1
|
Guo R, Lv R, Yu T, Wang X, Shi R, Umar M, Hayat M, Mandal G, Liu J. Effective Identification and Highly Sensitive Quantification of Fructo-oligosaccharide Isomers with Bi 2Se 3 Nanosheet-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24082-24092. [PMID: 39405035 DOI: 10.1021/acs.jafc.4c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The growing interest in fructo-oligosaccharides (FOSs) necessitates the effective monitoring of product quality. Identifying and quantifying FOS isomers from the same sources are challenging. Here, we report a new method using Bi2Se3 nanosheets as the matrix for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), achieving effective differentiation of oligosaccharide isomers through MALDI-MS/MS. Notably, four isomers of pentasaccharides and two isomers of heptasaccharides were successfully identified, with a remarkably low limit of detection of 0.06 pmol. Our approach enabled the specific quantification of 1F-fructofuranosylnystose in commercial FOS products, positioning it as a promising tool for oligosaccharide isomer quantification in nutritional food products. Furthermore, this technique facilitates the rapid and sensitive detection of various saccharides and a wide range of other small molecules with enhanced signal intensities and improved reproducibility. Overall, it facilitates the rapid, selective, and sensitive detection of various saccharides and other small molecules, enhancing analytical chemistry and food science applications.
Collapse
Affiliation(s)
- Ruochen Guo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Tianrong Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xuze Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Muhammad Umar
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Govinda Mandal
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jian Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
2
|
Probing the polar metabolome by UHPLC-MS. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Ma J, Tong P, Chen Y, Wang Y, Ren H, Gao Z, Yue T, Long F. The inhibition of pectin oligosaccharides on degranulation of RBL-2H3 cells from apple pectin with high hydrostatic pressure assisted enzyme treatment. Food Chem 2022; 371:131097. [PMID: 34537607 DOI: 10.1016/j.foodchem.2021.131097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023]
Abstract
The conditions for the preparation of pectic oligosaccharides (POS) by high hydrostatic pressure-assisted enzymatic (E-HHP) method were explored. The optimal conditions consisted of the pressure of 350 MPa for 20 min, and enzymolysis for 60 min with 0.011 U/mL enzyme. The products were isolated by ion exchange chromatography, galacturonic acid, di- and tri-galacturonides (Tri-GalA) with high purity were obtained. Additionally, the effects of POS on activation and degranulation of RBL-2H3 mast cells were investigated. It was found that Tri-GalA and POS could attenuate the release of β-hexosaminidase and histamine, reduce the production of IL-4 and inhibit the extracellular Ca2+ influx of RBL-2H3 cells. Notably, 150 μg/mL POS significantly alleviated the IgE-mediated allergic reaction of RBL-2H3 cells. These results indicate that POS could be used as an inhibitor in regulating mast cell-mediated allergic inflammatory responses.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Garrido-Bañuelos G, Buica A, du Toit W. Relationship between anthocyanins, proanthocyanidins, and cell wall polysaccharides in grapes and red wines. A current state-of-art review. Crit Rev Food Sci Nutr 2021; 62:7743-7759. [PMID: 33951953 DOI: 10.1080/10408398.2021.1918056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous research studies have evaluated factors influencing the nature and levels of phenolics and polysaccharides in food matrices. However, in grape and wines most of these works have approach these classes of compounds individually. In recent years, the number of publications interconnecting classes have increased dramatically. The present review relates the last decade's findings on the relationship between phenolics and polysaccharides from grapes, throughout the entire winemaking process up to evaluating the impact of their relationship on the red wine sensory perception. The combination and interconnection of the most recent research studies, from single interactions in model wines to the investigation of the formation of complex macromolecules, brings the perfect story line to relate the relationship between phenolics and polysaccharides from the vineyard to the glass. Grape pectin is highly reactive toward grape and grape derived phenolics. Differences between grape cultivars or changes during grape ripeness will affect the extractability of these compounds into the wines. Therefore, the nature of the grape components will be crucial to understand the subsequent reactions occurring between phenolics and polysaccharide of the corresponding wines. It has been demonstrated that they can form very complex macromolecules which affect wine color, stability and sensory properties.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa.,Product Design - Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Wessel du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
5
|
