1
|
|
2
|
Abstract
There are many reported examples of small structural modifications to GPCR-targeted ligands leading to major changes in their functional activity, converting agonists into antagonists or vice versa. These shifts in functional activity are often accompanied by negligible changes in binding affinity. The current perspective focuses on outlining and analyzing various approaches that have been used to interconvert GPCR agonists, partial agonists, and antagonists in order to achieve the intended functional activity at a GPCR of therapeutic interest. An improved understanding of specific structural modifications that are likely to alter the functional activity of a GPCR ligand may be of use to researchers designing GPCR-targeted drugs and/or probe compounds, specifically in cases where a particular ligand exhibits good potency but not the preferred functional activity at the GPCR of choice.
Collapse
Affiliation(s)
- Peter I Dosa
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Elizabeth Ambrose Amin
- Department of Medicinal Chemistry and Minnesota Supercomputing Institute for Advanced Computational Research, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
3
|
Iwan M, Andryszewski T, Wydryszek M, Fialkowski M. Fabrication of nanocomposites by covalent bonding between noble metal nanoparticles and polymer matrix. RSC Adv 2015. [DOI: 10.1039/c5ra12474c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Noble metal nanoparticles capped with novel aminothioalkil ligands are used to fabricate polymer nanocomposites. The nanoparticles are permanently attached to the polymer matrix through covalent bonding.
Collapse
Affiliation(s)
- M. Iwan
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - T. Andryszewski
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - M. Wydryszek
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - M. Fialkowski
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
4
|
Magnan R, Masri B, Escrieut C, Foucaud M, Cordelier P, Fourmy D. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. J Biol Chem 2010; 286:6707-19. [PMID: 21156802 DOI: 10.1074/jbc.m110.196048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.
Collapse
Affiliation(s)
- Rémi Magnan
- INSERM, Unit 858, 12 MR, 1 Avenue Jean Poulhés, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
5
|
Foucaud M, Marco E, Escrieut C, Low C, Kalindjian B, Fourmy D. Linking Non-peptide Ligand Binding Mode to Activity at the Human Cholecystokinin-2 Receptor. J Biol Chem 2008; 283:35860-8. [DOI: 10.1074/jbc.m805513200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Harper EA, Mitchell EA, Griffin EP, Kalindjian SB. Thermodynamic analysis does not allow discrimination of agonists and antagonists at human CCK2S-receptors. Eur J Pharmacol 2008; 581:1-12. [DOI: 10.1016/j.ejphar.2007.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/15/2007] [Accepted: 11/21/2007] [Indexed: 11/16/2022]
|
7
|
Low CMR, Vinter JG. Rationalizing the activities of diverse cholecystokinin 2 receptor antagonists using molecular field points. J Med Chem 2008; 51:565-73. [PMID: 18201065 DOI: 10.1021/jm070880t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cholecystokinin 2 receptor antagonists encompass a wide range of structures. This makes them unsuitable candidates for existing 3D-QSAR methods and has led us to develop an alternative approach to account for their observed biological activities. A diverse set of 21 antagonists was subjected to a novel molecular field-based similarity analysis. The hypothesis is that compounds with similar field patterns will bind at the same target site regardless of their underlying structure. This initial report demonstrates a linear correlation between ligand similarity and biological activity for this challenging data set. A model generated with three molecules was used to predict the activity of 18 test compounds, with different chemotypes, with a root-mean-square error of 0.68 pKB units. The ability to automatically derive a molecular alignment without knowledge of the protein structure represents an improvement over existing pharmacophore methods and makes the method particularly suitable for scaffold-hopping.
Collapse
|
8
|
An expedient route to indoles via a cycloaddition/cyclization sequence from (Z)-1-methoxybut-1-en-3-yne and 2H-pyran-2-ones. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.10.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Harper EA, Roberts SP, Kalindjian SB. Thermodynamic analysis of ligands at cholecystokinin CCK2 receptors in rat cerebral cortex. Br J Pharmacol 2007; 151:1352-67. [PMID: 17592503 PMCID: PMC2189820 DOI: 10.1038/sj.bjp.0707355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/01/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Several studies using radioligand binding assays, have shown that measurement of thermodynamic parameters can allow discrimination of agonists and antagonists (Weiland et al., 1979; Borea et al., 1996a). Here we investigate whether agonists and antagonists can be thermodynamically discriminated at CCK(2) receptors in rat cerebral cortex. EXPERIMENTAL APPROACH The pK(L) of [(3)H]-JB93182 in rat cerebral cortex membranes was determined at 4, 12, 21 and 37 degrees C in 50 mM Tris-HCl buffer (buffer B pH 6.96; containing 0.089 mM bacitracin). pK(I) values of ligands of diverse chemical structure and with differing intrinsic activity (alpha), as defined by the lumen-perfused rat and mouse stomach bioassays, were determined in buffer B at 4, 12, 21 and 37 degrees C. KEY RESULTS [(3)H]-JB93182 labelled a homogeneous population of receptors in rat cerebral cortex at 4, 12, 21 and 37 degrees C and the pK(L) and B(max) were not altered by incubation temperature. [(3)H]-JB93182 binding reached equilibrium after 10, 50, 90 and 220 min at 37, 21, 12 and 4 degrees C, respectively. pK(I) values for R-L-365,260, R-L-740,093, YM220, PD134,308 and JB95008 were higher at 4 degrees C than at 37 degrees C. There was no effect of temperature on pK(I) values for pentagastrin, CCK-8S, S-L-365,260, YM022, PD140,376 and JB93242. CONCLUSIONS AND IMPLICATIONS CCK(2) receptor agonists and antagonists at rat CCK(2) receptors cannot be discriminated by thermodynamic analysis using [(3)H]-JB93182 as the radioligand.
