1
|
Biundo G, Calligaris M, Lo Pinto M, D'apolito D, Pasqua S, Vitale G, Gallo G, Palumbo Piccionello A, Scilabra SD. High-resolution proteomics and machine-learning identify protein classifiers of honey made by Sicilian black honeybees (Apis mellifera ssp. sicula). Food Res Int 2024; 194:114872. [PMID: 39232511 DOI: 10.1016/j.foodres.2024.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Apis mellifera ssp. sicula, also known as the Sicilian black honeybee, is a Slow Food Presidium that produces honey with outstanding nutraceutical properties, including high antioxidant capacity. In this study, we used high-resolution proteomics to profile the honey produced by sicula and identify protein classifiers that distinguish it from that made by the more common Italian honeybee (Apis mellifera ssp. ligustica). We profiled the honey proteome of genetically pure sicula and ligustica honeybees bred in the same geographical area, so that chemical differences in their honey only reflected the genetic background of the two subspecies, rather than botanical environment. Differentially abundant proteins were validated in sicula and ligustica honeys of different origin, by using the so-called "rectangular strategy", a proteomic approach commonly used for biomarker discovery in clinical proteomics. Then, machine learning was employed to identify which proteins were the most effective in distinguishing sicula and ligustica honeys. This strategy enabled the identification of two proteins, laccase-5 and venome serine protease 34 isoform X2, that were fully effective in predicting whether honey was made by sicula or ligustica honeybees. In conclusion, we profiled the proteome of sicula honey, identified two protein classifiers of sicula honey in respect to ligustica, and proved that the rectangular strategy can be applied to uncover biomarkers to ascertain food authenticity.
Collapse
Affiliation(s)
- Giulia Biundo
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy
| | - Matteo Calligaris
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; Department of Medicine (DMED), University of Udine, via Colugna 50, 33100, Udine, Italy
| | - Margot Lo Pinto
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy
| | - Danilo D'apolito
- Unità Prodotti Cellulari (GMP), Ri.MED Foundation, IRCCS-ISMETT, Via E. Tricomi 5, 90127 Palermo, Italy
| | - Salvatore Pasqua
- Unità Prodotti Cellulari (GMP), Ri.MED Foundation, IRCCS-ISMETT, Via E. Tricomi 5, 90127 Palermo, Italy
| | - Giulio Vitale
- Associazione Apistica Spazio Miele, Via Dell'Acquedotto 10, 91026 Mazara del Vallo, TP, Italy
| | - Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, V.le delle Scienze Ed.16, 90128 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, V.le delle Scienze Ed.17, 90128 Palermo, Italy
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy.
| |
Collapse
|
2
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Guo J, Ding Q, Zhang Z, Zhang Y, He J, Yang Z, Zhou P, Gong X. Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules 2023; 28:molecules28073270. [PMID: 37050033 PMCID: PMC10097088 DOI: 10.3390/molecules28073270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
This study evaluates the phenolic profile as well as the antioxidant properties of Shennongjia Apis cerana honey through a comparison with Apis mellifera honey in China. The total phenolic content (TPC) ranges from 263 ± 2 to 681 ± 36 mg gallic acid/kg. The total flavonoids content (TFC) ranges from 35.9 ± 0.4 to 102.2 ± 0.8 mg epicatechin/kg. The correlations between TPC or TFC and the antioxidant results (FRAP, DPPH, and ABTS) were found to be statistically significant (p < 0.01). Furthermore, the phenolic compounds are quantified and qualified by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS), and a total of 83 phenolic compounds were tentatively identified in this study. A metabolomics analysis based on the 83 polyphenols was carried out and subjected to principal component analysis and orthogonal partial least squares-discriminant analysis. The results showed that it was possible to distinguish Apis cerana honey from Apis mellifera honey based on the phenolic profile.
Collapse
Affiliation(s)
- Jingwen Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qiong Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianshe He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zong Yang
- AB Sciex Co., Ltd., Beijing 100102, China
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Effect of Liquefaction of Honey on the Content of Phenolic Compounds. Molecules 2023; 28:molecules28020714. [PMID: 36677771 PMCID: PMC9861181 DOI: 10.3390/molecules28020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Thermal liquefaction at low temperature is very time consuming and microwaves or an ultrasonic bath can be used to accelerate the process of dissolving sugar crystals. Phenolic compounds, such as phenolic acids or flavonoids, are an important group of secondary metabolites of plants and become honey from the nectar of blossoms. In this study, how the content of phenolic acids and flavones in honey were affected by liquefaction of honey using a microwave oven was studied. The concentration of tested compounds in untreated honey and in honey liquefied in a hot water bath, ultrasonic bath and microwave oven at four microwave power levels were determined by reversed phase liquid chromatography combined with multichannel electrochemical detection. A significant decrease in the content of all compounds was observed for all melting treatments. The phenolic compounds concentration decreased on average by 31.1-35.5% using microwave at intensities 270, 450 and 900 W and the time required for the sugar crystal melting was more than 20 times less than in the case of the 80 °C water bath. The temperature of samples after the end of microwave liquefaction was 76-89 °C. Significantly higher losses of phenolic compounds were observed during ultrasound treatment (48.5%), although the maximum temperature of honey was 45 °C, and at the lowest microwaves power (50.6%).
