer Ring Rd., Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
17
|
Kang LJ, Meng ZT, Hu C, Zhang Y, Guo HL, Li Q, Li M. Screening, purification, and characterization of a novel organic solvent-tolerant esterase, Lip2, from Monascus purpureus strain M7. Extremophiles 2017; 21:345-355. [DOI: 10.1007/s00792-016-0907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/19/2016] [Indexed: 12/01/2022]
|
18
|
Kim Y, Ryu BH, Kim J, Yoo W, An DR, Kim BY, Kwon S, Lee S, Wang Y, Kim KK, Kim TD. Characterization of a novel SGNH-type esterase from Lactobacillus plantarum. Int J Biol Macromol 2016; 96:560-568. [PMID: 28040493 DOI: 10.1016/j.ijbiomac.2016.12.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Lactic acid bacteria (LAB) are sources of a large variety of microbial ester hydrolases because they can produce a wide range of short-chain esters, phenolic alcohols, and fatty acids. Here, a novel SGNH-type esterase (LpSGNH1) from Lactobacillus plantarum WCFS1 was identified, functionally characterized, and immobilized for biotechnological applications. Homologs of LpSGNH1 are also found in many lactic acid bacteria (LAB) species. Biochemical features of LpSGNH1 were investigated using mass spectrometry, gel filtration chromatography, enzyme kinetics, fluorescence, and circular dichroism (CD) spectroscopy. LpSGNH1 were retained its activity under conditions that would be encountered during fermentations. Interestingly, LpSGNH1 exhibited the ability to act on a broad range of substrates including ketoprofen acetate, cefotaxime (CTX), and 7-aminocephalosporanic acid (7-ACA) as well as glucose pentaacetate, acetylxylan, and acetylalginate, which make LpSGNH1 a great candidate for extensive industrial applications. Furthermore, cross-linked enzyme aggregates of LpSGNH1 (CLEA-LpSGNH1) displayed recycling ability and thermal stability compared to free LpSGNH1, which could be useful for industrial applications. This work highlights the importance of LpSGNH1 in the preparation of commercial compounds, and LpSGNH1 can be used as a model system of SGNH esterases in lactic acid bacteria.
Collapse
Affiliation(s)
- Yonggyu Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Jimin Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Deu Rae An
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Boo-Young Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sena Kwon
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sojeong Lee
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea.
| |
Collapse
|
19
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
20
|
Esteban-Torres M, Reverón I, Santamaría L, Mancheño JM, de Las Rivas B, Muñoz R. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum. Front Microbiol 2016; 7:1118. [PMID: 27486450 PMCID: PMC4949240 DOI: 10.3389/fmicb.2016.01118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023] Open
Abstract
Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions.
Collapse
Affiliation(s)
- María Esteban-Torres
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC Madrid, Spain
| | - Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC Madrid, Spain
| | - Laura Santamaría
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC Madrid, Spain
| | - José M Mancheño
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," IQFR-CSIC Madrid, Spain
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC Madrid, Spain
| | - Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC Madrid, Spain
| |
Collapse
|
21
|
De Santi C, Willassen NP, Williamson A. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome. PLoS One 2016; 11:e0159345. [PMID: 27433797 PMCID: PMC4951047 DOI: 10.1371/journal.pone.0159345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.
Collapse
Affiliation(s)
- Concetta De Santi
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Adele Williamson
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
22
|
Guo H, Zhang Y, Shao Y, Chen W, Chen F, Li M. Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7. Extremophiles 2016; 20:451-9. [DOI: 10.1007/s00792-016-0835-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/15/2016] [Indexed: 01/27/2023]
|
23
|
Functional and bioinformatics analysis of an exopolysaccharide-related gene (epsN) from Lactobacillus kefiranofaciens ZW3. Arch Microbiol 2016; 198:611-8. [PMID: 27084765 DOI: 10.1007/s00203-016-1217-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
A novel lactic acid bacteria strain Lactobacillus kefiranofaciens ZW3 exhibited the characteristics of high production of exopolysaccharide (EPS). The epsN gene, located in the eps gene cluster of this strain, is associated with EPS biosynthesis. Bioinformatics analysis of this gene was performed. The conserved domain analysis showed that the EpsN protein contained MATE-Wzx-like domains. Then the epsN gene was amplified to construct the recombinant expression vector pMG36e-epsN. The results showed that the EPS yields of the recombinants were significantly improved. By determining the yields of EPS and intracellular polysaccharide, it was considered that epsN gene could play its Wzx flippase role in the EPS biosynthesis. This is the first time to prove the effect of EpsN on L. kefiranofaciens EPS biosynthesis and further prove its functional property.
