1
|
Rahman N, Zafar H, Atia-Tul-Wahab, Sheikh S, Jabeen A, Choudhary MI. Drug repurposing for the identification of new Bcl-2 inhibitors: In vitro, STD-NMR, molecular docking, and dynamic simulation studies. Life Sci 2023; 334:122181. [PMID: 37858717 DOI: 10.1016/j.lfs.2023.122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The anti-apoptotic protein B-Cell Lymphoma 2 (Bcl-2) is a key target for the development of anti-cancer agents, as its overexpression can render cancer cells resistant to chemotherapeutic treatments. AIMS AND OBJECTIVES The current study has systematically evaluated a library of FDA-approved drugs for Bcl-2 inhibition using a drug repurposing strategy via in vitro, biophysical, and in-silico techniques. MATERIALS AND METHODS In vitro anticancer activity was performed, followed by apoptosis assay. The selected compounds were subjected to Saturation Transfer Difference Nuclear Magnetic Resonance (STD-NMR) spectroscopy, molecular docking, and molecular dynamic simulation for ligand-protein interactions. KEY FINDINGS In the initial screening, seventy-five (75) drugs were evaluated against the HL-60 (human blood promyelocytic leukemia) cancer cell line. Among them, paroxetine HCl, carvedilol, clomipramine HCl, and clomifene citrate showed significant anti-proliferative activity (IC50 = 9.733 ± 0.524, 11.940 ± 0.079, 12.376 ± 1.242, and 6.155 ± 0.363 μM, respectively), in comparison to the reference drug venetoclax (IC50 = 7.086 ± 0.041 μM). This indicated that the test drugs have comparable IC50 values to the standard drug. Furthermore, the drugs were able to induce apoptosis in HL-60 cells. These drugs showed interactions with Bcl-2 protein in STD-NMR analysis. Docking and MD simulation studies further supported the interaction of these drugs with Bcl-2 protein, mainly via hydrophobic contacts leading to stable drug-Bcl-2 complexes. SIGNIFICANCE This study, identifies paroxetine HCl, carvedilol, clomipramine HCl, and clomifene citrate as significant Bcl-2 inhibitors and needs further pre-clinical and clinical studies for potential anti-cancer agents' evaluation.
Collapse
Affiliation(s)
- Noor Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sumbla Sheikh
- Institut für Virologie und Epidemiologie der Viruskrankheiten, University of Tubingen, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Murali K, Prasad KJR. A Direct and Divergent Entrance to Aza Heterocycles On 3‐Amino Carbazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry Bharathiar University Coimbatore 641046 India
- Department of Chemistry Federal University of Minas Gerais Belo Horizonte 31270-901, MG Brazil
| | | |
Collapse
|
3
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
4
|
Park D, Anisuzzaman ASM, Magis AT, Chen G, Xie M, Zhang G, Behera M, Sica GL, Ramalingam SS, Owonikoko TK, Deng X. Discovery of Small Molecule Bak Activator for Lung Cancer Therapy. Theranostics 2021; 11:8500-8516. [PMID: 34373755 PMCID: PMC8344021 DOI: 10.7150/thno.60349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rationale: Bak is a major proapoptotic Bcl2 family member and a required molecule for apoptotic cell death. High levels of endogenous Bak were observed in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cell lines. Increased Bak expression was correlated with poor prognosis of NSCLC patients, suggesting that Bak protein is an attractive target for lung cancer therapy. The BH3 domain functions as death domain and is required for Bak to initiate apoptotic cell death. Thus, the BH3 domain is attractive target for discovery of Bak agonist. Methods: The BH3 death domain binding pocket (aa75-88) of Bak was chosen as a docking site for screening of small molecule Bak activators using the UCSF DOCK 6.1 program suite and the NCI chemical library (300,000 small molecules) database. The top 500 compounds determined to have the highest affinity for the BH3 domain were obtained from the NCI and tested for cytotoxicity for further screening. We identified a small molecule Bak activator BKA-073 as the lead compound. The binding affinity of BKA-073 with Bak protein was analyzed by isothermal titration calorimetry (ITC) assay. BKA-073-mediated Bak activation via oligomerization was analyzed by a cross-linking with Bis (maleimido) hexane (BMH). Sensitivity of BKA-073 to lung cancer cells in vitro was evaluated by dynamic BH3 profiling (DBP) and apoptotic cell death assay. The potency of BKA-073 alone or in combination with radiotherapy or Bcl2 inhibitor was evaluated in animal models. Results: We found that BKA-073 binds Bak at BH3 domain with high affinity and selectivity. BKA-073/Bak binding promotes Bak oligomerization and mitochondrial priming that activates its proapoptotic function. BKA-073 potently suppresses tumor growth without significant normal tissue toxicity in small cell lung cancer (SCLC) and NSCLC xenografts, patient-derived xenografts, and genetically engineered mouse models of mutant KRAS-driven cancer. Bak accumulates in radioresistant lung cancer cells and BKA-073 reverses radioresistance. Combination of BKA-073 with Bcl-2 inhibitor venetoclax exhibits strong synergy against lung cancer in vivo. Conclusions: Development of small molecule Bak activator may provide a new class of anticancer agents to treat lung cancer.