Klassen L, Xing X, Tingley JP, Low KE, King ML, Reintjes G, Abbott DW. Approaches to Investigate Selective Dietary Polysaccharide Utilization by Human Gut Microbiota at a Functional Level. Front Microbiol 2021; 12:632684. [PMID: 33679661 PMCID: PMC7933471 DOI: 10.3389/fmicb.2021.632684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human diet is temporally and spatially dynamic, and influenced by culture, regional food systems, socioeconomics, and consumer preference. Such factors result in enormous structural diversity of ingested glycans that are refractory to digestion by human enzymes. To convert these glycans into metabolizable nutrients and energy, humans rely upon the catalytic potential encoded within the gut microbiome, a rich collective of microorganisms residing in the gastrointestinal tract. The development of high-throughput sequencing methods has enabled microbial communities to be studied with more coverage and depth, and as a result, cataloging the taxonomic structure of the gut microbiome has become routine. Efforts to unravel the microbial processes governing glycan digestion by the gut microbiome, however, are still in their infancy and will benefit by retooling our approaches to study glycan structure at high resolution and adopting next-generation functional methods. Also, new bioinformatic tools specialized for annotating carbohydrate-active enzymes and predicting their functions with high accuracy will be required for deciphering the catalytic potential of sequence datasets. Furthermore, physiological approaches to enable genotype-phenotype assignments within the gut microbiome, such as fluorescent polysaccharides, has enabled rapid identification of carbohydrate interactions at the single cell level. In this review, we summarize the current state-of-knowledge of these methods and discuss how their continued development will advance our understanding of gut microbiome function.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Kristin E. Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L. King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Greta Reintjes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Gentianose: Purification and structural determination of an unknown oligosaccharide in grape seeds. Food Chem 2020; 344:128588. [PMID: 33229151 DOI: 10.1016/j.foodchem.2020.128588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022]
Abstract
Grape seeds are among the main constituents of grape pomace, ranging between 20% and 30% of the wet matrix; however, their oligosaccharide composition has not been studied. This paper describes the purification and the identification of low molecular weight oligosaccharides contained in an EtOH/water extract of grape seeds. A sequential two-step purification by size exclusion chromatography was carried out to fractionate compounds according to molecular weights. Chemical characterization of the combined fractions was performed by Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry analyses. The separation process gave two fractions abundant in sucrose and glucose. A third fraction containing trisaccharides was acetylated allowing the purification of the main trisaccharide. The structure elucidation of the acetylated product made it possible to identify gentianose, a predominant carbohydrate reserve found in the storage roots of perennial Gentiana lutea. Grape seeds are wine industry by-products and the obtained results suggest the importance of their recovery.
Collapse
|
7
|
Apolinar-Valiente R, Williams P, Doco T. Recent advances in the knowledge of wine oligosaccharides. Food Chem 2020; 342:128330. [PMID: 33067045 DOI: 10.1016/j.foodchem.2020.128330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Oligosaccharides are carbohydrates with a low polymerization degree containing between three and fifteen monosaccharide residues covalently linked through glycosidic bonds. Oligosaccharides are related to plant defense responses and possess beneficial attributes for human health. Research has focused in wine oligosaccharides only in the last decade. In this paper, a summary of these works is provided. They include: (i) wine oligosaccharides origins, (ii) techniques for isolating oligosaccharide fraction and determining their content, composition and structure, (iii) their dependence on the grape origin and cultivar and winemaking process, and (iv) the connection between oligosaccharides and wine sensorial attributes. Further research is required regarding the impact of agricultural aspects and winemaking techniques on wine oligosaccharides. The knowledge concerning their influence on sensorial and physicochemical properties of wines and on human health should also be improved. The implementation of laboratory methods will provide better understanding of these compounds and their performance within wine's matrix.
Collapse
Affiliation(s)
- Rafael Apolinar-Valiente
- INRAE, Supagro, UM, Joint Research Unit 1083, Sciences for Enology, Biomolecules of Interest in Oenology (B.I.O.) Research Team, 2 Place Pierre Viala, F-34060 Montpellier, France.
| | - Pascale Williams
- INRAE, Supagro, UM, Joint Research Unit 1083, Sciences for Enology, Biomolecules of Interest in Oenology (B.I.O.) Research Team, 2 Place Pierre Viala, F-34060 Montpellier, France.
| | - Thierry Doco
- INRAE, Supagro, UM, Joint Research Unit 1083, Sciences for Enology, Biomolecules of Interest in Oenology (B.I.O.) Research Team, 2 Place Pierre Viala, F-34060 Montpellier, France.
