1
|
Palos I, González-González A, Paz-González AD, Espinoza-Hicks JC, Bandyopadhyay D, Paniagua-Castro N, Galeana-Salazar MS, Castañeda-Sánchez JI, Luna-Herrera J, Rivera G. Quinoxaline 1,4-di- N-oxide Derivatives as New Antinocardial Agents. Molecules 2024; 29:4652. [PMID: 39407582 PMCID: PMC11478375 DOI: 10.3390/molecules29194652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Mycetoma is currently considered as a neglected tropical disease. The incidence of mycetoma is unknown but most of the worldwide cases are present in the "mycetoma belt" including countries like Mexico, India, Senegal, and others. The treatment of mycetoma depends on the etiological agent responsible for the case. Treatment success reaches 60 to 90%; however, common treatment has been reported to be ineffective in some cases, due in part to resistance to the prescribed antibiotics. Therefore, it is necessary to develop new therapeutic options. In the past two decades, quinoxaline derivatives have shown relevance as antibacterial agents. Therefore, in this work, esters of quinoxaline 1,4-di-N-oxide derivatives were evaluated in vitro against the reference strain CECT-3052 from N. brasiliensis, six clinical isolates, and macrophages J774A.1 to determine their cytotoxicity and security index. Additionally, nine reference drugs were evaluated as controls. The results show that nine esters of quinoxaline 1,4-di-N-oxide derivatives had a minimum inhibitory concentration (MIC) < 1 µg/mL against the reference strain and four of them (N-05, N-09, N-11, and N-13) had an MIC < 1 µg/mL against the clinical isolates. Therefore, the scaffold quinoxaline 1,4-di-N-oxide could be used to develop new and more potent antinocardial agents.
Collapse
Affiliation(s)
- Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, Reynosa 88779, México;
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa 88710, México; (A.G.-G.); (A.D.P.-G.)
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa 88710, México; (A.G.-G.); (A.D.P.-G.)
| | - José C. Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, México;
| | - Debasish Bandyopadhyay
- School of Biological and Chemical Sciences (SIBCS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA;
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Norma Paniagua-Castro
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México;
| | - Marlene S. Galeana-Salazar
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 09460, México; (M.S.G.-S.); (J.I.C.-S.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Jorge Ismael Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 09460, México; (M.S.G.-S.); (J.I.C.-S.)
| | - Julieta Luna-Herrera
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa 88710, México; (A.G.-G.); (A.D.P.-G.)
| |
Collapse
|
2
|
Wang SY, Liu C, Yang W, Tian ZY, Yuan L, Xie LY. Efficient synthesis of SCF 3-containing 3-alkenylquinoxalinones via three-component radical cascade reaction. Org Biomol Chem 2024; 22:3740-3745. [PMID: 38651658 DOI: 10.1039/d4ob00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
An efficient and practical method for the synthesis of 3-alkenylquinoxalinones containing the SCF3 group has been readily developed through a three-component radical cascade reaction involving quinoxalinones, alkynes and AgSCF3. The reaction was found to be compatible with a variety of substrates and exhibited a high functional group tolerance and complete E-selectivity. The preliminary study suggests the involvement of a SCF3 radical in the transformation.
Collapse
Affiliation(s)
- Si-Yu Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China.
| | - Chu Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China.
| | - Wei Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China.
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China.
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China.
