1
|
Pinto BF, Ribeiro LNB, da Silva GBRF, Freitas CS, Kraemer L, Oliveira FMS, Clímaco MC, Mourão FAG, Santos GSPD, Béla SR, Gurgel ILDS, Leite FDL, de Oliveira AG, Vilela MRSDP, Oliveira-Lima OC, Soriani FM, Fujiwara RT, Birbrair A, Russo RC, Carvalho-Tavares J. Inhalation of dimethyl fumarate-encapsulated solid lipid nanoparticles attenuate clinical signs of experimental autoimmune encephalomyelitis and pulmonary inflammatory dysfunction in mice. Clin Sci (Lond) 2022; 136:81-101. [PMID: 34904644 DOI: 10.1042/cs20210792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
RATIONALE The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.
Collapse
Affiliation(s)
- Bárbara Fernandes Pinto
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lorena Natasha Brito Ribeiro
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Gisela Bevilacqua Rolfsen Ferreira da Silva
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marianna Carvalho Clímaco
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Center for Technology and Research in Magneto-Resonance (CTPMAG), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Samantha Ribeiro Béla
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isabella Luísa da Silva Gurgel
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fábio de Lima Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
| | - Anselmo Gomes de Oliveira
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Maura Regina Silva da Páscoa Vilela
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Onésia Cristina Oliveira-Lima
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Frederico Marianetti Soriani
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliana Carvalho-Tavares
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Jiao Z, Wang X, Yin Y, Xia J, Mei Y. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J Microencapsul 2018; 35:272-280. [DOI: 10.1080/02652048.2018.1467509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhen Jiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Center for Nanobiotechnology, Joint Research Institute of Southeast University and Monash University, Suzhou, China
| | - Xiudong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yuting Yin
- School of Chemistry and Chemical Engineering, Southeast University Chengxian College, Nanjing, China
| | - Jingxin Xia
- School of Chemistry and Chemical Engineering, Southeast University Chengxian College, Nanjing, China
| | - Yanan Mei
- School of Chemistry and Chemical Engineering, Southeast University Chengxian College, Nanjing, China
| |
Collapse
|
5
|
Jiao Z, Wang X, Yin Y, Xia J. Preparation and evaluation of vitamin C and folic acid-coloaded antioxidant liposomes. PARTICULATE SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1080/02726351.2017.1391907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhen Jiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Center for Nanobiotechnology, Joint Research Institute of Southeast University and Monash University, Suzhou, China
| | - Xiudong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yuting Yin
- School of Chemistry and Chemical Engineering, Southeast University Chenxian College, Nanjing, China
| | - Jingxin Xia
- School of Chemistry and Chemical Engineering, Southeast University Chenxian College, Nanjing, China
| |
Collapse
|
7
|
McAuliffe LN, Kilcawley KN, Sheehan JJ, McSweeney PLH. Manufacture and Incorporation of Liposome-Entrapped Ethylenediaminetetraacetic Acid into Model Miniature Gouda-Type Cheese and Subsequent Effect on Starter Viability, pH, and Moisture Content. J Food Sci 2016; 81:C2708-C2717. [PMID: 27780298 DOI: 10.1111/1750-3841.13519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/25/2016] [Accepted: 09/03/2016] [Indexed: 01/02/2023]
Abstract
Liposome-encapsulated ethylenediaminetetraacetic acid (EDTA) was incorporated into a model miniature Gouda-type cheese (20 g) in order to assess its effect on rennet gelation, starter viability, pH, and moisture content. EDTA was encapsulated within 2 different food-grade proliposome preparations, Pro-Lipo Duo and Pro-Lipo C (50% and 40% unsaturated soybean phospholipids and 50% and 60% aqueous medium, respectively), using the following high-shear technologies: Ultra-Turrax (5000 rpm), 2-stage homogenization (345 bar), or microfluidization (690 bar). Liposome size distribution was affected by the high-shear technology employed with the proportion of large vesicles (>100 nm) decreasing in the order microfluidization < 2-stage homogenization < Ultra-Turrax. All EDTA-containing liposomes were stable during 28 d refrigerated storage, with no significant (P ≤ 0.05) change in size distribution or EDTA entrapment efficiency (%EE). Liposome composition affected the entrapment of EDTA, with Pro-Lipo C having a significantly greater %EE than Pro-Lipo Duo, 63% and 54%, respectively. For this reason, Pro-Lipo C EDTA liposomes, with and without EDTA, were incorporated into model miniature Gouda-type cheese. Addition of liposome-encapsulated EDTA to milk during cheese making did not impact pH or rennet gel formation. No differences in composition or pH were evident in liposome-treated cheeses. The results of this study show that the incorporation of liposome-encapsulated EDTA into milk during cheese manufacture did not affect milk fermentation, moisture content, or pH, suggesting that this approach may be suitable for studying the effects of calcium equilibrium on the texture of brine-salted cheeses.
Collapse
Affiliation(s)
- Lisa N McAuliffe
- the School of Food and Nutritional Science, Univ. College Cork, Cork, T12 Y337, Ireland
| | | | | | - Paul L H McSweeney
- the School of Food and Nutritional Science, Univ. College Cork, Cork, T12 Y337, Ireland
| |
Collapse
|
10
|
Nongonierma AB, Abrlova M, Kilcawley KN. Encapsulation of a Lactic Acid Bacteria Cell-Free Extract in Liposomes and Use in Cheddar Cheese Ripening. Foods 2013; 2:100-119. [PMID: 28239101 PMCID: PMC5302231 DOI: 10.3390/foods2010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/16/2022] Open
Abstract
A concentrated form of cell free extract (CFE) derived from attenuated Lactococcus lactis supsb. lactis 303 CFE was encapsulated in liposomes prepared from two different proliposome preparations (Prolipo Duo and Prolipo S) using microfluidization. Entrapment efficiencies of 19.7 % (Prolipo S) and 14.0 % (Prolipo Duo) were achieved and the preparations mixed in the ratio 4 (Prolipo Duo):1 (Prolipo S). Cheddar cheese trials were undertaken evaluating the performance of CFE entrapped in liposomes, empty liposomes and free CFE in comparison to a control cheese without any CFE or liposomes. Identical volumes of liposome and amounts of CFE were used in triplicate trials. The inclusion of liposomes did not adversely impact on cheese composition water activity, or microbiology. Entrapment of CFE in liposomes reduced loss of CFE to the whey. No significant differences were evident in proteolysis or expressed PepX activity during ripening in comparison to the cheeses containing free CFE, empty liposomes or the control, as the liposomes did not degrade during ripening. This result highlights the potential of liposomes to minimize losses of encapsulated enzymes into the whey during cheese production but also highlights the need to optimize the hydrophobicity, zeta potential, size and composition of the liposomes to maximize their use as vectors for enzyme addition in cheese to augment ripening.
Collapse
Affiliation(s)
| | - Magdalena Abrlova
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- Department of Dairy and Fat Technology, Institute of Chemical Technology, Prague Technika5, Prague 6, 16628, Czech Republic.
| | | |
Collapse
|