| |
Collapse
|
8
|
Honda C, Katsuta R, Yamada M, Kojima Y, Mamiya A, Okada N, Kawamura T, Totsuka A, Shindo H, Hosaka M, Nukada T, Tokuoka M. Novel glucoamylase-resistant gluco-oligosaccharides with adjacent α-1, 6 branches at the non-reducing end discovered in Japanese rice wine, sake. Carbohydr Polym 2020; 251:116993. [PMID: 33142564 DOI: 10.1016/j.carbpol.2020.116993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Sake, a traditional Japanese rice wine, contains various oligosaccharides (Sake oligosaccharides; SAOs) derived from rice starch. We previously found that SAOs reach a high degree of polymerization (DP). In this study, we developed a hydrophilic interaction liquid chromatography-time-of-flight/mass spectrometry (HILIC-TOF/MS) based analytical method to separate isomeric SAOs. Isomers of SAOs with DP = 6, 7, and 8, which were named DP6-1, DP7-1, DP8-1 and DP8-2, respectively, were purified from sake and their structures were determined by two-dimensional NMR spectroscopy. These were novel oligosaccharides containing two α-1, 6 bonded branches on an α-1, 4-linked glucose main chain. Interestingly, adjacent double α-1, 6 branches that have not been identified in starch, were found in DP6-1, DP7-1, and DP8-1, suggesting the presence of the branching pattern in starch. DP6-1 was poorly digested by fungal glucoamylase, and this may be attributed to its adjacent double branches at the non-reducing end.
Collapse
Affiliation(s)
- Chihiro Honda
- Department of Fermentation Science and Technology, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Mariko Yamada
- Department of Fermentation Science and Technology, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yusuke Kojima
- Department of Fermentation Science and Technology, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ayane Mamiya
- Department of Fermentation Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Nanako Okada
- Department of Fermentation Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Takuya Kawamura
- Department of Fermentation Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Akira Totsuka
- Research Institute of KANSEI Science, 1-5-2-505 Honcho, Naka-ku, Yokohama, Kanagawa, 231-0005, Japan
| | - Hitoshi Shindo
- Department of Fermentation Science and Technology, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Masaru Hosaka
- Department of Fermentation Science and Technology, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tomoo Nukada
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Masafumi Tokuoka
- Department of Fermentation Science and Technology, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
9
|
Jiang Q, Wang Y, Li H, Chen DDY. Combining online size exclusion chromatography and electrospray ionization mass spectrometry to characterize plant polysaccharides. Carbohydr Polym 2020; 246:116591. [PMID: 32747250 DOI: 10.1016/j.carbpol.2020.116591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Characterizing polysaccharides with large molecular weights and isomeric heterogeneity with mass spectrometry (MS) is generally difficult. In this work, we demonstrate how coupling size exclusion chromatography (SEC) and high-resolution MS with source-induced dissociation (SID) can be used for the separation and direct structural evaluation of intact polysaccharides. The analytical method was successfully developed using dextran standards up to 3755 kDa. This method was used to separate naturally occurring plant polysaccharides based on size, after which numerous polysaccharide fragments were identified from the resulting MS spectra. The results provided strong evidence for structural diversity, complexity, and heterogeneity among polysaccharides. MS showed superior sensitivity and reliability for the polysaccharides in eluted fractions when compared to a refractive index detector. Putative compositions for the fragments were proposed based on exact mass values. The work demonstrated that SEC-SID-MS is a feasible alternative for obtaining valuable structural information from the analysis of intact polysaccharides.
Collapse
Affiliation(s)
- Qing Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ying Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - David D Y Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada.
| |
Collapse
|
10
|
Determining 1-kestose, nystose and raffinose oligosaccharides in grape juices and wines using HPLC: method validation and characterization of products from Northeast Brazil. Journal of Food Science and Technology 2019; 56:4575-4584. [PMID: 31686689 DOI: 10.1007/s13197-019-03936-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
The objective of this work was to validate a method for direct determination in grape juice and wine of 1-kestose, nystose and raffinose oligosaccharides by reversed-phase high-performance liquid chromatography with refractive index detection using a new type of RP-C18 column (150 × 4.6 mm, 4 µm) with polar end-capping. The validated methodology was also used to characterize grape juice and fine wine products from Northeastern Brazil; and presented suitable linearity, precision, recovery, limits of detection and quantification. The method presented good specificity, revealing that sugars, organic acids, and ethanol (the main interferences in refraction detection) did not influence the quantification of the studied oligosaccharides. The main oligosaccharide found was 1-kestose (approximately 50% of the samples), followed by raffinose (20% of the samples). The results obtained in this are an indication that grape juices and wines have the potential to be functional beverages in relation to the presence of prebiotics.