| |
Collapse
|
3
|
Mamedov VA, Galimullina VR, Qu ZW, Zhu H, Syakaev VV, Shamsutdinova LR, Sergeev MA, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. AlCl 3-Promoted Intramolecular Indolinone-Quinolone Rearrangement of Spiro[indoline-3,2'-quinoxaline]-2,3'-diones: Easy Access to Quinolino[3,4- b]quinoxalin-6-ones. J Org Chem 2023. [PMID: 38151045 DOI: 10.1021/acs.joc.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A facile and direct intramolecular indolinone-quinolone rearrangement was developed for the synthesis of quinolino[3,4-b]quinoxalin-6-ones from spiro[indoline-3,2'-quinoxaline]-2,3'-diones, which are readily available with use of isatines, malononitrile, and 1,2-phenylenediamines under quite mild conditions. This efficient approach provides excellent yields and could potentially be used for the construction of a diverse library of quinolino[3,4-b]quinoxalin-6-ones for high-throughput screening in medicinal chemistry. The reaction mechanism is explored by extensive DFT calculations.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Mikhail A Sergeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
4
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
5
|
Shen L, Yuan JW, Zhang B, Song SY, Yang LR, Xiao YM, Zhang SR, Qu LB. Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1 H)-ones with unactivated vinylarenes and BrCF 2CO 2Et/HCF 2CO 2H. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.
Collapse
Affiliation(s)
- Lu Shen
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jin-Wei Yuan
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Bing Zhang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Sai-Yi Song
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Liang-Ru Yang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications , Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou 450006 , P. R. China
| | - Ling-Bo Qu
- College of Chemistry , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
6
|
Liang Y, He Y, Jiang Z, Yang L, Xie L. Direct C−H Arylation of Quinoxalin‐2(
H
)‐ones with Arylhydrazine hydrochlorides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yue‐Pei Liang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Ya‐Nan He
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Ze‐Qun Jiang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Li‐Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Long‐Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| |
Collapse
|
7
|
Li Y, Song GT, Tang DY, Xu ZG, Chen ZZ. Acid-Promoted Direct C-H Carbamoylation at the C-3 Position of Quinoxalin-2(1 H)-ones with Isocyanide in Water. ACS OMEGA 2023; 8:1577-1587. [PMID: 36643431 PMCID: PMC9835787 DOI: 10.1021/acsomega.2c06946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Described herein is a concise and practical direct amidation at the C-3 position of quinoxalin-2(1H)-ones through an acid-promoted carbamoylation with isocyanide in water. In this conversion, environmentally friendly water and commercial inexpensive isocyanide were used as a solvent and carbamoylation reagent, respectively. This study not only provides a green and efficient strategy for the construction of 3-carbamoylquinoxalin-2(1H)-one derivatives that can be applied to the synthesis of druglike structures but also expands the application of isocyanide in organic chemistry.
Collapse
|
8
|
More DA, Mujahid M, Muthukrishnan M. Metal‐ And Light‐Free Direct C‐3 Ketoalkylation of Quinoxalin‐2(1
H
)‐Ones with Cyclopropanols in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devidas A. More
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Mujahid
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Muthukrishnan
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
10
|
Yan Q, Cui W, Li J, Xu G, Song X, Lv J, Yang D. C–H benzylation of quinoxalin-2(1 H)-ones via visible-light riboflavin photocatalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01910d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient visible light promoted riboflavin-catalyzed direct benzylation of substituted quinoxalin-2(1H)-ones for the synthesis of various C3-benzylated quinoxalin-2(1H)-one derivatives has been developed under mild conditions.
Collapse
Affiliation(s)
- Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Junxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
11
|
Rapid alkenylation of quinoxalin-2(1H)-ones enabled by the sequential Mannich-type reaction and solar photocatalysis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Intramolecular oxidative rearrangement: I2/TBHP/DMSO-mediated metal free facile access to quinoxalinone derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Quinoxaline 1,4-di-N-oxides: a review of the importance of their structure in the development of drugs against infectious diseases and cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
|
15
|
Aganda KCC, Hong B, Lee A. Visible‐Light‐Promoted Switchable Synthesis of C‐3‐Functionalized Quinoxalin‐2(1
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Boseok Hong
- Department of Chemistry Myongji University Yongin 17058 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
16
|
Wen J, Yang X, Yan K, Qin H, Ma J, Sun X, Yang J, Wang H. Electroreductive C3 Pyridylation of Quinoxalin-2(1 H)-ones: An Effective Way to Access Bidentate Nitrogen Ligands. Org Lett 2021; 23:1081-1085. [PMID: 33439657 DOI: 10.1021/acs.orglett.0c04296] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The construction of functional N-containing active biomolecules and bidentate nitrogen ligands by electroreductive pyridylation of N-heteroaromatics is an eye-catching task and challenge. A simple and practical electroreductive-induced C3 pyridylation of quinoxalin-2(1H)-ones with readily available cyanopyridines is reported. More than 36 examples are supplied, and the reaction performed in >95% yield. The present protocol provides a convenient, efficient, and gram-scale synthesis strategy for a series of new types of potential bidentate nitrogen ligands.
