1
|
Stenberg S, Li J, Gjuvsland AB, Persson K, Demitz-Helin E, González Peña C, Yue JX, Gilchrist C, Ärengård T, Ghiaci P, Larsson-Berglund L, Zackrisson M, Smits S, Hallin J, Höög JL, Molin M, Liti G, Omholt SW, Warringer J. Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation. eLife 2022; 11:e76095. [PMID: 35801695 PMCID: PMC9427111 DOI: 10.7554/elife.76095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
Collapse
Affiliation(s)
- Simon Stenberg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Arne B Gjuvsland
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Erik Demitz-Helin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Carles González Peña
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Ciaran Gilchrist
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Timmy Ärengård
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Lisa Larsson-Berglund
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Silvana Smits
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johan Hallin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Stig W Omholt
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| |
Collapse
|
2
|
A novel pyrenyl salicylic acid fluorophore for highly selective detection of paraquat in aqueous media. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Dey N, Bhagat D, Cherukaraveedu D, Bhattacharya S. Utilization of Red-Light-Emitting CdTe Nanoparticles for the Trace-Level Detection of Harmful Herbicides in Adulterated Food and Agricultural Crops. Chem Asian J 2016; 12:76-85. [DOI: 10.1002/asia.201601302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
| | - Deepa Bhagat
- Indian Council of Agricultural Research; National Bureau of Agriculturally Insect Resources; Bangalore 560 024 India
| | - Durgadas Cherukaraveedu
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
- School of Chemistry; University of Edinburgh; David Brewster Road, Joseph Black Building EH9 3JF United Kingdom
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
- Indian Association of Cultivation of Science; Kolkata 700032 India
| |
Collapse
|
4
|
Sun S, Li F, Liu F, Wang J, Peng X. Fluorescence detecting of paraquat using host-guest chemistry with cucurbit[8]uril. Sci Rep 2014; 4:3570. [PMID: 24389647 PMCID: PMC3880963 DOI: 10.1038/srep03570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023] Open
Abstract
Paraquat (PQ) is one of the most widely used herbicides in the world, which has a good occupational safety record when used properly. While, it presents high mortality index after intentional exposure. Accidental deaths and suicides from PQ ingestion are relatively common in developing countries with an estimated 300,000 deaths occurring in the Asia–Pacific region alone each year, and there are no specific antidotes. Good predictors of outcome and prognosis may be plasma and urine testing within the first 24 h of intoxication. A fluorescence enhancement of approximately 30 times was seen following addition of PQ to a solution of the supramolecular compound 2MB@CB[8], which comprised two methylene blue (MB) molecules within one cucurbit[8]uril (CB[8]) host molecule. The fluorescence intensity was linearly proportional to the amount of PQ added over the concentration range 2.4 × 10−10 M–2.5 × 10−4 M. The reaction also occurred in living cells and within live mice.
Collapse
Affiliation(s)
- Shiguo Sun
- 1] State Key Laboratory of Fine Chemicals, Dalian University of Technology, E 224 West Campus, No. 2, Linggonglu, 116024, Dalian, China [2]
| | - Fusheng Li
- 1] State Key Laboratory of Fine Chemicals, Dalian University of Technology, E 224 West Campus, No. 2, Linggonglu, 116024, Dalian, China [2]
| | - Fengyu Liu
- 1] School of Chemistry, Dalian University of Technology, No. 2, Linggonglu, 116024, Dalian, China [2]
| | - Jitao Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E 224 West Campus, No. 2, Linggonglu, 116024, Dalian, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E 224 West Campus, No. 2, Linggonglu, 116024, Dalian, China
| |
Collapse
|
5
|
Yao F, Liu H, Wang G, Du L, Yin X, Fu Y. Determination of paraquat in water samples using a sensitive fluorescent probe titration method. J Environ Sci (China) 2013; 25:1245-1251. [PMID: 24191615 DOI: 10.1016/s1001-0742(12)60124-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Paraquat (PQ), a nonselective herbicide, is non-fluorescent in aqueous solutions. Thus, its determination through direct fluorescent methods is not feasible. The supramolecular inclusion interaction of PQ with cucurbit[7]uril was studied by a fluorescent probe titration method. Significant quenching of the fluorescence intensity of the cucurbit[7]uril-coptisine fluorescent probe was observed with the addition of PQ. A new fluorescent probe titration method with high selectivity and sensitivity at the ng/mL level was developed to determine PQ in aqueous solutions with good precision and accuracy based on the significant quenching of the supramolecular complex fluorescence intensity. The proposed method was successfully used in the determination of PQ in lake water, tap water, well water, and ditch water in an agricultural area, with recoveries of 96.73% to 105.77%. The fluorescence quenching values (deltaF) showed a good linear relationship with PQ concentrations from 1.0 x 10(-8) to 1.2 x 10(-5) mol/L with a detection limit of 3.35 x 10(-9) mol/L. In addition, the interaction models of the supramolecular complexes formed between the host and the guest were established using theoretical calculations. The interaction mechanism between the cucurbit[7]uril and PQ was confirmed by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Feihu Yao
- Analytical and Testing Center Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | |
Collapse
|
6
|
de Figueiredo-Filho L, dos Santos V, Janegitz B, Guerreiro T, Fatibello-Filho O, Faria R, Marcolino-Junior L. Differential Pulse Voltammetric Determination of Paraquat Using a Bismuth-Film Electrode. ELECTROANAL 2010. [DOI: 10.1002/elan.200900553] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Zhang J, Zhai C, Wang F, Zhang C, Li S, Zhang M, Li N, Huang F. A bis(m-phenylene)-32-crown-10-based fluorescence chemosensor for paraquat and diquat. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Sánchez-Martínez ML, Aguilar-Caballos MP, Gómez-Hens A. Selective kinetic determination of amikacin in serum using long-wavelength fluorimetry. J Pharm Biomed Anal 2004; 34:1021-7. [PMID: 15019036 DOI: 10.1016/j.jpba.2003.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 11/14/2003] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
A simple and rapid method for the determination of the antibiotic amikacin, involving the use of a long-wavelength fluorophor, namely indocyanine green, (ICG) is presented. The dye is oxidised by cerium(IV) in acidic medium, resulting in a sharp decrease of the fluorescence, but this fluorescence quenching is inhibited in the presence of amikacin, which can be ascribed to the formation of an ion pair between the fluorophor and the analyte. The initial rate of the system is monitored at lambda(ex): 765 nm and lambda(em): 812 nm as excitation and emission wavelengths, respectively, using the stopped-flow mixing technique, which makes the method applicable to automatic routine analysis. Each measurement is obtained in only 2-3s. The method presents a detection limit of 0.02 microg m1(-1) in standard solutions, which corresponds to 2.5 microg ml(-1) in serum samples. The precision is in the range 4.8-6%. The good selectivity of the method allows amikacin to be determined in the presence of other antibiotics, including other aminoglycoside antibiotics, in serum. The recoveries obtained from the analysis of different samples were in the range 89.4-104.7%.
Collapse
Affiliation(s)
- M L Sánchez-Martínez
- Department of Analytical Chemistry, Faculty of Sciences, University of Córdoba, Anexo C-3, Campus of Rabanales, E-14071 Córdoba, Spain
| | | | | |
Collapse
|
9
|
|
10
|
Determination of napropamide in technical formulations, soil and vegetable samples by sensitised fluorescence: validation of the method. Anal Chim Acta 2003. [DOI: 10.1016/s0003-2670(03)00802-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
|