Zhao X, Chen Z, Yu L, Hu D, Song B. Investigating the antifungal activity and mechanism of a microbial pesticide Shenqinmycin against Phoma sp.
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018;
147:46-50. [PMID:
29933992 DOI:
10.1016/j.pestbp.2017.08.014]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/11/2017] [Accepted: 08/27/2017] [Indexed: 06/08/2023]
Abstract
Tea white scab (TWS) is a major disease affecting tea trees in mid-elevation regions and often occurs during rainy seasons with low temperatures. This disease is caused by the fungal pathogen Phoma sp. TWS can infect young stems, tender leaves, and tender shoots and lead to the production of low-quality tea. Owing to the absence of an effective control, TWS can result in substantial loss in tea production. In this study, we isolated and identified the pathogen from tea leaves infected by TWS and then evaluated in vitro the antifungal activity of Shenqinmycin, polyoxin, azoxystrobin, oligosaccharins, and tebuconazole against Phoma sp. Our results indicated that Shenqinmycin can inhibit the growth of Phoma sp. mycelia, with the EC50 value of 0.74μg/mL. After Phoma sp. being incubated in PDB liquid medium with Shenqinmycin, its mycelia were distorted and distended at 1.56μg/mL of minimum inhibitory concentration for 6h. Crucial genes associated with cell redox homeostasis, proteins synthesis, energy metabolism, and cytoskeleton were studied at mRNA and protein levels through RT-qPCR and Nano-LC-MS/MS. The results showed that the genes of 3-phosphate-glyceraldehyde dehydrogenase, citrate synthase, NADH-ubiquinone oxidoreductase subunit (NADH-subunit), ribosomal protein, eukaryotic initiation factor 4A-I, β-tubulin, and α-tubulin were up-regulated. Meanwhile, the genes of formate dehydrogenase (FDH), malate dehydrogenase, mitochondrial heat shock protein, and protein disulfide-isomerase (PDI) were up-regulated at mRNA level but down-regulated at protein level. These results indicated that Shenqinmycin contribute to cell redox homeostasis by up- or down-regulating NADH-subunit, FDH, and PDI.
Collapse