Collapse
Affiliation(s)
- Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xiaoting Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hongyun Qin
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jing Ma
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xuejun Sun
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
17
|
Discovery of derivatives of 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides: novel, hypoxia-selective HIF-1α inhibitors with strong antiestrogenic potency. Bioorg Chem 2020; 104:104324. [DOI: 10.1016/j.bioorg.2020.104324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
|
18
|
Li W, Cai H, Huang L, He L, Zhang Y, Xu J, Zhang P. Iron(III)-Mediated Rapid Radical-Type Three-Component Deuteration of Quinoxalinones With Olefins and NaBD 4. Front Chem 2020; 8:606. [PMID: 32850638 PMCID: PMC7417774 DOI: 10.3389/fchem.2020.00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Iron(III)-promoted rapid three-component deuteration of quinoxalinones with olefins and NaBD4 is reported for the first time, which provides a novel, economic, and efficient method for the rapid synthesis of deuterated quinoxalinones. In this transformation, a radical pathway is involved according to the results of control experiments.
Collapse
Affiliation(s)
- Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Lesanavičius M, Aliverti A, Šarlauskas J, Čėnas N. Reactions of Plasmodium falciparum Ferredoxin:NADP + Oxidoreductase with Redox Cycling Xenobiotics: A Mechanistic Study. Int J Mol Sci 2020; 21:ijms21093234. [PMID: 32370303 PMCID: PMC7247349 DOI: 10.3390/ijms21093234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Ferredoxin:NADP+ oxidoreductase from Plasmodium falciparum (PfFNR) catalyzes the NADPH-dependent reduction of ferredoxin (PfFd), which provides redox equivalents for the biosynthesis of isoprenoids and fatty acids in the apicoplast. Like other flavin-dependent electrontransferases, PfFNR is a potential source of free radicals of quinones and other redox cycling compounds. We report here a kinetic study of the reduction of quinones, nitroaromatic compounds and aromatic N-oxides by PfFNR. We show that all these groups of compounds are reduced in a single-electron pathway, their reactivity increasing with the increase in their single-electron reduction midpoint potential (E17). The reactivity of nitroaromatics is lower than that of quinones and aromatic N-oxides, which is in line with the differences in their electron self-exchange rate constants. Quinone reduction proceeds via a ping-pong mechanism. During the reoxidation of reduced FAD by quinones, the oxidation of FADH. to FAD is the possible rate-limiting step. The calculated electron transfer distances in the reaction of PfFNR with various electron acceptors are similar to those of Anabaena FNR, thus demonstrating their similar “intrinsic” reactivity. Ferredoxin stimulated quinone- and nitro-reductase reactions of PfFNR, evidently providing an additional reduction pathway via reduced PfFd. Based on the available data, PfFNR and possibly PfFd may play a central role in the reductive activation of quinones, nitroaromatics and aromatic N-oxides in P. falciparum, contributing to their antiplasmodial action.
Collapse
Affiliation(s)
- Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.L.); (J.Š.)
| | - Alessandro Aliverti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy;
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.L.); (J.Š.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.L.); (J.Š.)