Collapse
|
5
|
Gaggìa F, Jakobsen RR, Alberoni D, Baffoni L, Cutajar S, Mifsud D, Nielsen DS, Di Gioia D. Environment or genetic isolation? An atypical intestinal microbiota in the Maltese honey bee Apis mellifera spp. ruttneri. Front Microbiol 2023; 14:1127717. [PMID: 36910174 PMCID: PMC9995969 DOI: 10.3389/fmicb.2023.1127717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Apis mellifera evolved mainly in African, Asian, and European continents over thousands of years, leading to the selection of a considerable number of honey bees subspecies that have adapted to various environments such as hot semi-desert zones and cold temperate zones. With the evolution of honey bee subspecies, it is possible that environmental conditions, food sources, and microbial communities typical of the colonized areas have shaped the honey bee gut microbiota. Methods In this study the microbiota of two distinct lineages (mitochondrial haplotypes) of bees Apis mellifera ruttneri (lineage A) and Apis mellifera ligustica and carnica (both lineage C) were compared. Honey bee guts were collected in a dry period in the respective breeding areas (the island of Malta and the regions of Emilia-Romagna and South Tyrol in Italy). Microbial DNA from the honey bee gut was extracted and amplified for the V3-V4 regions of the 16S rRNA gene for bacteria and for ITS2 for fungi. Results The analyses carried out show that the Maltese lineage A honey bees have a distinctive microbiota when compared to Italian lineage C honey bees, with the most abundant genera being Bartonellaceae and Lactobacillaceae, respectively. Lactobacillaceae in Maltese Lineage A honey bees consist mainly of Apilactobacillus instead of Lactobacillus and Bombilactobacillus in the lineage C. Lineage A honey bee gut microbiota also harbors higher proportions of Arsenophonus, Bombella, Commensalibacter, and Pseudomonas when compared to lineage C. Discussion The environment seems to be the main driver in the acquisition of these marked differences in the gut microbiota. However, the influence of other factors such as host genetics, seasonality or geography may still play a significant role in the microbiome shaping, in synergy with the environmental aspects.
Collapse
Affiliation(s)
- Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rasmus Riemer Jakobsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Simone Cutajar
- Institute of Earth Systems, L-Università tà Malta, Msida, Malta
| | - David Mifsud
- Institute of Earth Systems, L-Università tà Malta, Msida, Malta
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Valverde S, Ares AM, Stephen Elmore J, Bernal J. Recent trends in the analysis of honey constituents. Food Chem 2022; 387:132920. [DOI: 10.1016/j.foodchem.2022.132920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
|
8
|
|
9
|
Koulis GA, Tsagkaris AS, Katsianou PA, Gialouris PLP, Martakos I, Stergiou F, Fiore A, Panagopoulou EI, Karabournioti S, Baessmann C, van der Borg N, Dasenaki ME, Proestos C, Thomaidis NS. Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry. Molecules 2022; 27:molecules27144444. [PMID: 35889316 PMCID: PMC9323402 DOI: 10.3390/molecules27144444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.
Collapse
Affiliation(s)
- Georgios A. Koulis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Panagiota A. Katsianou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
| | - Panagiotis-Loukas P. Gialouris
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Ioannis Martakos
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Fotis Stergiou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Division of Engineering and Food Science, School of Applied Science, Abertay University, Bell Street, Dundee DD1 1HG, UK;
| | - Alberto Fiore
- Division of Engineering and Food Science, School of Applied Science, Abertay University, Bell Street, Dundee DD1 1HG, UK;
| | - Eleni I. Panagopoulou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
| | | | - Carsten Baessmann
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany; (C.B.); (N.v.d.B.)
| | - Noud van der Borg
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany; (C.B.); (N.v.d.B.)
| | - Marilena E. Dasenaki
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
- Correspondence: (M.E.D.); (N.S.T.); Tel.: +30-210-727-4326 (M.E.D.); +30-210-727-4430 (N.S.T.)