Collapse
Affiliation(s)
- Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Abu Syed Md Anisuzzaman
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | | | - Guo Chen
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Madhusmita Behera
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Gabriel L. Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
5
|
Klockmann F, Fangmann C, Zender E, Schanz T, Catapano C, Terfort A. Substituted Dibenzodiazocines: Rapid Synthesis and Photochemical Properties. ACS OMEGA 2021; 6:18434-18441. [PMID: 34308074 PMCID: PMC8296553 DOI: 10.1021/acsomega.1c02524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
11,12-Dihydrodibenzo[c,g]-1,2-diazocines have been established as a viable alternative to azobenzene for photoswitching, in particular, as they show an inverted switching behavior: the ground state is the Z isomer. In this paper, we present an improved method to obtain dibenzodiazocine and its derivatives from the respective 2-nitrotoluenes in two reaction steps, each proceeding in minutes. This fast access to a variety of derivatives permitted the study of substitution effects on the synthesis and on the photochemical properties. With biochemical applications in mind, methanol was chosen as a protic solvent system for the photochemical investigations. In contrast to the azobenzene system, none of the tested substitution patterns resulted in more efficient switching or in significantly prolonged half-lives, showing that the system is dominated by the ring strain.
Collapse
|
6
|
Al-Warhi T, Abo-Ashour MF, Almahli H, Alotaibi OJ, Al-Sanea MM, Al-Ansary GH, Ahmed HY, Elaasser MM, Eldehna WM, Abdel-Aziz HA. Novel [( N-alkyl-3-indolylmethylene)hydrazono]oxindoles arrest cell cycle and induce cell apoptosis by inhibiting CDK2 and Bcl-2: synthesis, biological evaluation and in silico studies. J Enzyme Inhib Med Chem 2020; 35:1300-1309. [PMID: 32522063 PMCID: PMC7717600 DOI: 10.1080/14756366.2020.1773814] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/03/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022] Open
Abstract
As a continuation for our previous work, a novel set of N-alkylindole-isatin conjugates (7, 8a-c, 9 and 10a-e) is here designed and synthesised with the prime aim to develop more efficient isatin-based antitumor candidates. Utilising the SAR outputs from the previous study, our design here is based on appending four alkyl groups with different length (ethyl and n-propyl), bulkiness (iso-propyl) and unsaturation (allyl) on N-1 of indole motif, with subsequent conjugation with different N-unsubstituted isatin moieties to furnish the target conjugates. As planned, the adopted strategy achieved a substantial improvement in the growth inhibitory profile for the target conjugates in comparison to the reported lead VI. The best results were obtained with N-propylindole -5-methylisatin hybrid 8a which displayed broad spectrum anti-proliferative action with efficient sub-panel GI50 (MG-MID) range from 1.33 to 4.23 µM, and promising full-panel GI50 (MG-MID) equals 3.10 µM, at the NCI five-dose assay. Also, hybrid 8a was able to provoke cell cycle disturbance and apoptosis in breast T-47D cells as evidenced by the DNA flow cytometry and Annexin V-FITC/PI assays. Furthermore, hybrid 8a exhibited good inhibitory action against cell cycle regulator CDK2 protein kinase and the anti-apoptotic Bcl-2 protein (IC50= 0.85 ± 0.03 and 0.46 ± 0.02 µM, respectively). Interestingly, molecular docking for hybrid 8a in CDK2 and Bcl-2 active sites unveiled that N-propyl group is involved in significant hydrophobic interactions. Taken together, the results suggested conjugate 8a as a promising lead for further development and optimisation as an efficient antitumor drug.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud F. Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Hadia Almahli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
7
|
Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, Spicher S, Grimme S. Extended
tight‐binding
quantum chemistry methods. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1493] [Citation(s) in RCA: 645] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Bannwarth
- Department of Chemistry and The PULSE Institute Stanford University Stanford California USA
| | - Eike Caldeweyher
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| |
Collapse
|
8
|
Roy A, Rasheed A, Sleeba AV, Rajagopal P. Molecular docking analysis of capsaicin with apoptotic proteins. Bioinformation 2020; 16:555-560. [PMID: 32994681 PMCID: PMC7505247 DOI: 10.6026/97320630016555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
Oral cancer is linked with apoptotic proteins such as Bcl-xl, Bcl-2 and Mcl-1. Therefore it is of interest to document the molecular docking analysis of capsaicin (principle present in the Capsicum annum) with apoptotic proteins in this context. We report the molecular binding features of capsaicin with apoptotic proteins such as Bcl-xl, Bcl-2 and Mcl-1 for further consideration.
Collapse
Affiliation(s)
- Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Arun Rasheed
- Department of Pharmaceutical Chemistry, Alshifa College of Pharmacy, Malappuram, Kerala
| | | | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India
| |
Collapse
|
9
|
Abstract
Ethylene bridged azobenzenes are novel, promising molecular switches that are thermodynamically more stable in the (Z) than in the (E) configuration, contrary to the linear azobenzene. However, their previous synthetic routes were often not general, and yields were poorly reproducible, and sometimes very low. Here we present a new synthetic strategy that is both versatile and reliable. Starting from widely available 2-bromobenzyl bromides, the designated molecules can be obtained in three simple steps.
