1
|
Zhang H, Lv X, Su W, Chen BH, Lai YW, Xie R, Lin Q, Chen L, Cao H. Exploring the roles of excess amino acids, creatine, creatinine, and glucose in the formation of heterocyclic aromatic amines by UPLC-MS/MS. Food Chem 2024; 446:138760. [PMID: 38402760 DOI: 10.1016/j.foodchem.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The prevention and control of heterocyclic aromatic amines (HAA) formation to mitigate of potential risks to humans, can be achieved by targeting their precursors. In this study, the detailed roles of individual and excess component (20 common α-amino acids, creatine, creatinine, and glucose) on HAA formation in roasted beef patties were examined using UPLC-MS/MS. The results confirmed the reported classical precursors of HAAs. Some components regulated the competitive production of Norharman and Harman. Glycine (Gly) and glucose favored Norharman formation, while cysteine (Cys) and phenylalanine (Phe) for Harman. Serine (Ser) and threonine (Thr) were identified as potential precursors for IQx-type HAAs. Interestingly, methionine (Met), Gly, Thr, Cys, alanine (Ala), and Ser were revealed as more targeted underlying precursors for 1,6-DMIP and 1,5,6-TMIP, and the formation mechanism was inferred. Furthermore, Pro, Leu, His, Ile, Lys and Asp were considered as great inhibitors for HAAs.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Xiaomei Lv
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, China.
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, China.
| | - Ruiwei Xie
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Qiuyi Lin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Chen Q, Xu Y, Dong H, Bai W, Zeng X. Unraveling the relationships between processing conditions and PhIP formation in chemical model system and roast pork patty via principal component analysis. Food Chem X 2024; 22:101404. [PMID: 38707784 PMCID: PMC11068533 DOI: 10.1016/j.fochx.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP) is one of the higher levels of HAAs produced in protein foods during heating. The effects of heating temperature, time, and concentration of precursors on PhIP and related substances in the chemical model system and roast pork patty were studied using HPLC-Q-Orbitrap-HRMS and GC-MS. Results showed that the heating temperature, time, and concentration of four precursors significantly affected PhIP and its related substances (P < 0.05) in the chemical model system. Among them, PhIP production was greatest when heating at 200 min with 220 °C, and the concentrations of phenylalanine, creatinine, glucose, and creatine added were 10, 20, 20, and 20 mmol/L, respectively. Moreover, as the fat proportion of roast pork patties increased, PhIP and its intermediate-phenylacetaldehyde concentrations increased substantially (P < 0.05). PCA results showed that the samples of PhIP and related substances gradually dispersed as the temperature and time increased, and there were obvious effects among them.
Collapse
Affiliation(s)
- Qi Chen
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yan Xu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| |
Collapse
|
3
|
Li W, Wan X, Chen C, Guo Y, Jiao Y, He Z, Chen J, Li J, Yan Y. Effects of soy protein and its hydrolysates on the formation of heterocyclic aromatic amines in roasted pork. Meat Sci 2023; 204:109236. [PMID: 37339566 DOI: 10.1016/j.meatsci.2023.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
This study investigated the influence mechanism of soy protein and its hydrolysates (under three different degree of hydrolysis) on formation of heterocyclic aromatic amines (HAAs) formation in roasted pork. The results showed that 7S and its hydrolysates significantly inhibited the formation of quinoxaline HAAs, and the maximum inhibitory rate of MeIQx, 4,8-MeIQx, and IQx was 69%, 79%, and 100%, respectively. However, soy protein and its hydrolysates could promote the formation of pyridine HAAs (PhIP, and DMIP), its content increased significantly with the increase in the degree of hydrolysis of the protein. The content of PhIP increased 41, 54, and 165 times with the addition of SPI, 7S, and 11S at 11% degree of hydrolysis, respectively. In addition, they promoted the formation of β-carboline HAAs (Norharman and Harman), in a manner similar with that of PhIP, especially the 11S group. The inhibitory effect on quinoxaline HAAs was probably correlated with DPPH radical scavenging capacity. Nevertheless, the promotive effect on other HAAs might be related to the high levels of free amino acids and reactive carbonyls. This research may provide recommendation for the application of soy protein in high-temperature meat products.
