1
|
Dobani S, Kirsty Pourshahidi L, Ternan NG, McDougall GJ, Pereira-Caro G, Bresciani L, Mena P, Almutairi TM, Crozier A, Tuohy KM, Del Rio D, Gill CIR. A review on the effects of flavan-3-ols, their metabolites, and their dietary sources on gut barrier integrity. Food Funct 2025. [PMID: 39807528 DOI: 10.1039/d4fo04721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demonstrates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed, including transepithelial electrical resistance of the epithelial layer and expression of tight junction proteins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier integrity are structure-function dependent, related to the (poly)phenolic source or the tested compound, as well as their dose, exposure time, and presence or absence of a stressor in the experimental system. Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect, and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associated with the intake of their dietary sources. However, rigorous and robustly designed human intervention studies are needed to confirm these experimental observations.
Collapse
Affiliation(s)
- Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Kieran M Tuohy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| |
Collapse
|
2
|
Saleh MSM, Jalil J, Zainalabidin S, Asmadi AY, Mustafa NH, Kamisah Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. Int J Mol Sci 2021; 22:ijms22020618. [PMID: 33435507 PMCID: PMC7827335 DOI: 10.3390/ijms22020618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Parkia (Fabaceae, Subfamily, Mimosoideae) comprises about 34 species of mostly evergreen trees widely distributed across neotropics, Asia, and Africa. This review aims to provide an overview of the current status of the species from the genus Parkia in terms of its relationship between its phytochemistry and medical uses. Comprehensive information on Parkia species was retrieved from electronic databases, which were Web of Science, ScienceDirect, PubMed, and Google Scholar. This review identified nine species from genus Parkia with properties of medicinal use. They are used traditionally to treat several ailments, such as diabetes, diarrhea, wounds, hypertension, cough, chronic piles, conjunctivitis, and measles. The most common species studied are P. biglobosa, P. speciosa, P. javanica, P. bicolor, P. biglandulosa, P. filicoidea, and P. clappertoniana. A considerable number of secondary metabolites, such as terpenoids, phenolic acids, flavonoids (aglycone and glycosides), and numerous volatile compounds have been identified in this genus, which are responsible for their diverse pharmacological activities. Their extracts, pure compounds and seed lectins have been reported for their anticancer, antimicrobial, antihypertensive, antiulcer, antidiabetic, anti-inflammatory, antioxidant, antimalarial, hepatoprotective, and antidiarrheal activities. The information gathered in this review might be of help for future studies in terms of the current knowledge on the link between the phytochemical components and medicinal uses. This could facilitate more discoveries on its potentials particularly in the pharmacological characteristics and potential to be developed into modern medicines.
Collapse
Affiliation(s)
- Mohammed S. M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (J.J.); (N.H.M.)
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Nor Hidayah Mustafa
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (J.J.); (N.H.M.)
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +603-91459575; Fax: +603-91459547
| |
Collapse
|
3
|
Chamorro S, Romero C, Brenes A, Sánchez-Patán F, Bartolomé B, Viveros A, Arija I. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food Funct 2019; 10:1444-1454. [PMID: 30768097 DOI: 10.1039/c8fo02465k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of dietary supplementation with grape extract (GE) at 2.5 and 5.0 g kg-1 of feed on intestinal utilization of polyphenols and gut health of broiler chickens was determined. The ileal digestibility of grape polyphenols was higher for flavan-3-ol monomers [(+)-catechin and (-)-epicatechin] than for dimers (Procyanidins B1 and B2) and galloylated compounds [(-)-epicatechingallate] and no differences among 2.5 and 5.0 g GE per kg dietary treatments were observed. The excreta concentration of benzoic, phenylacetic, phenylpropionic, and cinnamic acids and phenyl-γ-valerolactone phenolic metabolites was higher in birds fed GE, confirming hence the microbial metabolism of grape polyphenols to a relevant extent. Gut morphology and the total ileal mucin content were not modified by the dietary inclusion of GE, but a lower sialic acid concentration was observed in those birds fed a higher concentration of GE. Escherichia coli and lactic-acid bacteria ileal counts were reduced in birds fed GE. Overall, these results prove the extensive intestinal utilization and microbial metabolism of grape polyphenols in broiler chickens. Some antimicrobial and mucin-modulation effects were also observed after a sustained consumption of grape polyphenols during 21 days.