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Nikolaos S. Thomaidis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Correspondence: (M.E.D.); (N.S.T.); Tel.: +30-210-727-4326 (M.E.D.); +30-210-727-4430 (N.S.T.)
| |
Collapse
|
10
|
Pieracci Y, Pistelli L, Cecchi M, Pistelli L, De Leo M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods 2022; 11:foods11111550. [PMID: 35681300 PMCID: PMC9180594 DOI: 10.3390/foods11111550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
The increasing attention on the impact of food on human and environmental health has led to a greater awareness about nutrition, food processing, and food waste. In this perspective, the present work deals with the investigation of the chemical non-volatile and volatile profiles of two Citrus-based products, produced through a conscious process, using Citrus peels as natural gelling agents. Moreover, the total polyphenol content (TPC) and the antioxidant properties were evaluated, as well as their sensorial properties. Chemical and antioxidant results were compared with those of Citrus fresh fruits (C. reticulata, C. sinensis, and C. limon). Concerning the non-volatile fingerprint, the two samples showed a very similar composition, characterized by flavanones (naringenin, hesperetin, and eriodyctiol O-glycosides), flavones (diosmetin and apigenin C-glucosides), and limonoids (limonin, nomilinic acid, and its glucoside). The amount of both flavonoids and limonoids was higher in the Lemon product than in the Mixed Citrus one, as well as the TPC and the antioxidant activity. The aroma composition of the two samples was characterized by monoterpene hydrocarbons as the main chemical class, mainly represented by limonene. The sensorial analysis, finally, evidenced a good quality of both the products. These results showed that the most representative components of Citrus fruits persist even after the transformation process, and the aroma and sensorial properties endow an added value to Citrus preparations.
Collapse
Affiliation(s)
- Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (Y.P.); (L.P.)
| | - Laura Pistelli
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | | | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (Y.P.); (L.P.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (Y.P.); (L.P.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
11
|
Farid MM, Ibrahim FM, Ragheb AY, Mohammed RS, Hegazi NM, Shabrawy MOEL, Kawashty SA, Marzouk MM. Comprehensive Phytochemical Characterization of Raphanus raphanistrum L.: In Vitro Antioxidant and Antihyperglycemic Evaluation. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Kryvyi M, Yushchenko О, Dikhtiar О, Lisohurska D, Stepanenko V. QUALITY OF HELIANTHUS ANNUUS HONEY OBTAINED IN THE CONDITIONS OF RADIOACTIVE CONTAMINATION. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.15673/fst.v15i2.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural honey is a source of vital amino acids, easily digestible carbohydrates, macro, microelements, biologically active substances that determine nutritional, antibacterial and antioxidant properties. In the conditions of man-caused pollution of Polissya of Ukraine due to the accident at the Chernobyl nuclear power plant, systematic control of the quality and safety of beekeeping products is important. To conduct such research, we created a group of twelve bee families - analogs of the Ukrainian breed, medium strength. Families were kept in unified multifunctional hives. At the beginning of the honey harvest, the bee families were transported to the sunflower fields, where they stayed during the blossoming of the plants. The density of radioactive contamination of 137Cs soils where sunflower was grown was 47.0 kBq / m2. We used organoleptic, physicochemical, microscopic, microbiological, and radiological methods in the study. According to standard methods, we studied the species composition of pollen grains, physicochemical parameters of centrifugal, honeycomb, and «zabrus» sunflower honey.(zabrus honey was obtained from wax caps, which we cut with an apiary knife from honeycombs filled with nectar and sealed by bees). The content of lead (Pb) in honey from sunflower obtained in the conditions of Polissya is 1.8 - 2.1 times higher than the State sanitary norms. The largest amount of it is in the centrifugal honey. In acceptable amounts, the heavy metals cadmium (Cd), arsenic (As), and 137Cs were present in honey. Pesticides, dichlorodiphenyltrichloromethylmethane, and hexachlorane were not detected in the samples. We investigated the bactericidal action against bacterial growth of typical cultures of Proteus vulgaris, Escherichia coli, Klebsiella pneumonia, Salmonella Typhimurium, and Staphylococcus aureus. Zubrus sunflower honey showed the highest antimicrobial and antioxidant properties. We found that the value of antioxidant activity (AOA) of sunflower honey depends on the method of its production, duration of storage, and solutions of extracts (alcohol, aqueous) used in research. Laboratory control of transgenic organisms in flowers and sunflower pollen did not reveal the target sequences of the cauliflower mosaic virus (CaMV) 35S promoter and the NOS terminator (nopaline synthase) of the plasmid Agrobacterium tumefaciens.