Collapse
Affiliation(s)
- Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xin Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chunli Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yilin Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Yan
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China; Anhui Engineering Laboratory of Food Microbial Fermentation and Functional Application, Hefei 230031, China; Anhui Modern Agriculture Development center, Hefei 230012, China.
| |
Collapse
|
4
|
Zhou T, Yang K, Huang J, Fu W, Yan C, Wang Y. Effect of Short-Chain Fatty Acids and Polyunsaturated Fatty Acids on Metabolites in H460 Lung Cancer Cells. Molecules 2023; 28:molecules28052357. [PMID: 36903601 PMCID: PMC10005177 DOI: 10.3390/molecules28052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Lung cancer is the most common primary malignant lung tumor. However, the etiology of lung cancer is still unclear. Fatty acids include short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs) as essential components of lipids. SCFAs can enter the nucleus of cancer cells, inhibit histone deacetylase activity, and upregulate histone acetylation and crotonylation. Meanwhile, PUFAs can inhibit lung cancer cells. Moreover, they also play an essential role in inhibiting migration and invasion. However, the mechanisms and different effects of SCFAs and PUFAs on lung cancer remain unclear. Sodium acetate, butyrate, linoleic acid, and linolenic acid were selected to treat H460 lung cancer cells. Through untargeted metabonomics, it was observed that the differential metabolites were concentrated in energy metabolites, phospholipids, and bile acids. Then, targeted metabonomics was conducted for these three target types. Three LC-MS/MS methods were established for 71 compounds, including energy metabolites, phospholipids, and bile acids. The subsequent methodology validation results were used to verify the validity of the method. The targeted metabonomics results show that, in H460 lung cancer cells incubated with linolenic acid and linoleic acid, while the content of PCs increased significantly, the content of Lyso PCs decreased significantly. This demonstrates that there are significant changes in LCAT content before and after administration. Through subsequent WB and RT-PCR experiments, the result was verified. We demonstrated a substantial metabolic disparity between the dosing and control groups, further verifying the reliability of the method.
Collapse
Affiliation(s)
| | | | | | | | - Chao Yan
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| | - Yan Wang
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| |
Collapse
|
5
|
Determination of 2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) and its precursors and possible intermediates in a chemical model system and roast pork. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Yan Y, Zhou YQ, Huang JJ, Wan X, Zeng MM, Chen J, Li WW, Jiang J. Influence of soybean isolate on the formation of heterocyclic aromatic amines in roasted pork and its possible mechanism. Food Chem 2022; 369:130978. [PMID: 34500209 DOI: 10.1016/j.foodchem.2021.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
In this paper, the effects of soybean protein isolate (SPI) on the formations of five heterocyclic aromatic amines (HAAs) in roasted pork were investigated. The levels of all five HAAs improved upon addition of 2.5% of SPI (P < 0.05). With higher SPI dosage, the levels of HAA decreased after seeing an increase. Two HAAs (MeIQx and 4,8-DiMeIQx) were inhibited by 10.0% of SPI, with the inhibitory efficiencies of 7.0 % and 85.7%, respectively. After being heated, the levels of both the free amino acids and carbonyl groups in the SPI were observed significantly increased, from 55.04 μg g·SPI-1 to 91.66 μg g·SPI-1 and from 123.85 ± 13.07 to 931.78 ± 32.56, respectively (P < 0.05). Therefore, the possible promotion mechanism of the SPI was speculated that the heated SPI would provide both the HAA precursors and carbonyls, which significantly promoted the Strecker degradation and generated more HAA intermediates (P < 0.05).