- Correspondence: ; Tel.: +37-223-4392
| |
Collapse
|
20
|
Yuan JW, Zhu JL, Zhu HL, Peng F, Yang LY, Mao P, Zhang SR, Li YC, Qu LB. Transition-metal free direct C–H functionalization of quinoxalin-2(1H)-ones with oxamic acids leading to 3-carbamoyl quinoxalin-2(1H)-ones. Org Chem Front 2020. [DOI: 10.1039/c9qo01322a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A practical transition-metal free decarboxylative coupling reaction of oxamic acids with quinoxalin-2(1H)-ones has been developed under mild conditions.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Jun-Liang Zhu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Hu-Lin Zhu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Fang Peng
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Liang-Yu Yang
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou 450006
- China
| | - Yan-Chun Li
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou 450006
- China
| | - Ling-Bo Qu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
21
|
Xu J, Zhang H, Zhao J, Ni Z, Zhang P, Shi BF, Li W. Photocatalyst-, metal- and additive-free, direct C–H arylation of quinoxalin-2(1H)-ones with aryl acyl peroxides induced by visible light. Org Chem Front 2020. [DOI: 10.1039/d0qo00872a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible light-mediated direct C–H arylation of quinoxalin-2(1H)-ones with aryl acyl peroxides has been developed.
Collapse
Affiliation(s)
- Jun Xu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Hongdou Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jianming Zhao
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Zhigang Ni
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Pengfei Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Bing-Feng Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Wanmei Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
22
|
Shen J, Xu J, Huang L, Zhu Q, Zhang P. Hypervalent Iodine(III)‐Promoted Rapid Cascade Reaction of Quinoxalinones with Unactivated Alkenes and TMSN
3. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901314] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Jun Xu
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Lin Huang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| |
Collapse
|
23
|
Sekhar Dutta H, Ahmad A, Khan AA, Kumar M, Raziullah, Koley D. Metal Free Benzylation and Alkylation of Quinoxalin‐2(1
H
)‐ones with Alkenes Triggered by Sulfonyl Radical Generated from Sulfinic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Raziullah
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
24
|
Wei Z, Qi S, Xu Y, Liu H, Wu J, Li H, Xia C, Duan G. Visible Light‐Induced Photocatalytic C−H Perfluoroalkylation of Quinoxalinones under Aerobic Oxidation Condition. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenjiang Wei
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Sijia Qi
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Yanhao Xu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Hao Liu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Junzhen Wu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Hongshuang Li
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Chengcai Xia
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Guiyun Duan
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| |
Collapse
|
25
|
Dávila B, Sánchez C, Fernández M, Cerecetto H, Lecot N, Cabral P, Glisoni R, González M. Selective Hypoxia‐Cytotoxin 7‐Fluoro‐2‐Aminophenazine 5,10‐Dioxide: Toward “Candidate‐to‐Drug” Stage in the Drug‐Development Pipeline. ChemistrySelect 2019. [DOI: 10.1002/slct.201902601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Belén Dávila
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Carina Sánchez
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Marcelo Fernández
- Laboratorio de Experimentación AnimalCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Hugo Cerecetto
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Nicole Lecot
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Laboratorio de Técnicas Nucleareas Aplicadas a Bioquímica y BiotecnologíaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Pablo Cabral
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Romina Glisoni
- Departamento de Tecnología FarmacéuticaCátedra de Tecnología Farmacéutica II. CONICETInstituto de Nanobiotecnología (NANOBIOTEC). Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Mercedes González
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| |
Collapse
|
26
|
Xu J, Yang H, Cai H, Bao H, Li W, Zhang P. Transition-Metal and Solvent-Free Oxidative C–H Fluoroalkoxylation of Quinoxalinones with Fluoroalkyl Alcohols. Org Lett 2019; 21:4698-4702. [DOI: 10.1021/acs.orglett.9b01578] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Huiyong Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Hanyang Bao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Wanmei Li
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
27
|
Shen X, Gates KS. Enzyme-Activated Generation of Reactive Oxygen Species from Heterocyclic N-Oxides under Aerobic and Anaerobic Conditions and Its Relevance to Hypoxia-Selective Prodrugs. Chem Res Toxicol 2019; 32:348-361. [PMID: 30817135 DOI: 10.1021/acs.chemrestox.9b00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymatic one-electron reduction of heterocyclic N-oxides can lead to the intracellular generation of reactive oxygen species via several different chemical pathways. These reactions may be relevant to hypoxia-selective anticancer drugs, antimicrobial agents, and unwanted toxicity of heterocylic nitrogen compounds.