Collapse
Affiliation(s)
- Shuo Li
- Otto-Diels-Institute for Organic Chemistry , University of Kiel , Otto-Hahn-Platz 4 , 24098 Kiel , Germany
| | - Nadi Eleya
- University of Bremen , Institute for Organic and Analytical Chemistry , Leobener Str. 7 , 28359 Bremen , Germany
| | - Anne Staubitz
- Otto-Diels-Institute for Organic Chemistry , University of Kiel , Otto-Hahn-Platz 4 , 24098 Kiel , Germany.,University of Bremen , Institute for Organic and Analytical Chemistry , Leobener Str. 7 , 28359 Bremen , Germany.,University of Bremen , MAPEX Center for Materials and Processes , Bibliothekstr. 1 , 28359 Bremen , Germany
| |
Collapse
|
10
|
Vucicevic J, Nikolic K, Mitchell JB. Rational Drug Design of Antineoplastic Agents Using 3D-QSAR, Cheminformatic, and Virtual Screening Approaches. Curr Med Chem 2019; 26:3874-3889. [DOI: 10.2174/0929867324666170712115411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 01/07/2023]
Abstract
Background:Computer-Aided Drug Design has strongly accelerated the development of novel antineoplastic agents by helping in the hit identification, optimization, and evaluation.Results:Computational approaches such as cheminformatic search, virtual screening, pharmacophore modeling, molecular docking and dynamics have been developed and applied to explain the activity of bioactive molecules, design novel agents, increase the success rate of drug research, and decrease the total costs of drug discovery. Similarity, searches and virtual screening are used to identify molecules with an increased probability to interact with drug targets of interest, while the other computational approaches are applied for the design and evaluation of molecules with enhanced activity and improved safety profile.Conclusion:In this review are described the main in silico techniques used in rational drug design of antineoplastic agents and presented optimal combinations of computational methods for design of more efficient antineoplastic drugs.
Collapse
Affiliation(s)
- Jelica Vucicevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - John B.O. Mitchell
- EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
11
|
Targeting cancer's Achilles’ heel: role of BCL-2 inhibitors in cellular senescence and apoptosis. Future Med Chem 2019; 11:2287-2312. [DOI: 10.4155/fmc-2018-0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Members of the antiapoptotic BCL-2 proteins are involved in tumor growth, progression and survival, and are also responsible for chemoresistance to conventional anticancer agents. Early efforts to target these proteins yielded some active compounds; however, newer methodologies involving structure-based drug design, Nuclear Magnetic Resonance (NMR)-based screening and fragment-based screening yielded more potent compounds. Discovery of specific as well as nonspecific inhibitors of this class of proteins has resulted in great advances in targeted chemotherapy and decrease in chemoresistance. Here, we review the history and current progress in direct as well as selective targeting of the BCL-2 proteins for anticancer therapy.
Collapse
|
12
|
Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis 2019; 23:27-40. [PMID: 29204721 DOI: 10.1007/s10495-017-1434-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
Collapse
|
13
|
Nandi S, Chandra S, Sikder R, Bhattacharya S, Ahir M, Biswal D, Adhikary A, Pramanik NR, Lai TK, Drew MGB, Acharya K. Characterization and Inception of a Triterpenoid Astrakurkurol, as a Cytotoxic Molecule on Human Hepatocellular Carcinoma Cells, Hep3B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7660-7673. [PMID: 31250646 DOI: 10.1021/acs.jafc.9b01203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mushrooms are customary influential sources of pharmaceutically active metabolites. Usually lanostane-type triterpenoids from mushrooms had prospective for cancer disease treatments. Recently, a triterpenoid, astrakurkurol obtained from the fresh basidiocarps of the edible mushroom Astraeus hygrometricus, drew attention as a new cytotoxic therapeutic. The structural stability of this triterpenoid had been established with the amalgamation of density functional theory (DFT) calculations and study of single-crystal X-ray diffraction. To successfully manifest astrakurkurol as a potent cytotoxic therapeutics, a wide apprehension on the molecular and cellular mechanisms underlying their action is prerequisite. On this account, our study was directed to scrutinize the influence of this triterpenoid on human hepatocellular cancer cell model Hep3B. Encapsulating all experimental facts revealed that astrakurkurol had significantly decreased cell viability in a concentration-dependent manner. This effect was unveiled to be apoptosis, documented by DNA fragmentation, chromatin condensation, nuclear shrinkage, membrane blebing, and imbalance of cell cycle distribution. Astrakurkurol persuaded the expression of death receptor associated proteins (Fas), which triggered caspase-8 activation following tBid cleavage. Moreover, tBid mediated ROS generation, which triggered mitochondrial dysfunction and activated the mitochondrial apoptotic events. Astrakurkurol cytotoxicity was based on caspase-8-mediated intrinsic apoptotic pathway and was associated with inhibition at Akt and NF-κB pathway. Astrakurkurol had also inhibited the migration of Hep3B cells, indicating its antimigratory potential. These findings led us to introduce astrakurkurol as a feasible and natural source for a safer cytotoxic drug against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany , University of Calcutta , 35, Ballygunge Circular Road , Kolkata , WB 700019 , India
| | - Swarnendu Chandra
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany , University of Calcutta , 35, Ballygunge Circular Road , Kolkata , WB 700019 , India
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany , University of Calcutta , 35, Ballygunge Circular Road , Kolkata , WB 700019 , India
| | - Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology , University of Calcutta , JD-2, Sector III, Salt Lake , Kolkata , WB 700098 , India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology , University of Calcutta , JD-2, Sector III, Salt Lake , Kolkata , WB 700098 , India