Collapse
|
13
|
Sobolev AP, Di Lorenzo A, Circi S, Santarcangelo C, Ingallina C, Daglia M, Mannina L. NMR, RP-HPLC-PDA-ESI-MS n, and RP-HPLC-FD Characterization of Green and Oolong Teas ( Camellia sinensis L.). Molecules 2021; 26:molecules26175125. [PMID: 34500554 PMCID: PMC8434197 DOI: 10.3390/molecules26175125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Untargeted (NMR) and targeted (RP-HPLC-PDA-ESI-MSn, RP-HPLC-FD) analytical methodologies were used to determine the bioactive components of 19 tea samples, characterized by different production processes (common tea and GABA tea), degrees of fermentation (green and oolong teas), and harvesting season (autumn and spring). The combination of NMR data and a multivariate statistical approach led to a statistical model able to discriminate between GABA and non-GABA teas and green and oolong teas. Targeted analyses showed that green and GABA green teas had similar polyphenol and caffeine contents, but the GABA level was higher in GABA green teas than in regular green tea samples. GABA oolong teas showed lower contents of polyphenols, caffeine, and amino acids, and a higher content of GABA, in comparison with non-GABA oolong teas. In conclusion, the results of this study suggest that the healthy properties of teas, especially GABA teas, have to be evaluated via comprehensive metabolic profiling rather than only the GABA content.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
| | - Arianna Di Lorenzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Simone Circi
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| | | | - Cinzia Ingallina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
- Correspondence: (C.I.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (C.I.); (M.D.)
| | - Luisa Mannina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| |
Collapse
|
14
|
Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants (Basel) 2021; 10:antiox10071023. [PMID: 34202118 PMCID: PMC8300703 DOI: 10.3390/antiox10071023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Background: vegetative diversity is based on different climate and geographical origins. In terms of beekeeping, herbal diversity is strongly correlated to the production of a wide variety of honey. Therefore, based on the existing plant diversity in each country, multiple honey varieties are produced with different health characteristics. While beekeeping potential and consumption preferences are reflected in products’ variety, this leads to an increase in the region’s economy and extensive export. In the last years, monofloral honey has gained interest from consumers and especially in the medicinal field due to the presence of phytochemicals which are directly linked to health benefits, wound healing, antioxidant, anticancer and anti-inflammatory activities. Scope and approach: this review aims to highlight the physicochemical properties, mineral profiles and antioxidant activities of selected monofloral honeys based on their botanical and geographical origin. Moreover, this review focuses on the intercorrelation between monofloral honey’s antioxidant compounds and in vitro and in vivo activities, focusing on the apoptosis and cell proliferation inhibition in various cell lines, with a final usage of honey as a potential therapeutic product in the fight towards reducing tumor growth. Key findings and conclusions: multiple studies have demonstrated that monofloral honeys have different physicochemical structures and bioactive compounds. Useful chemical markers to distinguish between monofloral honeys were evidenced, such as: 2-methoxybenzoic acid and trimethoxybenzoic acid are distinctive to Manuka honey while 4-methoxyphenylacetic acid is characteristic to Kanuka honey. Furthermore, resveratrol, epigallocatechin and pinostrobin are markers distinct to Sage honey, whereas carvacrol and thymol are found in Ziziphus honey. Due to their polyphenolic profile, monofloral honeys have significant antioxidant activity, as well as antidiabetic, antimicrobial and anticancer activities. It was demonstrated that Pine honey decreased the MDA and TBARS levels in liver, kidney, heart and brain tissues, whereas Malicia honey reduced the low-density lipoprotein level. Consumption of Clover, Acacia and Gelam honeys reduced the weight and adiposity, as well as trygliceride levels. Furthermore, the antiproliferative effect of chrysin, a natural flavone in Acacia honey, was demonstrated in human (A375) and murine (B16-F1) melanoma cell lines, whereas caffeic acid, a phenolic compound found in Kelulut honey, proves to be significant candidate in the chemoprevention of colon cancer. Based on these features, the use of hiney in the medicinal field (apitherapy), and the widespread usage of natural product consumption, is gaining interest by each year.