Collapse
Affiliation(s)
- Yan Yan
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Ying-Qin Zhou
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Jing-Jing Huang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xin Wan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Mao-Mao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei-Wei Li
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Jiang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China.
| |
Collapse
|
7
|
Effects of thermal processing on N,N-dimethylpiperidinium (mepiquat) formation in meat and vegetable products. Food Res Int 2021; 150:110771. [PMID: 34865786 DOI: 10.1016/j.foodres.2021.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
N,N-dimethylpiperidinium (mepiquat) is an important food contaminant formed from natural ingredients during thermal processing. In this study, mepiquat formation in meat (pork and beef) and vegetables (potatoes and broccoli) was investigated via HPLC-MS/MS; the investigated cooking methods were oven baking, pan cooking, deep frying, and microwaving. The results showed that, among all foods, oven-baked potatoes showed the highest mepiquat level of 1064 μg/kg, which appeared after 20 min at 240 °C. The residual rates of mepiquat precursors, pipecolic acid (PipAc), betaine, choline, and trigonelline, were determined in oven-baked potatoes to investigate their correlation with mepiquat formation. The PipAc levels reduced by 99.8% at 260 °C after 30 min of oven baking, exhibiting a significantly high decomposition rate. Therefore, PipAc could be used as a marker of quality for the detection of mepiquat in thermally processed foodstuffs.
Collapse
|
8
|
Sun G, Wang P, Chen W, Hu X, Chen F, Zhu Y. Simultaneous quantitation of acrylamide, 5-hydroxymethylfurfural, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine using UPLC-MS/MS. Food Chem 2021; 375:131726. [PMID: 34954579 DOI: 10.1016/j.foodchem.2021.131726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
A robust and sensitive isotope dilution UPLC-MS/MS method was established for the simultaneous analysis of acrylamide (AA), 5-hydroxymethylfurfural (HMF), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP). A fairly good separation of three analytes was achieved within 4.5 min. High correlation coefficients (R2 > 0.9998) of the three compounds were obtained in their respective linear ranges. This method demonstrated low limits of detection (1.57 μg/L for AA, 0.61 μg/L for HMF, and 0.02 μg/L for PhIP) and limits of quantification (5.22 μg/L for AA, 2.03 μg/L for HMF, and 0.05 μg/L for PhIP). This method also demonstrated excellent quantification accuracy (99.02%-101.12%), precision (RSD < 6%), and recovery (82.83-119.92%) in the Maillard model systems and deep-fried meatballs. This work develops a fundamental method for the rapid simultaneous determination of AA, HMF, and PhIP in thermally processed foods that are both carbohydrates-rich and protein-rich, meanwhile providing technical support for the generation mechanism of various hazards.
Collapse
Affiliation(s)
- Guoyu Sun
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Pengpu Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Weina Chen
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Chen Q, Xue C, Chen J, He Z, Wang Z, Qin F, Wang Q, Cao Q, Oz F, Oz E, Chen J, Zeng M. Simultaneous determination of the PhIP-proline adduct and related precursors by UPLC-MS/MS for confirmation of direct elimination of PhIP by proline. Food Chem 2021; 365:130484. [PMID: 34237578 DOI: 10.1016/j.foodchem.2021.130484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
The effect and elimination pathway of proline on reducing PhIP and the effect of processing temperature, duration, and proline addition on the PhIP-proline adduct and its precursors were investigated. The results have demonstrated that PhIP and proline could condense to produce the adduct by direct heating, which could also be detected in the PhIP-producing model system and in beef patties with proline. The analytical method was optimized and has a good limit of detection (0.006-73 ng/mL), limit of quantification (0.021-245 ng/mL), recovery rate (about 80%-120%), and precision (below 15%). A high dose of proline (5.0%, w/w) promoted the formation of the adduct and reduction of PhIP; long heating duration and high temperature were not conducive to the formation of the adduct in beef patties. With increased addition of proline, creatine and creatinine decreased in a dose-dependent manner; phenylalanine and glucose did not show the same trend.