Collapse
Affiliation(s)
- E A Harper
- James Black Foundation, 68 Half Moon Lane, Dulwich, London, UK.
| | | | | |
Collapse
|
10
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
11
|
Muñoz-Ruiz P, García-López MT, Cenarruzabeitia E, Del Río J, Dufresne M, Foucaud M, Fourmy D, Herranz R. 5-(Tryptophylamino)-1,3-dioxoperhydropyrido[1,2-c]pyrimidine-Based Cholecystokinin Receptor Antagonists: Reversal of CCK1 Receptor Subtype Selectivity toward CCK2 Receptors. J Med Chem 2004; 47:5318-29. [PMID: 15456276 DOI: 10.1021/jm0498755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the aim of reversing selectivity or antagonist/agonist functionality in the 5-(tryptophylamino)-1,3-dioxoperhydropyrido[1,2-c]pyrimidine-derived potent and highly selective CCK(1) antagonists, a series of 4-benzyl and 4-methyl derivatives have been synthesized. Whereas the introduction of the benzyl group led, in all cases, to complete loss of the binding affinity, the incorporation of the methyl group gave a different result depending on the stereochemistry of the 1,3-dioxoperhydropyrido[1,2-c]pyrimidine scaffold. Thus, the introduction of the methyl group into the (4aS,5R)-diastereoisomers, giving a (4S)-configuration, produced a 3-fold increase in the CCK(1) binding potency and selectivity. However, the same structural manipulation in the opposite (4aR,5S)-stereochemistry, leading to a (4R,4aR,5S)-configuration, produced reversal of the selectivity for CCK(1) to the CCK(2) receptors. The replacement of the Boc group at the tryptophan moiety by a 2-adamantyloxycarbonyl group also contributed to that reversal. The resulting compounds displayed moderate CCK(2) antagonist activity in rat and human receptors, and a very small partial agonist effect on the production of inositol phosphate in COS-7 cells transfected with the wild-type human CCK(2) receptor.
Collapse
Affiliation(s)
- Pilar Muñoz-Ruiz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cappelli A, Giuliani G, Pericot Mohr Gl GL, Gallelli A, Anzini M, Vomero S, Cupello A, Scarrone S, Matarrese M, Moresco RM, Fazio F, Finetti F, Morbidelli L, Ziche M. A non-peptide NK1 receptor agonist showing subpicomolar affinity. J Med Chem 2004; 47:1315-8. [PMID: 14998319 DOI: 10.1021/jm034219a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Quinolinecarboxamides have been synthesized and evaluated for their binding to the human NK(1) receptor. Several secondary amide derivatives show NK(1) receptor affinity in the picomolar range. The most active compound, hydroxymethylcarboxamide 3h showing an IC(50) value in the subpicomolar range, behaved as an agonist of NK(1) receptor in endothelial cell proliferation, inositol phosphate turnover, and NO-mediated cyclic GMP accumulation, thus proving it to be the first non-peptide NK(1) receptor agonist showing very high potency.
Collapse
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cholecystokinin (CCK) is a regulatory peptide hormone, predominantly found in the gastrointestinal tract, and a neurotransmitter present throughout the nervous system. In the gastrointestinal system CCK regulates motility, pancreatic enzyme secretion, gastric emptying, and gastric acid secretion. In the nervous system CCK is involved in anxiogenesis, satiety, nociception, and memory and learning processes. Moreover, CCK interacts with other neurotransmitters in some areas of the CNS. The biological effects of CCK are mediated by two specific G protein coupled receptor subtypes, termed CCK(1) and CCK(2). Over the past fifteen years the search of CCK receptor ligands has evolved from the initial CCK structure derived peptides towards peptidomimetic or non-peptide agonists and antagonists with improved pharmacokinetic profile. This research has provided a broad assortment of potent and selective CCK(1) and CCK(2) antagonists of diverse chemical structure. These antagonists have been discovered through optimization programs of lead compounds which were designed based on the structures of the C-terminal tetrapeptide, CCK-4, or the non-peptide natural compound, asperlicin, or derived from random screening programs. This review covers the main pharmacological and therapeutic aspects of these CCK(1) and CCK(2) antagonist. CCK(1) antagonists might have therapeutic potential for the treatment of pancreatic disorders and as prokinetics for the treatment of gastroesophageal reflux disease, bowel disorders, and gastroparesis. On the other hand, CCK(2) antagonists might have application for the treatment of gastric acid secretion and anxiety disorders.