| | - Debanjana Biswal
- Department of Chemistry , University College of Science , 92, Acharya Prafulla Chandra Road , Kolkata , WB 700009 , India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology , University of Calcutta , JD-2, Sector III, Salt Lake , Kolkata , WB 700098 , India
| | - Nikhil Ranjan Pramanik
- Department of Chemistry , Bidhannagar College , EB-2, Salt lake , Kolkata 700064 , India
| | - Tapan Kumar Lai
- Department of Chemistry , Vidyasagar Evening College , 39, Sankar Ghosh Lane , Kolkata 700006 , India
| | - Michael G B Drew
- Department of Chemistry , University of Reading , Whiteknights, Reading RG6 6AD , United Kingdom
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany , University of Calcutta , 35, Ballygunge Circular Road , Kolkata , WB 700019 , India
| |
Collapse
|
14
|
Identification of molecular features necessary for selective inhibition of B cell lymphoma proteins using machine learning techniques. Mol Divers 2018; 23:55-73. [DOI: 10.1007/s11030-018-9856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
|
15
|
Maffucci I, Hu X, Fumagalli V, Contini A. An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings. Front Chem 2018; 6:43. [PMID: 29556494 PMCID: PMC5844977 DOI: 10.3389/fchem.2018.00043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of explicit water molecules that are the closest to the ligand in each frame of a molecular dynamics trajectory. This method demonstrated improved correlations between calculated and experimental binding energies in both protein-protein interactions and ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol optimization, aimed to maximize efficacy and efficiency, is discussed here considering penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed in triplicates on both classic HPC environments and on standard workstations equipped by a GPU card, evidencing no statistical differences in the results. No relevant differences in correlation to experiments were also observed when performing Nwat-MMGBSA calculations on 4 or 1 ns long trajectories. A fully automatic workflow for structure-based virtual screening, performing from library set-up to docking and Nwat-MMGBSA rescoring, has then been developed. The protocol has been tested against no rescoring or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases, Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of between 20 and 30%, compared to docking scoring or to standard MM-GBSA rescoring.
Collapse
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Xiao Hu
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Valentina Fumagalli
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Med Chem 2017; 9:1243-1275. [PMID: 28722469 DOI: 10.4155/fmc-2017-0046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gossypol as a natural occurring polyphenol has been studied in a wide range of therapeutic contexts for a long time. The chemical modifications on gossypol were limited due to the unique chemical properties of polyphenols. The design and synthesis of gossypol derivatives and the exploration of their biological activities are the interest of the synthetic chemists, medicinal chemists and pharmacologists. Thus, the progress of diverse gossypol derivatives and analogs' synthesis, biological activities, mechanism elucidation and drug discovery based on gossypol scaffold is summarized.
Collapse
|
17
|
Zhang SS, Liao ZX, Huang RZ, Gong CC, Ji LJ, Sun HF. A new aromatic glycoside and its anti-proliferative activities from the leaves of Bergenia purpurascens. Nat Prod Res 2017; 32:668-675. [PMID: 28602105 DOI: 10.1080/14786419.2017.1338278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chemical investigation of the ethanolic extracts of the dried leaves of Bergenia purpurascens led to the isolation and identification of a new aromatic glycoside, 1-O-β-D-glucopyranosyl-2-methoxy-3-hydroxyl-phenylethene (1), along with other 19 known compounds (2-20). The structure of compound 1 was determined by a detailed analysis using various analytical techniques, including 1D and 2D NMR. In vitro anti-proliferative activities of compound 1 on five human cancer cell lines were evaluated. The results showed that compound 1 possessed the most potent effects with the IC50 values of 14.36 ± 1.04 μM against T24 cells. The further bioactivity analysis showed that compound 1 induced apoptosis of T24 cells, and altered anti- and pro-apoptotic proteins, leading to mitochondrial dysfunction and activation of caspase-3 for causing cell apoptosis. The present investigation illustrated compound 1 might be used as a potential antitumour chemotherapy candidate.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| | - Zhi-Xin Liao
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| | - Ri-Zhen Huang
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| | - Cheng-Cheng Gong
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| | - Lan-Ju Ji
- b Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , PR China
| | - Hong-Fa Sun
- b Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , PR China
| |
Collapse
|
18
|
Ziedan NI, Hamdy R, Cavaliere A, Kourti M, Prencipe F, Brancale A, Jones AT, Westwell AD. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor. Chem Biol Drug Des 2017; 90:147-155. [PMID: 28067996 DOI: 10.1111/cbdd.12936] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 11/27/2022]
Abstract
A new series of oxadiazoles were designed to act as inhibitors of the anti-apoptotic Bcl-2 protein. Virtual screening led to the discovery of new hits that interact with Bcl-2 at the BH3 binding pocket. Further study of the structure-activity relationship of the most active compound of the first series, compound 1, led to the discovery of a novel oxadiazole analogue, compound 16j, that was a more potent small-molecule inhibitor of Bcl-2. 16j had good in vitro inhibitory activity with submicromolar IC50 values in a metastatic human breast cancer cell line (MDA-MB-231) and a human cervical cancer cell line (HeLa). The antitumour effect of 16j is concomitant with its ability to bind to Bcl-2 protein as shown by an enzyme-linked immunosorbent assay (IC50 = 4.27 μm). Compound 16j has a great potential to develop into highly active anticancer agent.