Collapse
|
11
|
Bordiga M, Meudec E, Williams P, Montella R, Travaglia F, Arlorio M, Coïsson JD, Doco T. The impact of distillation process on the chemical composition and potential prebiotic activity of different oligosaccharidic fractions extracted from grape seeds. Food Chem 2019; 285:423-430. [PMID: 30797366 DOI: 10.1016/j.foodchem.2019.01.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Abstract
The study was designed to evaluate how the distillation process is able to affect the composition and bioactivity of oligosaccharides contained in the grape seeds. Different oligosaccharidic fractions have been extracted both before and after grape pomace distillation in order to valorize this by-product. A multistep solid-phase extraction approach (C-18 and carbograph cartridges) has been applied to purify and fractionate the oligosaccharidic compounds. Chemical characterization of the fractions was performed using a UPLC-ESI-MSn method. Complex oligosaccharides consist principally of neutral oligosaccharides rich in arabinose and glucose. Then, the oligosaccharides contained in the different fractions as potential functional ingredients with prebiotic activity toward well-known probiotic bacteria, such as Lactobacillus acidophilus and Lactobacillus plantarum, were evaluated. Data showed how, in some combination, oligosaccharidic fractions obtained may be considered a novel "functional ingredient" with potential prebiotic activity mainly towards L. acidophilus.
Collapse
Affiliation(s)
- Matteo Bordiga
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Emmanuelle Meudec
- UMR 1083 Sciences Pour l'Œnologie, Polyphenols Platform, INRA, Montpellier SupAgro, Université de Montpellier2, Montpellier, France
| | - Pascale Williams
- UMR 1083 Sciences Pour l'Œnologie, INRA, Montpellier SupAgro, Université de Montpellier2, Montpellier, France
| | - Rosa Montella
- Proge Farm s.r.l., Largo Donegani 4/A, Novara, Italy
| | - Fabiano Travaglia
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coïsson
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Thierry Doco
- UMR 1083 Sciences Pour l'Œnologie, INRA, Montpellier SupAgro, Université de Montpellier2, Montpellier, France
| |
Collapse
|
12
|
Bordiga M, Travaglia F, Locatelli M. Valorisation of grape pomace: an approach that is increasingly reaching its maturity - a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14118] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matteo Bordiga
- Dipartimento di Scienze del Farmaco; Università degli Studi del Piemonte Orientale “A. Avogadro”; Largo Donegani 2 28100 Novara Italy
| | - Fabiano Travaglia
- Dipartimento di Scienze del Farmaco; Università degli Studi del Piemonte Orientale “A. Avogadro”; Largo Donegani 2 28100 Novara Italy
| | - Monica Locatelli
- Dipartimento di Scienze del Farmaco; Università degli Studi del Piemonte Orientale “A. Avogadro”; Largo Donegani 2 28100 Novara Italy
| |
Collapse
|
13
|
Apolinar-Valiente R, Ruiz-García Y, Williams P, Gil-Muñoz R, Gómez-Plaza E, Doco T. Preharvest Application of Elicitors to Monastrell Grapes: Impact on Wine Polysaccharide and Oligosaccharide Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11151-11157. [PMID: 30281305 DOI: 10.1021/acs.jafc.8b05231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work studied the effect of preharvest application in Monastrell grapes of four different elicitors [methyl jasmonate (MeJ), benzothiadiazole (BTH), chitosan from fungi (CHSf), and chitosan from seafood (CHSs)] on wine polysaccharide and oligosaccharide fractions. The polysaccharide and oligosaccharide fractions were isolated and characterized. Neutral monosaccharides were released after hydrolysis of polysaccharides and quantified by gas chromatography (GC). Sugar composition of oligosaccharides was determined after solvolysis by GC of their per-O-trimethylsilylated methyl glycoside derivatives. MeJ, BTH, CHSf, and particularly CHSs decrease the polysaccharide content in wine. The oligosaccharide concentration was also reduced after both CHS treatments. These results pointed to a lower degradation of the skin cell wall from treated grapes. We suggested that the cause would be a reinforcement of the skin cell wall as a result of the action of these elicitors. In conclusion, the application of any of these four elicitors in the clusters of the vineyard affected the complex carbohydrate composition of elaborated wine.
