1
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
2
|
Peng CA, Kozubowski L, Marcotte WR. Advances in Plant-Derived Scaffold Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:122. [PMID: 32161608 PMCID: PMC7052361 DOI: 10.3389/fpls.2020.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/27/2020] [Indexed: 05/13/2023]
Abstract
Scaffold proteins form critical biomatrices that support cell adhesion and proliferation for regenerative medicine and drug screening. The increasing demand for such applications urges solutions for cost effective and sustainable supplies of hypoallergenic and biocompatible scaffold proteins. Here, we summarize recent efforts in obtaining plant-derived biosynthetic spider silk analogue and the extracellular matrix protein, collagen. Both proteins are composed of a large number of tandem block repeats, which makes production in bacterial hosts challenging. Furthermore, post-translational modification of collagen is essential for its function which requires co-transformation of multiple copies of human prolyl 4-hydroxylase. We discuss our perspectives on how the GAANTRY system could potentially assist the production of native-sized spider dragline silk proteins and prolyl hydroxylated collagen. The potential of recombinant scaffold proteins in drug delivery and drug discovery is also addressed.
Collapse
|
3
|
Setina CM, Haase JP, Glatz CE. Process integration for recovery of recombinant collagen type I α1 from corn seed. Biotechnol Prog 2015; 32:98-107. [DOI: 10.1002/btpr.2191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/07/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Charles E. Glatz
- Dept. of Chemical and Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011
| |
Collapse
|
4
|
Banerjee I, Mishra D, Das T, Maiti S, Maiti TK. Caprine (Goat) Collagen: A Potential Biomaterial for Skin Tissue Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:355-73. [DOI: 10.1163/092050610x551943] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Indranil Banerjee
- a Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Debasish Mishra
- b Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Tamal Das
- c Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Swatilekha Maiti
- d Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Tapas K. Maiti
- e Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
5
|
|
6
|
Taylor CM, Karunaratne CV, Xie N. Glycosides of hydroxyproline: some recent, unusual discoveries. Glycobiology 2011; 22:757-67. [PMID: 22190471 DOI: 10.1093/glycob/cwr188] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosides of hydroxyproline (Hyp) in the plant cell wall matrix were discovered by Lamport and co-workers in the 1960s. Since then, much has been learned about these Hyp-rich glycoproteins. The intent of this review was to compare and contrast some less common structural motifs, in nontraditional roles, to uncover themes. Arabinosylation of short-peptide plant hormones is essential for growth, cell differentiation and defense. In a very recent development, prolyl hydroxylase and arabinosyltransferase activity has been shown to have a direct impact on the growth of root hairs in Arabidopsis thaliana. Pollen allergens of mugwort and ragweed contain proline-rich domains that are hydroxylated and glycosylated and play a structural role. In the case of mugwort, this domain also presents a significant immunogenic epitope. Major crops, including tobacco and maize, have been used to express and produce recombinant proteins of mammalian origin. The risks of plant-imposed glycosylation are discussed. In unicellular eukaryotes, Skp1 (a subunit of the E3(SCF) ubiquitin ligase complex) harbors a key Hyp residue that is modified by a linear pentasaccharide. These modifications may be involved in sensing oxygen levels. A few studies have probed the impact of glycosylation on the structure of Hyp-containing peptides. These have necessarily looked at small, synthetic molecules, since natural peptides and proteins are often isolable in only minuscule amounts and/or are heterogeneous in nature. The characterization of native structural motifs, together with the determination of glycopeptide conformation and properties, holds the key to rationalizing nature's architectural design.
Collapse
Affiliation(s)
- Carol M Taylor
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
7
|
Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 2011; 30:410-8. [PMID: 21839159 DOI: 10.1016/j.biotechadv.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022]
Abstract
The complex and diverse nature of the post-translational modification (PTM) of proteins represents an efficient and cost-effective mechanism for the exponential diversification of the genome. PTMs have been shown to affect almost every aspect of protein activity, including function, localisation, stability, and dynamic interactions with other molecules. Although many PTMs are evolutionarily conserved there are also important kingdom-specific modifications which should be considered when expressing recombinant proteins. Plants are gaining increasing acceptance as an expression system for recombinant proteins, particularly where eukaryotic-like PTMs are required. Glycosylation is the most extensively studied PTM of plant-made recombinant proteins. However, other types of protein processing and modification also occur which are important for the production of high quality recombinant protein, such as hydroxylation and lipidation. Plant and/or protein engineering approaches offer many opportunities to exploit PTM pathways allowing the molecular farmer to produce a humanised product with modifications functionally similar or identical to the native protein. Indeed, plants have demonstrated a high degree of tolerance to changes in PTM pathways allowing recombinant proteins to be modified in a specific and controlled manner, frequently resulting in a homogeneity of product which is currently unrivalled by alternative expression platforms. Whether a recombinant protein is intended for use as a scientific reagent, a cosmetic additive or as a pharmaceutical, PTMs through their presence and complexity, offer an extensive range of options for the rational design of humanised (biosimilar), enhanced (biobetter) or novel products.