Collapse
|
24
|
Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles 2016; 20:323-36. [PMID: 27016194 DOI: 10.1007/s00792-016-0824-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 01/26/2023]
Abstract
A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures.
Collapse
|
25
|
Lee YS. Isolation and Characterization of a Novel Cold-Adapted Esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front Microbiol 2016; 7:218. [PMID: 26973604 PMCID: PMC4773448 DOI: 10.3389/fmicb.2016.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/10/2016] [Indexed: 11/30/2022] Open
Abstract
A novel esterase, MtEst45, was isolated from a fosmid genomic library of Microbulbifer thermotolerans DAU221. The encoding gene is predicted to have a mass of 45,564 Da and encodes 495 amino acids, excluding a 21 amino acid signal peptide. MtEst45 showed a low amino acid identity (approximately 23–24%) compared with other lipolytic enzymes belonging to Family III, a closely related bacterial lipolytic enzyme family. MtEst45 also showed a conserved GXSXG motif, G131IS133YG135, which was reported as active site of known lipolytic enzymes, and the putative catalytic triad composed of D237 and H265. Because these mutants of MtEst45, which was S133A, D237N, and H265L, had no activity, these catalytic triad is deemed essential for the enzyme catalysis. MtEst45 was overexpressed in Escherichia coli BL21 (DE3) and purified via His-tag affinity chromatography. The optimal pH and temperature of MtEst45 were estimated to be 8.17 and 46.27°C by response surface methodology, respectively. Additionally, MtEst45 was also active between 1 and 15°C. The optimal hydrolysis substrate for MtEst45 among p-nitrophenyl esters (C2–C18) was p-nitrophenyl butyrate, and the Km and Vmax values were 0.0998 mM and 550 μmol/min/mg of protein, respectively. MtEst45 was strongly inhibited by Hg2+, Zn2+, and Cu2+ ions; by phenylmethanesulfonyl fluoride; and by β-mercaptoethanol. Ca2+ did not affect the enzyme's activity. These biochemical properties, sequence identity, and phylogenetic analysis suggest that MtEst45 represents a novel and valuable bacterial lipolytic enzyme family and is useful for biotechnological applications.
Collapse
Affiliation(s)
- Yong-Suk Lee
- Department of Biotechnology, Dong-A University Busan, South Korea
| |
Collapse
|
26
|
A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci Rep 2016; 6:19494. [PMID: 26915906 PMCID: PMC4768246 DOI: 10.1038/srep19494] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 01/26/2023] Open
Abstract
A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications.
Collapse
|
27
|
Yang S, Qin Z, Duan X, Yan Q, Jiang Z. Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei. J Lipid Res 2015; 56:1616-24. [PMID: 26108223 PMCID: PMC4514002 DOI: 10.1194/jlr.m060673] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/19/2023] Open
Abstract
Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2–C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi.jlr The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases.
Collapse
Affiliation(s)
- Shaoqing Yang
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Zhen Qin
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Xiaojie Duan
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| |
Collapse
|
28
|
A Lactobacillus plantarum esterase active on a broad range of phenolic esters. Appl Environ Microbiol 2015; 81:3235-42. [PMID: 25746986 DOI: 10.1128/aem.00323-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments.
Collapse
|
29
|
Gu X, Wang S, Wang S, Zhao LX, Cao M, Feng Z. Identification and Characterization of Two Novel Esterases from a Metagenomic Library. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xinqi Gu
- College of Food Science and Technology, Nanjing Agricultural University
| | - Shilin Wang
- College of Food Science and Technology, Nanjing Agricultural University
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University
| | - Li-Xing Zhao
- Key Laboratory of Medicinal chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University
| |
Collapse
|
30
|
Esteban-Torres M, Santamaría L, de las Rivas B, Muñoz R. Characterisation of a cold-active and salt-tolerant esterase from Lactobacillus plantarum with potential application during cheese ripening. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|