Collapse
Affiliation(s)
- Rosario Herranz
- Instituto de Química Medica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
14
|
Kopin AS, McBride EW, Chen C, Freidinger RM, Chen D, Zhao CM, Beinborn M. Identification of a series of CCK-2 receptor nonpeptide agonists: sensitivity to stereochemistry and a receptor point mutation. Proc Natl Acad Sci U S A 2003; 100:5525-30. [PMID: 12697901 PMCID: PMC154378 DOI: 10.1073/pnas.0831223100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The search for small-molecule drugs that act at peptide hormone receptors has resulted in the identification of a wide variety of antagonists. In contrast, the discovery of nonpeptide agonists has been far more elusive. We have used a constitutively active mutant of the cholecystokinin 2 receptor (CCK-2R) as a sensitive screen to detect ligand activity. Functional assessment of structural analogs of the prototype CCK-2R antagonist, L-365,260 [3R-N- (2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-N'-(3-methylphenyl)urea], resulted in the identification of a series of agonists. Each of the active molecules is an S enantiomer, whereas the corresponding R stereoisomers have little or no activity. Further in vitro and in vivo assessment at the wild-type receptor indicated that efficacy of the two most active ligands approached that of the endogenous hormone. The function of selected R and S enantiomers was differentially sensitive to a point mutation, N353L, within the putative CCK-2R ligand pocket. The results of this study highlight the potential of constitutively active receptors as drug screening tools and the interdependence of ligand stereochemistry and receptor conformation in defining drug efficacy.
Collapse
Affiliation(s)
- Alan S Kopin
- Molecular Pharmacology Research Center, Department of Medicine, Tufts-New England Medical Center, 750 Washington Street, Box 7703, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review generally describes work in the area of CCK2 or gastrin receptor agonists and antagonists before focussing on highlights of studies in these areas carried out at the James Black Foundation over the last dozen years. Thus, an alanine scan of BOC-tetragastrin coupled with a bioassay in the isolated mouse stomach led to new insights as to the nature of the function of the various residues of the peptide. This in turn produced molecules such as the peptoid, JB 90118 which was an antagonist in all in vitro systems explored but was found to be CCK1 selective and an agonist still in vivo. We then go on to describe attempts to mimic a putative 3(10) helical conformation for BOC-tetragastrin which had been suggested by fluorescence studies. Structures based on the dibenzobicylo[2.2.2]octane skeleton appeared to fulfil the requirements of the pharmacophore and promising initial results were obtained after the requisite molecules were synthesised. Optimisation of this series led to compounds with affinities in the nanomolar range but which were lacking in consistency when examined in vivo. Further manipulation, this time of the skeleton, led to molecules such as JB 93182 which were of equivalent affinity but with a better profile of action in vivo. It was found during exploration of the SAR of this new series that even relatively small alterations to the structure could give rise to molecules which behaved as agonists. Attempts to improve the oral bioavailability of JB 93182 by reduction of its molecular weight were aided by a molecular modelling approach which ultimately gave rise to another new series, some imidazole derivatives, exemplified by JB 98248.
Collapse
Affiliation(s)
- James W Black
- James Black Foundation, 68 Half Moon Lane, Dulwich, London SE24 9JE, UK
| | | |
Collapse
|
16
|
Martín-Martínez M, Latorre M, García-López MT, Cenarruzabeitia E, Del Río J, González-Muñiz R. Effects of the incorporation of IBTM beta-turn mimetics into the dipeptoid CCK(1) receptor agonist PD 170292. Bioorg Med Chem Lett 2002; 12:109-12. [PMID: 11755332 DOI: 10.1016/s0960-894x(01)00630-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Replacement of the 2-Adoc-D-alphaMeTrp residue in the non-selective CCK(1) receptor agonist PD 170292 by the Z-(2R,5R,11bS)-IBTM skeleton, able to fix a type II beta-turn-like conformation, led to a conformationally restricted dipeptoid analogue, namely 3a, which exhibited a notable increase in the CCK(1) selectivity and antagonist properties.
Collapse
|