Collapse
|
28
|
Elsaidi HR, Yang XH, Ahmadi F, Weinfeld M, Wiebe LI, Kumar P. Putative electron-affinic radiosensitizers and markers of hypoxic tissue: Synthesis and preliminary in vitro biological characterization of C3-amino-substituted benzotriazine dioxides (BTDOs). Eur J Med Chem 2019; 165:216-224. [PMID: 30684798 DOI: 10.1016/j.ejmech.2019.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The redox characteristics of 1,2,4-benzotriazine-1,4-dioxides (BTDOs) make them potential radiosensitizing agents for hypoxic cells in solid human cancers. Tirapazamine (TPZ) is the most clinically tested BTDO radiosensitizer, despite its toxicity at effective doses. To date, no BTDOs have been developed as diagnostic markers of tissue hypoxia. HYPOTHESIS TPZ analogues with appropriate reporting groups can act as potential radiosensitizers and hypoxia selective diagnostics. EXPERIMENTAL AND RESULTS 3-Chloro-1,2,4-benzotriazine 1-oxide was substituted at the C3 position to afford 3-(2-hydroxyethoxyethyl)-amino-1,2,4-benzotriazine-1-oxide, which was oxidized to 3-(2-hydroxyethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (HO-EOE-TPZ) or converted to 3-(2-tosyloxyethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (Tos-EOE-TPZ). Tos-EOE-TPZ was intended for use as a synthon for preparing 3-(2-azidoethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (N3-EOE-TPZ) and 3-(2-iodoethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (I-EOE-TPZ). The logP values (-0.69 to 0.61) for these molecules bracketed that of TPZ (-0.34). Cell line dependent cytotoxicities (IC50) in air were in the 10-100 μM range, with Hypoxia Cytotoxicity Ratios (HCR; IC50-air/IC50-hypoxia) of 5-10. LUMO calculations indicated that these molecules are in the optimal redox range for radiosensitization, offering cell-line-specific Relative Radiosensitization Ratios (RRSR; SER/OER) of 0.58-0.88, compared to TPZ (0.67-0.76). CONCLUSION The LUMO, IC50, HCR and RRSR values of 3-(2-substituted ethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxides are similar to the corresponding values for TPZ, supporting the conclusion that these TPZ analogues are potentially useful as hypoxia-activated radiosensitizers. Further studies into their biodistributions in animal models are being pursued to determine the in vivo potential in hypoxia management.
Collapse
Affiliation(s)
- Hassan Rh Elsaidi
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta, T6G 1Z2, Canada
| | - Xiao-Hong Yang
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta, T6G 1Z2, Canada
| | - Fatemeh Ahmadi
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta, T6G 1Z2, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta, T6G 1Z2, Canada
| | - Leonard I Wiebe
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta, T6G 1Z2, Canada; Joint Appointment to Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Piyush Kumar
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
29
|
Yuan J, Liu S, Xiao Y, Mao P, Yang L, Qu L. Palladium-catalyzed oxidative amidation of quinoxalin-2(1H)-ones with acetonitrile: a highly efficient strategy toward 3-amidated quinoxalin-2(1H)-ones. Org Biomol Chem 2019; 17:876-884. [PMID: 30628609 DOI: 10.1039/c8ob03061h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and convenient palladium-catalyzed direct oxidative amidation of quinoxalin-2(1H)-ones with acetonitrile was developed to synthesize 3-amidated quinoxalin-2(1H)-ones. A series of 3-acetamino quinoxalin-2(1H)-one derivatives were constructed with good to excellent yields. This methodology provided a practical approach to various 3-acetamino quinoxalin-2(1H)-ones from the readily available starting material acetonitrile.