Collapse
|
15
|
Conventional and Organic Honeys as a Source of Water- and Ethanol-Soluble Molecules with Nutritional and Antioxidant Characteristics. Molecules 2021; 26:molecules26123746. [PMID: 34205369 PMCID: PMC8234084 DOI: 10.3390/molecules26123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
The benefits of natural honeybee products (e.g., honey, royal jelly, beeswax, propolis, beevenom and pollen) to the immune system are remarkable, and many of them are involved in the induction of antibody production, maturation of immune cells and stimulation of the immune system. The type of plants in the geographical area, climatic conditions and production method have a significantly influence on the nutritional quality of honey. However, this variability can influence consumer liking by the sensory attributes of the product. The aim of this work was to compare the most popular honeys from Poland in terms of nutritional value, organoleptic properties and antioxidant activity. In the study, five varieties of honey (honeydew, forest, buckwheat, linden and dandelion) from conventional and organic production methods were tested. The nutritional characteristics of honey samples included acidity, content of water, sugars, vitamin C, HMF and phenolics (total and flavonoids), while honey color, taste, aroma and consistency were investigated in the organoleptic characteristics. The antioxidant activity was determined in water- and ethanol-soluble honey extracts using DPPH and ORAC tests. The results showed that organoleptic and nutritional characteristics of popular Polish honeys differ significantly in relation to plant source and production method. The significant effect of honey variety on the content of HMF, saccharose and phenolics, as well as acidity and antioxidant capacity were noted. The impact of variety and variety × production method interaction was significant in the case of the content of vitamin C, glucose and fructose. A visible difference of buckwheat and forest honeys from other samples was observed. The highest content of total phenolics with antioxidant activity based on the SET mechanism was found in buckwheat honeys, while forest honeys were richer in flavonoids.
Collapse
|
16
|
The Use of Right Angle Fluorescence Spectroscopy to Distinguish the Botanical Origin of Greek Common Honey Varieties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The standardization of the botanical origin of honey reflects the commercial value and quality of honey. Nowadays, most consumers are looking for a unifloral honey. The aim of the present study was to develop a novel method for honey classification using chemometric models based on phenolic compounds analyzed with right angle fluorescence spectroscopy, coupled with stepwise linear discriminant analysis (LDA). The deconstructed spectrum from three-dimensional-emission excitation matrix (3D-EEM) spectra provided a correct classification score of 94.9% calibration and cross-validation at an excitation wavelength (λex) of 330 nm. Subsequently, a score of 81.4% and 79.7%, respectively, at an excitation wavelength (λex) of 360 nm was achieved. Each chemometric model confirmed its power through the external validation with a score of 82.1% for both. Differentiation could be correlated with hydroxycinnamic and hydroxybenzoic acids, which absorb in this region of the spectrum. Fluorescence spectroscopy constitutes a rapid and sensitive technique, which, when combined with the stepwise algorithm and LDA method, can be used as a reliable and predictive authentication tool for honey. This study indicates that the developed methodology is a promising technique for determination of the botanical origin of common Greek honey varieties. Our long-term ambition is to support producers and suppliers to remain in a competitive national and international market.
Collapse
|
17
|
Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO. Quality, composition and health-protective properties of citrus honey: A review. Food Res Int 2021; 143:110268. [PMID: 33992369 DOI: 10.1016/j.foodres.2021.110268] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Citrus honey is one of the most important monofloral honeys produced and consumed worldwide. This honey has pleasant sensorial characteristics, which include light color and typical aroma and flavor. Besides that, several constituents such as minerals, phenolic and volatile compounds, amino acids, sugars, enzymes, vitamins, methylglyoxal and organic acids are found in citrus honey. Moreover, potential biological properties have been associated with citrus honey. All these factors make it highly desired by consumers, increasing its market value, which can stimulates the practice of fraud. Also, citrus honey is susceptible to contamination and to inadequate processing. All these factors can compromise the quality, safety and authenticity of citrus honey. In this sense, this review aims to update and to discuss, for the first time, the data available in the literature about the physicochemical and the sensorial characteristics, composition, health properties, contamination, authenticity and adulteration of citrus honey. With this background, we aim to provide data that can guide future researches related to this honey.
Collapse
Affiliation(s)
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Carabetta S, Di Sanzo R, Campone L, Fuda S, Rastrelli L, Russo M. High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) and Chemometrics for Geographical and Floral Authentication of Honeys from Southern Italy ( Calabria region). Foods 2020; 9:foods9111625. [PMID: 33171783 PMCID: PMC7694965 DOI: 10.3390/foods9111625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC–PAD) combined with chemometric analysis was developed to describe, for the first time, the sugar profile of sixty-one honeys of different botanical origin produced in southern Italy (Calabria Region). The principal component and linear discriminant analysis used to describe the variability of sugar data were able to discriminate the honeys according to their botanical origin with a correlation index higher than 90%. For the purpose of the robustness of the conclusions of this study, the analytical advantages of the HPAEC–PAD method have been statistically demonstrated compared to the official Italian HPLC–RI method (Refractive Index detection). Finally, as the characterization of the floral and geographical origin of honey became an important issue due to high consumer demand, 13 acacia honeys originating from Europe and China were studied by using the same method. By chemometric method it was possible to discriminate the different geographical origin with an index of 100%. All results proved the possibility to identify the sugar profile obtained by HPAEC–PAD combined with a robust statistical analysis, as a tool of authentication.