Collapse
Affiliation(s)
- Rafael Apolinar-Valiente
- Sciences for Enology, Joint Research Unit 1083 , Institut National de la Recherche Agronomique (INRA) , 2 Place Viala , F-34060 Montpellier , France
| | - Yolanda Ruiz-García
- Food Science and Technology, Faculty of Veterinary , University of Murcia , Campus de Espinardo Murcia, 30071 Murcia , Spain
| | - Pascale Williams
- Sciences for Enology, Joint Research Unit 1083 , Institut National de la Recherche Agronomique (INRA) , 2 Place Viala , F-34060 Montpellier , France
| | - Rocío Gil-Muñoz
- Instituto Murciano de Investigación y Desarrollo Agroalimentario , Carretera La Alberca s/n , 30150 Murcia , Spain
| | - Encarna Gómez-Plaza
- Food Science and Technology, Faculty of Veterinary , University of Murcia , Campus de Espinardo Murcia, 30071 Murcia , Spain
| | - Thierry Doco
- Sciences for Enology, Joint Research Unit 1083 , Institut National de la Recherche Agronomique (INRA) , 2 Place Viala , F-34060 Montpellier , France
| |
Collapse
|
14
|
Cejudo-Bastante MJ, del Barrio-Galán R, Heredia FJ, Medel-Marabolí M, Peña-Neira Á. Location effects on the polyphenolic and polysaccharidic profiles and colour of Carignan grape variety wines from the Chilean Maule region. Food Res Int 2018; 106:729-735. [DOI: 10.1016/j.foodres.2018.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/27/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
15
|
Marrubini G, Appelblad P, Maietta M, Papetti A. Hydrophilic interaction chromatography in food matrices analysis: An updated review. Food Chem 2018; 257:53-66. [PMID: 29622230 DOI: 10.1016/j.foodchem.2018.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/27/2023]
Abstract
This review focuses on the most recent papers (from 2011 to submission date in 2017) dealing with the analysis of different organic components in foods (i.e. nucleobases, nucleosides, nucleotides, uric acid, and creatinine, amino acids and related compounds, choline-related compounds and phospholipids, carbohydrates, artificial sweeteners and polyphenolic compounds), using hydrophilic interaction liquid chromatography (HILIC) combined with different detection techniques. For each compound class, the investigated food matrices are grouped per: foods of animal origin, vegetables, fruits and related products, baby food, and other matrices such as drinks and mushrooms/fungi. Furthermore, the main advantages of HILIC chromatography respect to the other commonly used techniques are discussed.
Collapse
Affiliation(s)
- Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Mariarosa Maietta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Effect of grape juice press fractioning on polysaccharide and oligosaccharide compositions of Pinot meunier and Chardonnay Champagne base wines. Food Chem 2017; 232:49-59. [DOI: 10.1016/j.foodchem.2017.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 11/20/2022]
|
17
|
García M, Apolinar-Valiente R, Williams P, Esteve-Zarzoso B, Arroyo T, Crespo J, Doco T. Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 Native Yeasts from D.O. "Vinos de Madrid". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6656-6664. [PMID: 28669180 DOI: 10.1021/acs.jafc.7b01676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polysaccharides and oligosaccharides released into Malvar white wines elaborated through pure, mixed, and sequential cultures with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. "Vinos de Madrid" were studied. Both fractions from different white wines were separated by high-resolution size-exclusion chromatography. Glycosyl composition and wine polysaccharide linkages were determined by GC-EI-MS chromatography. Molar-mass distributions were determined by SEC-MALLS, and intrinsic viscosity was determined by differential viscometer. Yeast species and type of inoculation have a significant impact on wine carbohydrate composition and structure. Mannose residues from mannoproteins were significantly predominant in those cultures where T. delbrueckii was present in the fermentation process in comparison with when pure cultures of S. cerevisiae were present in the fermenation process. Galactose residues from polysaccharides rich in arabinose and galactose presented greater values in pure cultures of S. cerevisiae, indicating that S. cerevisiae released fewer mannoproteins than T. delbrueckii. Moreover, we reported structural differences between mannoproteins released by T. delbrueckii CLI 918 and those released by S. cerevisiae CLI 889. These findings help to provide important information about the polysaccharides and oligosaccharides released from the cell walls of Malvar grapes and the carbohydrates released from each yeast species.
