Carrazco-Palafox J, Rivera-Chavira BE, Ramírez-Baca N, Manzanares-Papayanopoulos LI, Nevárez-Moorillón GV. Improved method for qualitative screening of lipolytic bacterial strains.
MethodsX 2018;
5:68-74. [PMID:
30622910 PMCID:
PMC6318097 DOI:
10.1016/j.mex.2018.01.004]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Esterases and lipases are lipolytic enzymes that catalyse the hydrolysis of triacylglycerols, Determination of lipolysis on agar plates is a simple approach to determine lipase or esterase action, but visual evaluation of lipolysis is frequently difficult in practice. Therefore, the aim of this work was to improve the efficiency of lipolysis visualization in tributyrin agar (mTBA) by adding calcium and/or magnesium ions in the screening of lipolytic microbial strains. Lipolytic activity was evaluated in mTBA using the well diffusion technique, where a clear zone around the inoculated wells indicated lipid hydrolysis. Results suggest that the addition of 2.5 mM calcium and 5.0 mM magnesium was the best combination of ion addition to TBA. Lipolytic activity increased the clearing zone up to 38% more than without the addition of ions and the clear zone was clearly observed. The mTBA plate was used with culture collection microbial strains, as well as with a collection of soil microorganisms, to identify lipase producers. The addition of calcium and magnesium ions can provide an easier screening procedure for selection of lipolytic bacterial strains. •A modified tributyrin agar for screening of lipolytic bacteria was prepared by adding calcium and magnesium ions.•The modified TBA agar was tested with control bacterial strains, and, based on the results, 2.5 mM Ca and 5.0 mM Mg ions were added in the mTBA.•mTBA was validated with environmental bacterial strains for screening of lipolytic activity.
Collapse