Collapse
Affiliation(s)
- Sonia Carabetta
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
- Correspondence: ; Tel.: +39-333-287-1686
| | - Rosa Di Sanzo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan, Italy;
| | - Salvatore Fuda
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy;
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
| |
Collapse
|
19
|
Terzo S, Mulè F, Amato A. Honey and obesity-related dysfunctions: a summary on health benefits. J Nutr Biochem 2020; 82:108401. [PMID: 32454412 DOI: 10.1016/j.jnutbio.2020.108401] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Honey is a natural product, containing flavonoids and phenolic acids, appreciated for its therapeutic abilities since ancient times. Although the bioactive potential is linked to the composition, that is variable depending on mainly the botanical origin, honey has antioxidant and anti-inflammatory properties. Therefore, honey, administered alone or in combination with conventional therapy, might result useful in the management of chronic diseases that are commonly associated with oxidative stress and inflammation state. Obesity is a metabolic disorder characterized by visceral adiposity. The adipose tissue becomes hypertrophic and undergoes hyperplasia, resulting in a hypoxic environment, oxidative stress and production of pro-inflammatory mediators that can be responsible for other disorders, such as metabolic syndrome and neurodegeneration. Experimental evidence from animals have shown that honey improves glycemic control and lipid profile with consequent protection from endothelial dysfunction and neurodegeneration. The purpose of the present review is to summarize the current literature concerning the beneficial effects of honey in the management of the obesity-related dysfunctions, including neurodegeneration. Based on the key constituents of honey, the paper also highlights polyphenols to be potentially responsible for the health benefits of honey. Further well-designed and controlled studies are necessary to validate these benefits in humans.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy; Department of Neuroscience and cell biology, University of Palermo, Palermo, Italy.
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
20
|
Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Honey is a natural pure food produced by honeybees from the nectar of various plants, and its chemical composition includes carbohydrates, water, and some minor compounds, which are very important for honey quality and authentication. Most of honey’s minor components are related to the botanic origin, climate, and geographic diversity. In this work, we report an original case study on monofloral honey samples of twelve different botanic origins produced in Tuscany (Italy) based on the ‘semi-quantitative’ analysis of emission, excitation, and synchronous front-face fluorescence spectra. This is the first front-face fluorescence study of Italian honey samples and, to our knowledge, the first fluorescence investigation of honey from inula (Inula viscosa (L.) Aiton), marruca (Paliurus spina-christi Mill.), lavender (Lavandula L. 1753), sulla (Hedysarum coronarium L.), arbutus (or strawberry tree) (Arbutus unedo L., 1753), and alfalfa (Medicago sativa L.) plants. Results obtained from fluorescence spectroscopy are discussed in terms of characteristic spectral emission profiles typical of honey of different botanic origins. Moreover, the spectral analysis based on the decomposition of the front-face fluorescence (FFF) spectra in terms of single main fluorophores’ components is here proposed to identify several minor compounds, such as amino acids, phenolic acids, vitamins, and other fluorescent bioactive molecules.
Collapse
|
21
|
Antidepressive effects of a chemically characterized maqui berry extract (Aristotelia chilensis (molina) stuntz) in a mouse model of Post-stroke depression. Food Chem Toxicol 2019; 129:434-443. [PMID: 31022478 DOI: 10.1016/j.fct.2019.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Mood disorders occur in 30% of stroke patients, and of these post-stroke depression (PSD) is the most significant. This study aimed to evaluate the antidepressive-like effects and in vivo antioxidant activity of a chemically characterized maqui berry (Aristotelia chilensis (Molina) Stuntz) extract obtained from an optimized extraction method, on a murine PSD model. The extraction process was optimized to maximize anthocyanin content, and the phytochemical profile of the extract was evaluated using a multi-methodological approach including a liquid chromatographic method coupled with mass spectrometry and nuclear magnetic resonance spectroscopy. The antidepressive-like activity was investigated through despair swimming and tail suspension tests. The in vivo antioxidant activity was evaluated in mouse brain tissue by measuring the activity of antioxidant enzymes and lipid peroxidation products. A number of compounds have been first identified in maqui berry here, including malvidin-glucoside, GABA, choline and trigonelline. Moreover, the results showed that the antidepressive-like activity exerted by the extract, which was found to restore normal mouse behavior in both despair swimming and tail suspension tests, could be linked to its antioxidant activity, leading to the conclusion that maqui berries might be useful for supporting pharmacological therapy of PSD by modulating oxidative stress.