Collapse
Affiliation(s)
- Noha I Ziedan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rania Hamdy
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Malamati Kourti
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,Cardiff China Medical Research Collaborative, Cardiff University, Cardiff, UK
| | - Filippo Prencipe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Song T, Wang Z, Zhang Z. Substituted indole Mcl-1 inhibitors: a patent evaluation (WO2015148854A1). Expert Opin Ther Pat 2016; 26:1227-1238. [DOI: 10.1080/13543776.2016.1240786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
20
|
Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures. Drug Discov Today 2016; 21:1672-1680. [DOI: 10.1016/j.drudis.2016.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/12/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022]
|
21
|
Kamath PR, Sunil D, Ajees AA, Pai KSR, Biswas S. N'-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur J Med Chem 2016; 120:134-147. [PMID: 27187865 DOI: 10.1016/j.ejmech.2016.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023]
Abstract
A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties.
Collapse
Affiliation(s)
- Pooja R Kamath
- Department of Chemistry, Manipal Institute of Technology, Manipal University, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal University, India.
| | - A Abdul Ajees
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, India
| | - K S R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, India
| | - Shubankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, India
| |
Collapse
|
22
|
A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer. Anal Bioanal Chem 2016; 408:7491-503. [PMID: 27510278 DOI: 10.1007/s00216-016-9847-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.
Collapse
|
23
|
Zhang SD, Shan L, Li W, Li HL, Zhang WD. Isochamaejasmin induces apoptosis in leukemia cells through inhibiting Bcl-2 family proteins. Chin J Nat Med 2016; 13:660-6. [PMID: 26412425 DOI: 10.1016/s1875-5364(15)30063-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 12/23/2022]
Abstract
The biflavonoid isochamaejasmin is mainly distributed in the root of Stellera chamaejasme L. (Thymelaeaceae) that is used in traditional Chinese medicine (TCM) to treat tumors, tuberculosis, and psoriasis. Herein, isochamaejasmin was found to show similar bioactivity against Bcl-2 family proteins to the reference Bcl-2 ligand (-)-gossypol through 3D similarity search. It selectively bound to Bcl-xl and Mcl-1 with Ki values being 1.93 ± 0.13 μmol·L(-1) and 9.98 ± 0.21 μmol·L(-1), respectively. In addition, isochamaejasmin showed slight growth inhibitory activity against HL-60 with IC50 value being 50.40 ± 1.21 μmol·L(-1) and moderate growth inhibitory activity against K562 cells with IC50 value being 24.51 ± 1.62 μmol·L(-1). Furthermore, isochamaejasmin induced apoptosis of K562 cells by increasing the intracellular expression levels of proteins of the cleavage of caspase-9, caspase-3, and PARP which involved in the Bcl-2-induced apoptosis pathway. These results indicated that isochamaejasmin induces apoptosis in leukemia cells by inhibiting the activity of Bcl-2 family proteins, providing evidence for further studying the underlying anti-cancer mechanism of S. chamaejasme L.
Collapse
Affiliation(s)
- Shou-De Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Shan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei Li
- Qinghai Academy of Agriculture and Forestry Science, Xining 810016, China
| | - Hong-Lin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Wei-Dong Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
24
|
Aharoni-Simon M, Shumiatcher R, Yeung A, Shih AZL, Dolinsky VW, Doucette CA, Luciani DS. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells. Endocrinology 2016; 157:2270-81. [PMID: 27070098 DOI: 10.1210/en.2015-1964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In pancreatic β-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal β-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress β-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of β-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional β-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of β-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in β-cells. These noncanonical roles of Bcl-2 may be important for β-cell function and survival under conditions of high metabolic demand.
Collapse
Affiliation(s)
- Michal Aharoni-Simon
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Rose Shumiatcher
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Anthony Yeung
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Alexis Z L Shih
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Vernon W Dolinsky
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Christine A Doucette
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Dan S Luciani
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| |
Collapse
|
25
|
Aboalhaija NH, Zihlif MA, Taha MO. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling. Chem Biol Interact 2016; 250:12-26. [PMID: 26954606 DOI: 10.1016/j.cbi.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
Bcl-2 is an anti-apoptotic protein involved in cancer resistance to cytotoxic therapies making it an interesting target for inhibitors design. Towards this end, we implemented an elaborated ligand-based computational workflow that combines exhaustive pharmacophore modeling and quantitative structure-activity relationship (QSAR) analysis to explore the structural features required for potent Bcl-2 inhibitors employing 98 known Bcl-2 inhibitors. Genetic function algorithm (GFA) coupled with k nearest neighbor (kNN) or multiple linear regression (MLR) analyses were employed to generate predictive QSAR models based on optimal combinations of pharmacophores and physicochemical descriptors. The optimal QSAR-selected pharmacophore models were validated by receiver operating characteristic (ROC) curve analysis and by comparison with crystallographic structures of known inhibitors co-crystallized within Bcl-2 binding pocket. Optimal QSAR models and their associated pharmacophore hypotheses were validated by identification and experimental evaluation of new selective cytotoxic compounds against Bcl-2 expressing cancer cells. The hits were retrieved from the National Cancer Institute (NCI) structural database. Several potent hits were captured. The most potent hits illustrated IC50 values of 4.2 and 2.60 μM against MDA-MB-231 cancer cell-line.