Collapse
Affiliation(s)
- Jinwei Yuan
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, Zhengzhou 450001, P. R. China
| | | | | | | | | | | |
Collapse
|
30
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zheng D, Studer A. Photoinitiated Three-Component α-Perfluoroalkyl-β-heteroarylation of Unactivated Alkenes via Electron Catalysis. Org Lett 2019; 21:325-329. [PMID: 30576162 PMCID: PMC6326532 DOI: 10.1021/acs.orglett.8b03849] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 01/01/2023]
Abstract
A visible-light-initiated α-perfluoroalkyl-β-heteroarylation of various alkenes with perfluoroalkyl iodides and quinoxalin-2(1 H)-ones is presented. This three-component radical cascade reaction allows an efficient synthesis of a range of perfluoroalkyl containing quinoxalin-2(1 H)-one derivatives in moderate to excellent yields under mild conditions. Reactions proceed via acidic aminyl radicals that are readily deprotonated to give the corresponding radical anions able to sustain the radical chain as single electron transfer reducing reagents. Hence, the overall cascade classifies as an electron-catalyzed process.
Collapse
Affiliation(s)
- Danqing Zheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| |
Collapse
|
32
|
Zhang H, Xu J, Zhou M, Zhao J, Zhang P, Li W. The visible-light-triggered regioselective alkylation of quinoxalin-2(1H)-ones via decarboxylation coupling. Org Biomol Chem 2019; 17:10201-10208. [DOI: 10.1039/c9ob02203a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol to synthesize 3-alkylated quinoxalin-2(1H)-ones through photocatalytic decarboxylation coupling reactions of quinoxalin-2(1H)-ones with N-hydroxyphthalimide ester was developed.
Collapse
Affiliation(s)
- Hongdou Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jun Xu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Min Zhou
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jianming Zhao
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Pengfei Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Wanmei Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
33
|
Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Metal-Free C(sp2)–H/N–H Cross-Dehydrogenative Coupling of Quinoxalinones with Aliphatic Amines under Visible-Light Photoredox Catalysis. Org Lett 2018; 20:7125-7130. [DOI: 10.1021/acs.orglett.8b03079] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Leilei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pengli Bao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yun Shao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Daoshan Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaobo Yang
- College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Hua Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
34
|
Verma K, Tailor YK, Khandelwal S, Agarwal M, Rushell E, Kumari Y, Awasthi K, Kumar M. An efficient and environmentally sustainable domino protocol for the synthesis of structurally diverse spiroannulated pyrimidophenazines using erbium doped TiO 2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. RSC Adv 2018; 8:30430-30440. [PMID: 35546857 PMCID: PMC9085390 DOI: 10.1039/c8ra04919j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 11/21/2022] Open
Abstract
An efficient and environmentally sustainable domino protocol has been presented for the synthesis of structurally diverse spiroannulated pyrimidophenazines involving a four component reaction of 2-hydroxynaphthalene-1,4-dione, benzene-1,2-diamine, cyclic ketones and amino derivatives in the presence of erbium doped TiO2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. The present synthetic protocol features mild reaction conditions with operational simplicity, excellent yield with high purity, short reaction time and high atom economy with the use of a recoverable and reusable environmentally sustainable heterogeneous catalyst.
Collapse
Affiliation(s)
- Kanchan Verma
- Department of Chemistry, University of Rajasthan Jaipur India
| | | | | | - Monu Agarwal
- Department of Chemistry, University of Rajasthan Jaipur India
| | - Esha Rushell
- Department of Chemistry, University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics, Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics, Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry, University of Rajasthan Jaipur India
| |
Collapse
|
35
|
Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Copper-Catalyzed Direct C-3 Benzylation of Quinoxalin-2(1H
)-ones with Methylarenes under Microwave Irradiation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800697] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leqian Hu
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Junhao Fu
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Taotao Zhang
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Lele Gao
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Pu Mao
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Lingbo Qu
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou PR China
| |
Collapse
|
36
|
Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Transition-metal-free direct C-3 alkylation of quinoxalin-2(1H)-ones with ethers. Org Chem Front 2018. [DOI: 10.1039/c8qo00731d] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient protocol for the synthesis of 3-alkyl quinoxalin-2(1H)-ones has been developed via the transition-metal-free cross-coupling reaction of quinoxalin-2(1H)-ones with ethers with moderate to good yields under relatively mild conditions.