Collapse
|
22
|
Tsetegho Sokeng AJ, Sobolev AP, Di Lorenzo A, Xiao J, Mannina L, Capitani D, Daglia M. Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach. Food Chem 2019; 272:93-108. [PMID: 30309609 DOI: 10.1016/j.foodchem.2018.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Arold Jorel Tsetegho Sokeng
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Anatoly P Sobolev
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Luisa Mannina
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Capitani
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
23
|
Hatzakis E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 18:189-220. [PMID: 33337022 DOI: 10.1111/1541-4337.12408] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a robust method, which can rapidly analyze mixtures at the molecular level without requiring separation and/or purification steps, making it ideal for applications in food science. Despite its increasing popularity among food scientists, NMR is still an underutilized methodology in this area, mainly due to its high cost, relatively low sensitivity, and the lack of NMR expertise by many food scientists. The aim of this review is to help bridge the knowledge gap that may exist when attempting to apply NMR methodologies to the field of food science. We begin by covering the basic principles required to apply NMR to the study of foods and nutrients. A description of the discipline of chemometrics is provided, as the combination of NMR with multivariate statistical analysis is a powerful approach for addressing modern challenges in food science. Furthermore, a comprehensive overview of recent and key applications in the areas of compositional analysis, food authentication, quality control, and human nutrition is provided. In addition to standard NMR techniques, more sophisticated NMR applications are also presented, although limitations, gaps, and potentials are discussed. We hope this review will help scientists gain some of the knowledge required to apply the powerful methodology of NMR to the rich and diverse field of food science.
Collapse
Affiliation(s)
- Emmanuel Hatzakis
- Dept. of Food Science and Technology, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A.,Foods for Health Discovery Theme, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A
| |
Collapse
|
24
|
Di Rosa AR, Marino AMF, Leone F, Corpina GG, Giunta RP, Chiofalo V. Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4065. [PMID: 30469377 PMCID: PMC6263635 DOI: 10.3390/s18114065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
Honey is usually classified as "unifloral" or "multifloral", depending on whether a dominating pollen grain, originating from only one particular plant, or no dominant pollen type in the sample is found. Unifloral honeys are usually more expensive and appreciated than multifloral honeys, which highlights the importance of honey authenticity. Melissopalynological analysis is used to identify the botanical origin of honey, counting down the number of pollens grains of a honey sample, and calculating the respective percentages of the nectariferous pollens. In addition, sensory properties are also very important for honey characterization, and electronic senses emerged as useful tools for honey authentication. In this work, a comparison of the results obtained from melissopalynological analysis with those provided by a potentiometric electronic tongue is given, resulting in a 100% match between the two techniques.
Collapse
Affiliation(s)
- Ambra R Di Rosa
- Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, 98168 Messina, Italy.
| | - Anna M F Marino
- Istituto Zooprofilattico Sperimentale della Sicilia, 95125 Catania, Italy.
| | - Francesco Leone
- Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, 98168 Messina, Italy.
| | - Giuseppe G Corpina
- Istituto Zooprofilattico Sperimentale della Sicilia, 95125 Catania, Italy.
| | - Renato P Giunta
- Istituto Zooprofilattico Sperimentale della Sicilia, 95125 Catania, Italy.
| | - Vincenzo Chiofalo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, 98167 Messina, Italy.
| |
Collapse
|
25
|
Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes. Sci Rep 2018; 8:9996. [PMID: 29968727 PMCID: PMC6030050 DOI: 10.1038/s41598-018-27933-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 06/11/2018] [Indexed: 11/08/2022] Open
Abstract
Honeydew produced from the excretion of plant-sucking insects (order Hemiptera) is a carbohydrate-rich material that is foraged by honey bees to integrate their diets. In this study, we used DNA extracted from honey as a source of environmental DNA to disclose its entomological signature determined by honeydew producing Hemiptera that was recovered not only from honeydew honey but also from blossom honey. We designed PCR primers that amplified a fragment of mitochondrial cytochrome c oxidase subunit 1 (COI) gene of Hemiptera species using DNA isolated from unifloral, polyfloral and honeydew honeys. Ion Torrent next generation sequencing metabarcoding data analysis assigned Hemiptera species using a customized bioinformatic pipeline. The forest honeydew honeys reported the presence of high abundance of Cinara pectinatae DNA, confirming their silver fir forest origin. In all other honeys, most of the sequenced reads were from the planthopper Metcalfa pruinosa for which it was possible to evaluate the frequency of different mitotypes. Aphids of other species were identified from honeys of different geographical and botanical origins. This unique entomological signature derived by environmental DNA contained in honey opens new applications for honey authentication and to disclose and monitor the ecology of plant-sucking insects in agricultural and forest landscapes.