Collapse
Affiliation(s)
- Nour H Aboalhaija
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Az-zarqa, Jordan
| | - Malek A Zihlif
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Drug Discovery Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
26
|
Beekman AM, Howell LA. Small-Molecule and Peptide Inhibitors of the Pro-Survival Protein Mcl-1. ChemMedChem 2016; 11:802-13. [PMID: 26696548 PMCID: PMC4991272 DOI: 10.1002/cmdc.201500497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/02/2015] [Indexed: 01/11/2023]
Abstract
The ability of protein-protein interactions to regulate cellular processes in both beneficial and detrimental ways has made them obvious drug targets. The Bcl-2 family of proteins undergo a series of protein-protein interactions which regulate the intrinsic cell-death pathway. The pro-survival members of the Bcl-2 family, including Bcl-2, Bcl-xL , and Mcl-1, are commonly overexpressed in a number of human cancers. Effective modulators of members of the Bcl-2 family have been developed and are undergoing clinical trials, but the efficient modulation of Mcl-1 is still not represented in the clinic. In addition, Mcl-1 is a major cause of resistance to radio- and chemotherapies, including inhibitors that target other Bcl-2 family members. Subsequently, the inhibition of Mcl-1 has become of significant interest to the scientific community. This review covers the progress made to date in modulating the activity of Mcl-1, by both stapled peptides and small molecules. The development of peptides as drug candidates, and the advancement of experimental and computational techniques used to discover small molecules are also highlighted.
Collapse
Affiliation(s)
- Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
27
|
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 2016; 15:533-50. [DOI: 10.1038/nrd.2016.29] [Citation(s) in RCA: 781] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Abuhammad A, Taha M. Innovative computer-aided methods for the discovery of new kinase ligands. Future Med Chem 2016; 8:509-526. [PMID: 27105126 DOI: 10.4155/fmc-2015-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/02/2016] [Indexed: 07/10/2024] Open
Abstract
Recent evidence points to significant roles played by protein kinases in cell signaling and cellular proliferation. Faulty protein kinases are involved in cancer, diabetes and chronic inflammation. Efforts are continuously carried out to discover new inhibitors for selected protein kinases. In this review, we discuss two new computer-aided methodologies we developed to mine virtual databases for new bioactive compounds. One method is ligand-based exploration of the pharmacophoric space of inhibitors of any particular biotarget followed by quantitative structure-activity relationship-based selection of the best pharmacophore(s). The second approach is structure-based assuming that potent ligands come into contact with binding site spots distinct from those contacted by weakly potent ligands. Both approaches yield pharmacophores useful as 3D search queries for the discovery of new bioactive (kinase) inhibitors.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, 11942, Amman, Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, 11942, Amman, Jordan
| |
Collapse
|
29
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
30
|
Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface. Sci Rep 2016; 6:22878. [PMID: 26964677 PMCID: PMC4786802 DOI: 10.1038/srep22878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference-NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.
Collapse
|
31
|
Wang R, Chen S, Li C, Ng KTP, Kong CW, Cheng J, Cheng SH, Li RA, Lo CM, Man K, Sun D. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells. BMC Cancer 2016; 16:56. [PMID: 26846780 PMCID: PMC4743091 DOI: 10.1186/s12885-016-2094-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. METHODS We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. RESULTS We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. CONCLUSIONS Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
Collapse
Affiliation(s)
- Ran Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shuxun Chen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Changxian Li
- Department of Surgery, Li Ka-Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Kevin Tak Pan Ng
- Department of Surgery, Li Ka-Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Chi-wing Kong
- Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, Li Ka-Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Jinping Cheng
- Environmental Science Program, School of Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China.
| | - Ronald A Li
- Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, Li Ka-Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Chung Mau Lo
- Department of Surgery, Li Ka-Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Kwan Man
- Department of Surgery, Li Ka-Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
|
33
|
BAOLERI XILIN, DONG CHAO, ZHOU YANG, ZHANG ZHAOJUN, LU XUELIANG, XIE PENGMING, LI YONGQI. Combination of L-gossypol and low-concentration doxorubicin induces apoptosis in human synovial sarcoma cells. Mol Med Rep 2015; 12:5924-32. [DOI: 10.3892/mmr.2015.4127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
|
34
|
Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G, Sica GL, Ding C, Zhou J, Magis AT, Chen ZG, Shin DM, Ramalingam SS, Khuri FR, Curran WJ, Deng X. Small-Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy. Cancer Cell 2015; 27:852-63. [PMID: 26004684 PMCID: PMC4470473 DOI: 10.1016/j.ccell.2015.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/06/2014] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
The BH4 domain of Bcl2 is required for its antiapoptotic function, thus constituting a promising anticancer target. We identified a small-molecule Bcl2-BH4 domain antagonist, BDA-366, that binds BH4 with high affinity and selectivity. BDA-366-Bcl2 binding induces conformational change in Bcl2 that abrogates its antiapoptotic function, converting it from a survival molecule to a cell death inducer. BDA-366 suppresses growth of lung cancer xenografts derived from cell lines and patient without significant normal tissue toxicity at effective doses. mTOR inhibition upregulates Bcl2 in lung cancer cells and tumor tissues from clinical trial patients. Combined BDA-366 and RAD001 treatment exhibits strong synergy against lung cancer in vivo. Development of this Bcl2-BH4 antagonist may provide a strategy to improve lung cancer outcome.