Collapse
Affiliation(s)
- Jinwei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Junhao Fu
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Jihong Yin
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Zhenhua Dong
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Lingbo Qu
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
37
|
Yuan JW, Fu JH, Liu SN, Xiao YM, Mao P, Qu LB. Metal-free oxidative coupling of quinoxalin-2(1H)-ones with arylaldehydes leading to 3-acylated quinoxalin-2(1H)-ones. Org Biomol Chem 2018; 16:3203-3212. [DOI: 10.1039/c8ob00206a] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient protocol for the synthesis of 3-aroylquinoxalin-2(1H)-ones has been developed via a metal-free oxidative cross-coupling reaction of quinoxalin-2(1H)-ones with aryl aldehydes under mild conditions with good yields.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- PR China
| | - Jun-Hao Fu
- School of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- PR China
| | - Shuai-Nan Liu
- School of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- PR China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- PR China
| | - Pu Mao
- School of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- PR China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
| |
Collapse
|
38
|
Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Copper-catalyzed oxidative coupling of quinoxalin-2(1H)-ones with alcohols: access to hydroxyalkylation of quinoxalin-2(1H)-ones. Org Chem Front 2018. [DOI: 10.1039/c8qo00979a] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient protocol for the synthesis of hydroxyl-containing quinoxalin-2(1H)-ones has been developed via the copper-catalyzed cross-coupling reaction of quinoxalin-2(1H)-ones with alcohols with moderate to good yields.
Collapse
Affiliation(s)
- Junhao Fu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Yue Zhang
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Lingbo Qu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
39
|
Yuan J, Liu S, Qu L. Transition Metal-Free Direct C-3 Arylation of Quinoxalin-2(1H
)-ones with Arylamines under Mild Conditions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701058] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinwei Yuan
- Academician Workstation for Natural Medicinal Chemistry of Henan Province; School of Chemical Engineering and Environment; Henan University of Technology; Zhengzhou People's Republic of China
| | - Shuainan Liu
- School of Biological Engineering; Henan University of Technology; Zhengzhou People's Republic of China
| | - Lingbo Qu
- Academician Workstation for Natural Medicinal Chemistry of Henan Province; School of Chemical Engineering and Environment; Henan University of Technology; Zhengzhou People's Republic of China
| |
Collapse
|
40
|
Li Q, Yang H, Chen Y, Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. Eur J Med Chem 2017; 132:294-309. [PMID: 28371641 DOI: 10.1016/j.ejmech.2017.03.062] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/13/2017] [Accepted: 03/25/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders with notable factor of dysfunction in cholinergic system. Low ACh level can be observed in the pathogenesis of AD. Several AChE inhibitors have already been used for clinical treatments. However, other than normal conditions, ACh is mostly hydrolyzed by BuChE in progressed AD. Account for an increased level of BuChE and decreased level of AChE in the late stage of AD, development of selective BuChE inhibitor is of vital importance. Up till now, compounds with various scaffolds have been discovered to selectively inhibit BuChE. Different effective anti-BuChE molecules are concluded in this review.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Amolegbe SA, Akinremi CA, Adewuyi S, Lawal A, Bamigboye MO, Obaleye JA. Some nontoxic metal-based drugs for selected prevalent tropical pathogenic diseases. J Biol Inorg Chem 2016; 22:1-18. [DOI: 10.1007/s00775-016-1421-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023]
|
42
|
Kijak M, Peukert S, Mengesha E, Sepioł J, Gil M. Supersonic Jet Spectroscopy and Density Functional Theory Study of Isomeric Diazines: 1,4- and 1,8-Diazatriphenylene. Why Do They Differ So Deeply? J Phys Chem A 2016; 120:7817-7827. [DOI: 10.1021/acs.jpca.6b06475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michał Kijak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Sebastian Peukert
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Ephriem Mengesha
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Jerzy Sepioł
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Michał Gil
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| |
Collapse
|
43
|
In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorg Chem 2016; 68:80-9. [DOI: 10.1016/j.bioorg.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022]
|
44
|
Peptide Derivatives of 1,2-Dihydro-3-Methyl-2-Oxoquinoxaline-6-Carboxylic Acid: Synthesis and Evaluation of Antimicrobial, Antifungal and Antiviral Potential. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Anderson RF, Yadav P, Shinde SS, Hong CR, Pullen SM, Reynisson J, Wilson WR, Hay MP. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides. Chem Res Toxicol 2016; 29:1310-24. [PMID: 27380897 DOI: 10.1021/acs.chemrestox.6b00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds.