Collapse
Affiliation(s)
- Susana Chamorro
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais, 10, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
4
|
Rizo J, Guillén D, Farrés A, Díaz-Ruiz G, Sánchez S, Wacher C, Rodríguez-Sanoja R. Omics in traditional vegetable fermented foods and beverages. Crit Rev Food Sci Nutr 2018; 60:791-809. [PMID: 30582346 DOI: 10.1080/10408398.2018.1551189] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For a long time, food microbiota has been studied using traditional microbiological techniques. With the arrival of molecular or culture-independent techniques, a strong understanding of microbiota dynamics has been achieved. However, analyzing the functional role of microbial communities is not an easy task. The application of omics sciences to the study of fermented foods would provide the metabolic and functional understanding of the microbial communities and their impact on the fermented product, including the molecules that define its aroma and flavor, as well as its nutritional properties. Until now, most omics studies have focused on commercial fermented products, such as cheese, wine, bread and beer, but traditional fermented foods have been neglected. Therefore, the information that allows to relate the present microbiota in the food and its properties remains limited. In this review, reports on the applications of omics in the study of traditional fermented foods and beverages are reviewed to propose new ways to analyze the fermentation phenomena.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
5
|
Cai H, Cheng R, Jin Y, Ding S, Chen Z. Evaluation of Oolong Teas Using1H and13C Solid-state NMR, Sensory Analysis, and Multivariate Statistics. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201600183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Honghao Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces; Xiamen University; Xiamen China
- Department of Chemistry and Center for Nanoscience and Nanotechnology; National Sun Yat-sen University; Kaohsiung Taiwan
| | - Renhao Cheng
- Department of Chemistry and Center for Nanoscience and Nanotechnology; National Sun Yat-sen University; Kaohsiung Taiwan
| | - Yali Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces; Xiamen University; Xiamen China
| | - Shangwu Ding
- Department of Chemistry and Center for Nanoscience and Nanotechnology; National Sun Yat-sen University; Kaohsiung Taiwan
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces; Xiamen University; Xiamen China
| |
Collapse
|
6
|
Landete JM. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 2012; 52:936-48. [PMID: 22747081 DOI: 10.1080/10408398.2010.513779] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyphenols are important constituents of food products of plant origin. Fruits, vegetables, and beverages are the main sources of phenolic compounds in the human diet. These compounds are directly related to sensory characteristics of foods such as flavor, astringency and color. Polyphenols are extensively metabolized both in tissues and by the colonic microbiota. Normally, the circulating polyphenols are glucuronidated and/or sulphated and no free aglycones are found in plasma. The presence of phenolic compounds in the diet is beneficial to health due to their antioxidant, anti-inflammatory, and vasodilating properties. The health effects of polyphenols depend on the amount consumed and their bioavailability. Moreover, polyphenols are able to kill or inhibit the growth of microorganisms such as bacteria, fungi, or protozoans. Some dietary polyphenols may have significant effects on the colonic flora providing a type of prebiotic effect. The anti-nutrient properties of polyphenols are also discussed in this paper. The antioxidant, anti-inflammatory, vasodilating, and prebiotic properties of polyphenols make them potential functional foods.
Collapse
Affiliation(s)
- J M Landete
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, (Valencia), España.
| |
Collapse
|
7
|
|
8
|
Cuccioloni M, Mozzicafreddo M, Spina M, Tran CN, Falconi M, Eleuteri AM, Angeletti M. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase. J Lipid Res 2011; 52:897-907. [PMID: 21357570 DOI: 10.1194/jlr.m011817] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (K(i) in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration.
Collapse
|
9
|
Nippostrongylus brasiliensis: increase of sialomucins reacting with anti-mucin monoclonal antibody HCM31 in rat small intestinal mucosa with primary infection and reinfection. Exp Parasitol 2009; 123:319-25. [PMID: 19703448 DOI: 10.1016/j.exppara.2009.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/19/2009] [Accepted: 08/18/2009] [Indexed: 11/23/2022]
Abstract
Infections with the parasitic helminth, Nippostrongylus brasiliensis, cause changes in rat small intestinal goblet cell mucin, particularly in the peripheral sugar residues of oligosaccharide. These changes may correlate with expulsion. In this study, we examined changes in mucin oligosaccharides caused by primary infection and reinfection with N. brasiliensis, using two monoclonal antibodies, HCM31 and PGM34, that react with sialomucin and sulfomucin, respectively. Enzyme-linked immunosorbent assay of jejunal mucins showed that the relative reactivity of mucins with HCM31, but not PGM34, increased up to 16 days after primary infection and 6 days after reinfection, the times when the worms were expelled from the rats. Immunohistochemical studies confirmed that goblet cells stained with HCM31 greatly increased at the time of worm expulsion. These results indicate that the marked increase observed in HCM31-reactive sialomucins may be related to expulsion of the worms.
Collapse
|