Collapse
Affiliation(s)
- Bingshe Han
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Rui Li
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gabriel L Sica
- Department of Pathology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Walter J Curran
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Kotwica K, Bujak P, Wamil D, Materna M, Skorka L, Gunka PA, Nowakowski R, Golec B, Luszczynska B, Zagorska M, Pron A. Indanthrone dye revisited after sixty years. Chem Commun (Camb) 2015; 50:11543-6. [PMID: 25133516 DOI: 10.1039/c4cc04778h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions.
Collapse
Affiliation(s)
- Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3, 00-664 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Campbell ST, Carlson KJ, Buchholz CJ, Helmers MR, Ghosh I. Mapping the BH3 Binding Interface of Bcl-xL, Bcl-2, and Mcl-1 Using Split-Luciferase Reassembly. Biochemistry 2015; 54:2632-43. [PMID: 25844633 DOI: 10.1021/bi501505y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recognition of helical BH3 domains by Bcl-2 homology (BH) receptors plays a central role in apoptosis. The residues that determine specificity or promiscuity in this interactome are difficult to predict from structural and computational data. Using a cell free split-luciferase system, we have generated a 276 pairwise interaction map for 12 alanine mutations at the binding interface for three receptors, Bcl-xL, Bcl-2, and Mcl-1, and interrogated them against BH3 helices derived from Bad, Bak, Bid, Bik, Bim, Bmf, Hrk, and Puma. This panel, in conjunction with previous structural and functional studies, starts to provide a more comprehensive portrait of this interactome, explains promiscuity, and uncovers surprising details; for example, the Bcl-xL R139A mutation disrupts binding to all helices but the Bad-BH3 peptide, and Mcl-1 binding is particularly perturbed by only four mutations of the 12 tested (V220A, N260A, R263A, and F319A), while Bcl-xL and Bcl-2 have a more diverse set of important residues depending on the bound helix.
Collapse
Affiliation(s)
- Sean T Campbell
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Kevin J Carlson
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Carl J Buchholz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Mark R Helmers
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Indraneel Ghosh
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
37
|
Kumar A, Zhang KYJ. Hierarchical virtual screening approaches in small molecule drug discovery. Methods 2015; 71:26-37. [PMID: 25072167 PMCID: PMC7129923 DOI: 10.1016/j.ymeth.2014.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
38
|
Zhou C, Kang D, Xu Y, Zhang L, Zha X. Identification of Novel Selective Lysine-Specific Demethylase 1 (LSD1) Inhibitors Using a Pharmacophore-Based Virtual Screening Combined with Docking. Chem Biol Drug Des 2014; 85:659-71. [DOI: 10.1111/cbdd.12461] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/01/2014] [Accepted: 10/15/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
- Jiangsu Center for Drug Screening; China Pharmaceutical University; Nanjing 210009 China
- Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Di Kang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
- Jiangsu Center for Drug Screening; China Pharmaceutical University; Nanjing 210009 China
- Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
- Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
- Jiangsu Center for Drug Screening; China Pharmaceutical University; Nanjing 210009 China
| | - Xiaoming Zha
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
- Jiangsu Center for Drug Screening; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
39
|
Zhang S, Yin J, Li X, Zhang J, Yue R, Diao Y, Li H, Wang H, Shan L, Zhang W. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC Cancer 2014; 14:689. [PMID: 25241619 PMCID: PMC4177598 DOI: 10.1186/1471-2407-14-689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/17/2014] [Indexed: 01/05/2023] Open
Abstract
Background Hypericum japonicum Thunb. ex Murray is widely used as an herbal medicine for the treatment of hepatitis and tumours in China. However, the molecular mechanisms of its effects are unclear. Our previous research showed that extracts of H. japonicum can induce apoptosis in leukaemia cells. We also previously systematically analysed and isolated the chemical composition of H. japonicum. Methods The fluorescence polarisation experiment was used to screen for inhibitors of Bcl-2 proteins which are proved as key proteins in apoptosis. The binding mode was modelled by molecular docking. We investigated the proliferation attenuating and apoptosis inducing effects of active compound on cancer cells by MTT assay and flow cytometry analysis. Activation of caspases were tested by Western blot. A broad-spectrum caspase inhibitor Z-VAD-FMK was used to investigate the caspases-dependence. In addition, co-immunoprecipitation was performed to analyse the inhibition of heterodimerization between anti-apoptotic Bcl-2 proteins with pro-apoptotic proteins. Moreover, in vivo activity was tested in a mouse xenograph tumour model. Result Jacarelhyperol A (Jac-A), a characteristic constituent of H. japonicum, was identified as a potential Bcl-2 inhibitor. Jac-A showed binding affinities to Bcl-xL, Bcl-2, and Mcl-1 with Ki values of 0.46 μM, 0.43 μM, and 1.69 μM, respectively. This is consistent with computational modelling results, which show that Jac-A presents a favorable binding mode with Bcl-xL in the BH3-binding pocket. In addition, Jac-A showed potential growth inhibitory activity in leukaemia cells with IC50 values from 1.52 to 6.92 μM and significantly induced apoptosis of K562 cells by promoting release of cytochrome c and activating the caspases. Jac-A also been proved that its effect is partly caspases-dependent and can disrupt the heterodimerization between anti-apoptotic Bcl-2 proteins with pro-apoptotic proteins. Moreover, Jac-A dose-dependently inhibited human K562 cell growth in a mouse xenograph tumour model with low toxicity. Conclusion In this study, a characteristic constituent of H. japonicum, Jac-A, was shown to induce apoptosis in leukaemia cells by mediating the Bcl-2 proteins. Therefore, we propose a new lead compound for cancer therapy with a low toxicity, and have provided evidence for using H. japonicum as an anti-cancer herb. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-689) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Shan
- School of Pharmacy, Second Military Medical University, 325# Guohe Road, Shanghai 200433, China.