Collapse
|
8
|
Xu X, Gan Q, Clough RC, Pappu KM, Howard JA, Baez JA, Wang K. Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase. BMC Biotechnol 2011; 11:69. [PMID: 21702901 PMCID: PMC3151215 DOI: 10.1186/1472-6750-11-69] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/24/2011] [Indexed: 11/16/2022] Open
Abstract
Background Collagens require the hydroxylation of proline (Pro) residues in their triple-helical domain repeating sequence Xaa-Pro-Gly to function properly as a main structural component of the extracellular matrix in animals at physiologically relevant conditions. The regioselective proline hydroxylation is catalyzed by a specific prolyl 4-hydroxylase (P4H) as a posttranslational processing step. Results A recombinant human collagen type I α-1 (rCIα1) with high percentage of hydroxylated prolines (Hyp) was produced in transgenic maize seeds when co-expressed with both the α- and β- subunits of a recombinant human P4H (rP4H). Germ-specific expression of rCIα1 using maize globulin-1 gene promoter resulted in an average yield of 12 mg/kg seed for the full-length rCIα1 in seeds without co-expression of rP4H and 4 mg/kg seed for the rCIα1 (rCIα1-OH) in seeds with co-expression of rP4H. High-resolution mass spectrometry (HRMS) analysis revealed that nearly half of the collagenous repeating triplets in rCIα1 isolated from rP4H co-expressing maize line had the Pro residues changed to Hyp residues. The HRMS analysis determined the Hyp content of maize-derived rCIα1-OH as 18.11%, which is comparable to the Hyp level of yeast-derived rCIα1-OH (17.47%) and the native human CIa1 (14.59%), respectively. The increased Hyp percentage was correlated with a markedly enhanced thermal stability of maize-derived rCIα1-OH when compared to the non-hydroxylated rCIα1. Conclusions This work shows that maize has potential to produce adequately modified exogenous proteins with mammalian-like post-translational modifications that may be require for their use as pharmaceutical and industrial products.
Collapse
Affiliation(s)
- Xing Xu
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA 50011-1010, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Based on the idiographic character of collagenous domain of human type III collagen, a recombinant human gelatin monomeric gene (gel) was designed and synthesized. All hydrophobic amino acids (proline excluded) were replaced by hydrophilic amino acids to improve the hydrophilic properties, and the codons encoding amino acids were optimized according to Pichia pastoris bias usage. Then a recombinant human gelatin expression vector pPIC9KG6 containing six monomeric genes ligated in the same orientation was constructed successfully. After verificated the validity of construction by DNA sequencing, the recombinant vector pPIC9KG6 was electroporated into the Pichia pastoris GS115, and Mut+ pPIC9KG6 transformants were selected on the basis of G418 resistance. Then a high-level expression strain was picked up from transformants by analyzing their recombinant protein expression levels. SDS-PAGE analysis of cell lysate and fermentation supernatant of the high-level expression strain showed that recombinant human gelatin can be expressed intracellularly and secreted expression, and its expression level reaches 16.06 g per liter. Secreted recombinant human gelatin was purified from fermentation supernatant by gel filtration chromatography. By UV spectroscopy and FTIR and SEM, it was confirmed that purified recombinant human gelatin is similar to animal-derived gelatin in protein structure.