Collapse
Affiliation(s)
- Qiaochun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qin Wang
- Wuxi Institution of Supervision & Testing on Product Quality, Wuxi 214122, China
| | - Qiuqin Cao
- Wuxi Institution of Supervision & Testing on Product Quality, Wuxi 214122, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Sheng W, Zhang B, Zhao Q, Wang S, Zhang Y. Preparation of a Broad-Spectrum Heterocyclic Aromatic Amines (HAAs) Antibody and Its Application in Detection of Eight HAAs in Heat Processed Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15501-15508. [PMID: 33326242 DOI: 10.1021/acs.jafc.0c05480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potential human mutagens and carcinogens mainly generated in heat-treated meat. In this work, a broad-spectrum HAAs antibody was prepared and used to develop an indirect competitive ELISA (ic-ELISA) for simultaneous determination of eight HAAs, including 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f] quinoline (MeIQ), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx), 2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline (4,7,8-TriMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in grilled and fried meat samples. The limit of detection (LOD, calculated as IC10) and 50% inhibition concentration (IC50) of ic-ELISA were 5.29 μg/L and 99.08 μg/L, respectively. The detection results of this ic-ELISA were in good agreement with the detection results of UPLC-MS/MS in real samples, which indicated that this ic-ELISA can be applied to detect the total content of eight HAAs in heat processed meat. Use of a broad-spectrum antibody is an efficient strategy in developing immunoassay for simultaneous measuring food risk factors with similar structure.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Biao Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiuxia Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Quan W, Li Y, Jiao Y, Xue C, Liu G, Wang Z, He Z, Qin F, Zeng M, Chen J. Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system. Food Chem 2020; 332:127387. [PMID: 32629331 DOI: 10.1016/j.foodchem.2020.127387] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
|
12
|
DiaodiaoYang, Jing J, Zhang Z, He Z, Qin F, Chen J, Zeng M. Accumulation of heterocyclic amines across low-temperature sausage processing stages as revealed by UPLC-MS/MS. Food Res Int 2020; 137:109668. [PMID: 33233245 DOI: 10.1016/j.foodres.2020.109668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022]
Abstract
The accumulation of heterocyclic amines (HAs) in low-temperature sausages in each processing stage was investigated using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). The maximum total levels for free HAs, protein-bound HAs, and all HAs were respectively 1.91 ng/g, 162.91 ng/g and 164.82 ng/g. Harman, norharman, Glu-P-1, and PhIP accumulated from raw sausages and reached maximum of 50.88 ng/g, 84.59 ng/g, 9.60 ng/g, and 4.69 ng/g after steaming. The highest level of IQ[4,5-b] was 0.36 ng/g found in raw sausages. AαC, MeAαC, DMIP, and 1,5,6-TMIP were all produced after drying and reached maximum after steaming: 3.25 ng/g, 6.52 ng/g, 0.15 ng/g, and 2.78 ng/g. Additionally, Phe-P-1 reached a maximum of only 0.02 ng/g after drying. MeIQ was generated only after steaming, reaching a maximum of 2.11 ng/g. These results may provide some basis for the inhibition of HAs in meat products through target processing stages.
Collapse
Affiliation(s)
- DiaodiaoYang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Jing
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Xiamen 361100, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Dong H, Xian Y, Li H, Bai W, Zeng X. Potential carcinogenic heterocyclic aromatic amines (HAAs) in foodstuffs: Formation, extraction, analytical methods, and mitigation strategies. Compr Rev Food Sci Food Saf 2020; 19:365-404. [DOI: 10.1111/1541-4337.12527] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/16/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hao Dong
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute Guangzhou China
| | - Haixia Li
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| | - Xiaofang Zeng
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
14
|
A phenylacetaldehyde–flavonoid adduct, 8-C-(E-phenylethenyl)-norartocarpetin, exhibits intrinsic apoptosis and MAPK pathways-related anticancer potential on HepG2, SMMC-7721 and QGY-7703. Food Chem 2016; 197 Pt B:1085-92. [DOI: 10.1016/j.foodchem.2015.11.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/19/2015] [Indexed: 12/28/2022]
|
15
|
Zhu Q, Zhang S, Wang M, Chen J, Zheng ZP. Inhibitory effects of selected dietary flavonoids on the formation of total heterocyclic amines and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in roast beef patties and in chemical models. Food Funct 2016; 7:1057-66. [DOI: 10.1039/c5fo01055a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary flavonoids effectively inhibit total HAs and PhIP formation in roast beef patties through scavenging of intermediates in formation pathways.
Collapse
Affiliation(s)
- Qin Zhu
- College of Life and Environmental Sciences
- Hangzhou Normal University
- Hangzhou
- People's Republic of China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Mingfu Wang
- School of Biological Sciences
- The University of Hong Kong
- People's Republic of China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Zong-Ping Zheng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|