Collapse
Affiliation(s)
- Robert F Anderson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Pooja Yadav
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sujata S Shinde
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Cho R Hong
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Susan M Pullen
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - William R Wilson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Michael P Hay
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
46
|
Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z, Wang X, Yuan Z. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Front Pharmacol 2016; 7:64. [PMID: 27047380 PMCID: PMC4800186 DOI: 10.3389/fphar.2016.00064] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chen Cao
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Liangliang Guo
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
47
|
Li Y, Gao M, Wang L, Cui X. Copper-catalysed oxidative amination of quinoxalin-2(1H)-ones with aliphatic amines. Org Biomol Chem 2016; 14:8428-32. [DOI: 10.1039/c6ob01283c] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, efficient and practical method for copper-catalysed oxidative C-3 amination of quinoxalin-2(1H)-ones with primary or secondary amines as the nitrogen sources has been developed.
Collapse
Affiliation(s)
- Yi Li
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| | - Ming Gao
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| | - Lianhui Wang
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| |
Collapse
|
48
|
Go A, Lee G, Kim J, Bae S, Lee BM, Kim BH. One-pot synthesis of quinoxalines from reductive coupling of 2-nitroanilines and 1,2-diketones using indium. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Kabanda MM, Ebenso EE. MP2, DFT and DFT-D study of the dimers of diazanaphthalenes: a comparative study of their structures, stabilisation and binding energies. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.852191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Shen X, Rajapakse A, Gallazzi F, Junnotula V, Fuchs-Knotts T, Glaser R, Gates KS. Isotopic labeling experiments that elucidate the mechanism of DNA strand cleavage by the hypoxia-selective antitumor agent 1,2,4-benzotriazine 1,4-di-N-oxide. Chem Res Toxicol 2013; 27:111-8. [PMID: 24328261 DOI: 10.1021/tx400356y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 1,2,4-benzotriazine 1,4-dioxides are an important class of potential anticancer drugs that selectively kill the low-oxygen (hypoxic) cells found in solid tumors. These compounds undergo intracellular one-electron enzymatic reduction to yield an oxygen-sensitive drug radical intermediate that partitions forward, under hypoxic conditions, to generate a highly reactive secondary radical that causes cell killing DNA damage. Here, we characterized bioreductively activated, hypoxia-selective DNA-strand cleavage by 1,2,4-benzotriazine 1,4-dioxide. We found that one-electron enzymatic activation of 1,2,4-benzotriazine 1,4-dioxide under hypoxic conditions in the presence of the deuterium atom donor methanol-d4 produced nondeuterated mono-N-oxide metabolites. This and the results of other isotopic labeling studies provided evidence against the generation of atom-abstracting drug radical intermediates and are consistent with a DNA-damage mechanism involving the release of hydroxyl radical from enzymatically activated 1,2,4-benzotriazine 1,4-dioxides.
Collapse
Affiliation(s)
- Xiulong Shen
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | | | | | | | | | | | | |
Collapse
|