Collapse
|
10
|
|
11
|
Zhang C, Baez J, Pappu KM, Glatz CE. Purification and characterization of a transgenic corn grain-derived recombinant collagen type I alpha 1. Biotechnol Prog 2010; 25:1660-8. [PMID: 19637392 DOI: 10.1002/btpr.257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Corn offers advantages as a transgenic host for producing recombinant proteins required at large volumes (1,000's of tons per year) and low cost (less than US$50/kg) by generating them as co-products of biorefining. We describe the purification and characterization of a corn grain-derived mammalian structural protein having such market characteristics: a full length recombinant collagen type I alpha 1 (rCI alpha 1) chain. Material properties of interest are gelation behavior, which would depend on as yet unverified ability of corn to carry out post-translational prolyl hydroxylation and formation of triple helical conformation. The starting material was grain where the expression of rCI alpha 1 had been directed by an embryo-specific promoter. Purification consisted of extraction at low pH followed by membrane and chromatographic steps to isolate rCI alpha 1 for characterization. The amino acid composition and immunoreactivity of CI alpha 1 was similar to that of an analogous native human CI alpha 1 and to rCI alpha 1 produced by the yeast Pichia pastoris. Tandem mass spectrometry confirmed the primary sequence of the corn-derived rCI alpha 1 with 46% coverage. Fragments of the rCI alpha 1 chains were also observed, possibly caused by endogenous plant proteases. The corn-derived rCI alpha 1 had a low level of prolyl hydroxylation (approximately 1% versus 11%) relative to animal-derived CI alpha 1 and folded into its characteristic triple-helical structure as indicated by its resistance to pepsin digestion below its melting temperature of 26(o)C. The 29 amino acid foldon fused to the C-terminus to initiate triple helix formation was not cleaved from the rCI alpha 1 chains, but could be removed by pepsin treatment.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
12
|
Zhang C, Glatz CE, Fox SR, Johnson LA. Fractionation of transgenic corn seed by dry and wet milling to recover recombinant collagen-related proteins. Biotechnol Prog 2010; 25:1396-401. [PMID: 19603452 DOI: 10.1002/btpr.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corn continues to be considered an attractive transgenic host for producing recombinant therapeutic and industrial proteins because of its potential for producing recombinant proteins at large volume and low cost as coproducts of corn seed-based biorefining. Efforts to reduce production costs have been primarily devoted to increasing accumulation level, optimizing protein extraction conditions, and simplifying the purification. In the present work, we evaluated two grain fractionation methods, dry milling and wet milling, to enrich two recombinant collagen-related proteins; thereby, reducing the amount and type of corn-derived impurities in subsequent protein extraction and purification steps. The two proteins were a full-length human recombinant collagen type I alpha 1(rCIalpha1) chain with telopeptides and peptide foldon to effect triple helix formation and a 44-kDa rCIalpha1 fragment. For each, approximately 60% of the rCIalpha1s in the seed was recovered in the dry-milled germ-rich fractions making up ca. 25% of the total kernel mass. For wet milling, approximately 60% of each was recovered in three fractions accounting for 20-25% of the total kernel mass. The rCIalpha1s in the dry-milled germ-rich fractions were enriched three to six times compared with the whole corn kernel, whereas the rCIalpha1s were enriched 4-10 times in selected wet-milled fractions. The recovered starch from wet milling was almost free of rCIalpha1. Therefore, it was possible to generate rCIalpha1-enriched fractions by both dry and wet milling along with rCIalpha1-free starch using wet milling. Because of its simplicity, the dry milling procedure could be accomplished on-farm thus minimizing the risk of inadvertent release of viable transgenic seeds.
Collapse
Affiliation(s)
- Cheng Zhang
- Dept. of Chemical and Biological Engineering, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
13
|
Stein H, Wilensky M, Tsafrir Y, Rosenthal M, Amir R, Avraham T, Ofir K, Dgany O, Yayon A, Shoseyov O. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 2009; 10:2640-5. [PMID: 19678700 DOI: 10.1021/bm900571b] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen's biocompatibility, biodegradability and low immunogenicity render it advantageous for extensive application in pharmaceutical or biotechnological disciplines. However, typical collagen extraction from animal or cadaver sources harbors risks including allergenicity and potential sample contamination with pathogens. In this work, two human genes encoding recombinant heterotrimeric collagen type I (rhCOL1) were successfully coexpressed in tobacco plants with the human prolyl-4-hydroxylase (P4H) and lysyl hydroxylase 3 (LH3) enzymes, responsible for key posttranslational modifications of collagen. Plants coexpressing all five vacuole-targeted proteins generated intact procollagen yields of approximately 2% of the extracted total soluble proteins. Plant-extracted rhCOL1 formed thermally stable triple helical structures and demonstrated biofunctionality similar to human tissue-derived collagen supporting binding and proliferation of adult peripheral blood-derived endothelial progenitor-like cells. Through a simple, safe and scalable method of rhCOL1 production and purification from tobacco plants, this work broadens the potential applications of human recombinant collagen in regenerative medicine.
Collapse
Affiliation(s)
- Hanan Stein
- Collplant Ltd., 3 Sapir St, Weizmann Science Park, PO Box 4132, Ness-Ziona 74140, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Maria NA. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:657-672. [PMID: 19656332 DOI: 10.1111/j.1467-7652.2009.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Applied Chemistry and Microbiology and Department of Applied Biology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|