Collapse
Affiliation(s)
- Margarita García
- Departamento de Agroalimentación, IMIDRA , Ctra. A2 km 38.200, 28800 Alcalá de Henares, Madrid, Spain
| | - Rafael Apolinar-Valiente
- INRA , Joint Research Unit 1083, Sciences for Enology, 2 Place Viala, F-34060 Montpellier, France
| | - Pascale Williams
- INRA , Joint Research Unit 1083, Sciences for Enology, 2 Place Viala, F-34060 Montpellier, France
| | - Braulio Esteve-Zarzoso
- Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili , Marcel li Domingo 1, 43007 Tarragona, Spain
| | - Teresa Arroyo
- Departamento de Agroalimentación, IMIDRA , Ctra. A2 km 38.200, 28800 Alcalá de Henares, Madrid, Spain
| | - Julia Crespo
- Departamento de Agroalimentación, IMIDRA , Ctra. A2 km 38.200, 28800 Alcalá de Henares, Madrid, Spain
| | - Thierry Doco
- INRA , Joint Research Unit 1083, Sciences for Enology, 2 Place Viala, F-34060 Montpellier, France
| |
Collapse
|
18
|
Cibrario A, Peanne C, Lailheugue M, Campbell-Sills H, Dols-Lafargue M. Carbohydrate metabolism in Oenococcus oeni: a genomic insight. BMC Genomics 2016; 17:984. [PMID: 27905883 PMCID: PMC5131533 DOI: 10.1186/s12864-016-3338-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Oenococcus oeni is the bacterial species that drives malolactic fermentation in most wines. Several studies have described a high intraspecific diversity regarding carbohydrate degradation abilities but the link between the phenotypes and the genes and metabolic pathways has been poorly described. Results A collection of 41 strains whose genomic sequences were available and representative of the species genomic diversity was analyzed for growth on 18 carbohydrates relevant in wine. The most frequently used substrates (more than 75% of the strains) were glucose, trehalose, ribose, cellobiose, mannose and melibiose. Fructose and L-arabinose were used by about half the strains studied, sucrose, maltose, xylose, galactose and raffinose were used by less than 25% of the strains and lactose, L-sorbose, L-rhamnose, sorbitol and mannitol were not used by any of the studied strains. To identify genes and pathways associated with carbohydrate catabolic abilities, gene-trait matching and a careful analysis of gene mutations and putative complementation phenomena were performed. Conclusions For most consumed sugars, we were able to propose putatively associated metabolic pathways. Most associated genes belong to the core genome. O. oeni appears as a highly specialized species, ideally suited to fermented fruit juice and more specifically to wine for a subgroup of strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3338-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Cibrario
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Claire Peanne
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Marine Lailheugue
- Bordeaux INP, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Hugo Campbell-Sills
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France. .,Bordeaux INP, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France.
| |
Collapse
|
19
|
Martínez-Lapuente L, Apolinar-Valiente R, Guadalupe Z, Ayestarán B, Pérez-Magariño S, Williams P, Doco T. Influence of Grape Maturity on Complex Carbohydrate Composition of Red Sparkling Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5020-5030. [PMID: 27226011 DOI: 10.1021/acs.jafc.6b00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper studied how grape maturity affected complex carbohydrate composition during red sparkling wine making and wine aging. Grape ripening stage (premature and mature grapes) showed a significant impact on the content, composition, and evolution of polysaccharides and oligosaccharides of sparkling wines. Polysaccharides rich in arabinose and galactose, mannoproteins, rhamnogalacturonans II, and oligosaccharides in base wines increased with maturity. For both maturity stages, polysaccharides rich in arabinose and galactose, and the glucuronic acid glycosyl residue of the oligosaccharides were the major carbohydrates detected in all vinification stages. The total glycosyl content of oligosaccharides decreased during the whole period of aging on yeast lees. The reduction of polysaccharides rich in arabinose and galactose and rhamnogalacturonans type II during the aging was more pronounced in mature samples. To our knowledge, this is the first report of the polysaccharide and oligosaccharide composition of red sparkling wines.
Collapse
Affiliation(s)
- Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC) , Finca La Grajera, Ctra. De Burgos Km. 6, 26080 Logroño, Spain
| | - Rafael Apolinar-Valiente
- INRA, Joint Research Unit 1083, Sciences for Enology, 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC) , Finca La Grajera, Ctra. De Burgos Km. 6, 26080 Logroño, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC) , Finca La Grajera, Ctra. De Burgos Km. 6, 26080 Logroño, Spain
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Pascale Williams
- INRA, Joint Research Unit 1083, Sciences for Enology, 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Thierry Doco
- INRA, Joint Research Unit 1083, Sciences for Enology, 2 Place Pierre Viala, F-34060 Montpellier, France
| |
Collapse
|