Collapse
|
26
|
Pascual-Maté A, Osés SM, Fernández-Muiño MA, Sancho MT. Analysis of Polyphenols in Honey: Extraction, Separation and Quantification Procedures. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1354025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ana Pascual-Maté
- Nutrition and Bromatology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Sandra M. Osés
- Nutrition and Bromatology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Miguel A. Fernández-Muiño
- Nutrition and Bromatology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - M. Teresa Sancho
- Nutrition and Bromatology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
27
|
Kim S, Hong I, Woo S, Jang H, Pak S, Han S. Isolation of Abscisic Acid from Korean Acacia Honey with Anti- Helicobacter pylori Activity. Pharmacogn Mag 2017; 13:S170-S173. [PMID: 28808376 PMCID: PMC5538150 DOI: 10.4103/0973-1296.210166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. Objective: This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. Material and Methods: The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Results: Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36–72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. Conclusion: Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. SUMMARY The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanol The EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographically Abscisic acid was isolated from one subfraction All the solvent extracts and fractions showed antibacterial activity against H. pylori Abscisic acid exhibited antibacterial activity against H. pylori.
Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error.
Collapse
Affiliation(s)
- SeGun Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, Korea
| | - InPyo Hong
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, Korea
| | - SoonOk Woo
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, Korea
| | - HyeRi Jang
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, Korea
| | - SokCheon Pak
- School of Biomedical Sciences, Charles Sturt University, Bathurst, NSW, Australia
| | - SangMi Han
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, Korea
| |
Collapse
|
28
|
Application of analytical methods in authentication and adulteration of honey. Food Chem 2017; 217:687-698. [DOI: 10.1016/j.foodchem.2016.09.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
|
29
|
Attanzio A, Tesoriere L, Allegra M, Livrea MA. Monofloral honeys by Sicilian black honeybee ( Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Heliyon 2016; 2:e00193. [PMID: 27882358 PMCID: PMC5113258 DOI: 10.1016/j.heliyon.2016.e00193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
Abstract
Thirty samples from thirteen Sicilian monofloral honeys by the local black honeybee, and two honeydew honeys, were studied to assess phenol content, reducing power and antioxidant capacity as well as correlations among these parameters. Honeys from Apiaceae showed the highest phenol amount and capacity to reduce ferric ion and stable chemical radicals, whereas honeys from Leguminosae the lowest. All honeys were active against myoglobin-derived radicals usually formed in red meat after storage and/or heating and significant correlation (p = 0.023) was found between flavonoid content and deactivation rate of this radical. Dill > almond > tangerine > thistle > sulla honeys inhibited formation of lipoperoxides in either iron/ascorbate or azoinitiator -induced membrane lipid oxidation, whereas eucalyptus honey was mostly effective in the metal-dependent model. Honeys by black honeybee possess remarkable reducing power and antioxidant potential against radicals of interest in dietary foodstuffs.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università di Palermo, Via Archirafi, 28, 90123 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università di Palermo, Via Archirafi, 28, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università di Palermo, Via Archirafi, 28, 90123 Palermo, Italy
| | - Maria A Livrea
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università di Palermo, Via Archirafi, 28, 90123 Palermo, Italy
| |
Collapse
|
30
|
Ciulu M, Spano N, Pilo MI, Sanna G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules 2016; 21:451. [PMID: 27070567 PMCID: PMC6273725 DOI: 10.3390/molecules21040451] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 03/25/2016] [Indexed: 01/15/2023] Open
Abstract
Honey is one of the most renowned natural foods. Its composition is extremely variable, depending on its botanical and geographical origins, and the abundant presence of functional compounds has contributed to the increased worldwide interest is this foodstuff. In particular, great attention has been paid by the scientific community towards classes of compounds like phenolic compounds, due to their capability to act as markers of unifloral honey origin. In this contribution the most recent progress in the assessment of new analytical procedures aimed at the definition of the qualitative and quantitative profile of phenolic compounds of honey have been highlighted. A special emphasis has been placed on the innovative aspects concerning the extraction procedures, along with the most recent strategies proposed for the analysis of phenolic compounds. Moreover, the centrality of validation procedures has been claimed and extensively discussed in order to ensure the fitness-for-purpose of the proposed analytical methods. In addition, the exploitation of the phenolic profile as a tool for the classification of the botanical and geographical origin has been described, pointing out the usefulness of chemometrics in the interpretation of data sets originating from the analysis of polyphenols. Finally, recent results in concerning the evaluation of the antioxidant properties of unifloral honeys and the development of new analytical approaches aimed at measuring this parameter have been reviewed.
Collapse
Affiliation(s)
- Marco Ciulu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Nadia Spano
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Maria I Pilo
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Gavino Sanna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy.
| |
Collapse
|
31
|
Huang Y, Wang K, Lai W, Tan C, Chen S, Cai S, Chen Z. A 2D proton J-resolved NMR method for direct measurements on heterogeneous foods. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|