| | | |
Collapse
|
40
|
Zheng CH, Zhang M, Chen H, Wang CQ, Zhang MM, Jiang JH, Tian W, Lv JG, Li TJ, Zhu J, Zhou YJ. Luteolin from Flos Chrysanthemi and its derivatives: New small molecule Bcl-2 protein inhibitors. Bioorg Med Chem Lett 2014; 24:4672-4677. [PMID: 25193233 DOI: 10.1016/j.bmcl.2014.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Over-expression of the Bcl-2 anti-apoptotic proteins is closely related to tumorigenesis and associated with drug resistance. Here we report that luteolin, a main substance found in Flos Chrysanthemi, directly binds to and shows inhibitory activity against the Bcl-2 protein. We studied the binding mode of luteolin and its derivatives with target proteins, their structure-activity relationship, and their effect on the human leukemia cell line HL-60. The results suggest that luteolin and its derivatives with a benzyl group introduced to the B ring, are new small molecule Bcl-2 protein inhibitors, and their anti-tumor activity is likely related to their effect on the Bcl-2 protein.
Collapse
Affiliation(s)
- Can-Hui Zheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Meng Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hui Chen
- Changhai Hospital, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chong-Qing Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Min-Min Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jun-Hang Jiang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wei Tian
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jia-Guo Lv
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Tie-Jun Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Ju Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - You-Jun Zhou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
41
|
Pawlowski M, Saraswathi S, Motawea HKB, Chotani MA, Kloczkowski A. In silico modeling of human α2C-adrenoreceptor interaction with filamin-2. PLoS One 2014; 9:e103099. [PMID: 25110951 PMCID: PMC4128582 DOI: 10.1371/journal.pone.0103099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle α2C-adrenoceptors (α2C-ARs) mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM) and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456) and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals.
Collapse
Affiliation(s)
- Marcin Pawlowski
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Saras Saraswathi
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Hanaa K. B. Motawea
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pharmacology & Toxicology, Helwan University, Helwan, Egypt
| | - Maqsood A. Chotani
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
42
|
Zeuner A, Francescangeli F, Contavalli P, Zapparelli G, Apuzzo T, Eramo A, Baiocchi M, De Angelis ML, Biffoni M, Sette G, Todaro M, Stassi G, De Maria R. Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death Differ 2014; 21:1877-88. [PMID: 25034785 DOI: 10.1038/cdd.2014.105] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related mortality worldwide, urging the discovery of novel molecular targets and therapeutic strategies. Stem cells have been recently isolated from non-small cell lung cancer (NSCLC), thus allowing the investigation of molecular pathways specifically active in the tumorigenic population. We have found that Bcl-XL is constantly expressed by lung cancer stem cells (LCSCs) and has a prominent role in regulating LCSC survival. Whereas chemotherapeutic agents were scarcely effective against LCSC, the small molecule Bcl-2/Bcl-XL inhibitor ABT-737, but not the selective Bcl-2 inhibitor ABT-199, induced LCSC death at nanomolar concentrations. Differently from gemcitabine, which preferentially eliminated proliferating LCSC, ABT-737 had an increased cytotoxic activity in vitro towards quiescent/slow-proliferating LCSC, which expressed high levels of Bcl-XL. In vivo, ABT-737 as a single agent was able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors. Altogether, these results indicate that quiescent/slow-proliferating LCSC strongly depend on Bcl-XL for their survival and indicate Bcl-XL inhibition as a potential therapeutic avenue in NSCLC.
Collapse
Affiliation(s)
- A Zeuner
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - F Francescangeli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - P Contavalli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - G Zapparelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - T Apuzzo
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo 90128, Italy
| | - A Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - M Baiocchi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - M L De Angelis
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - M Biffoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - G Sette
- Regina Elena National Cancer Institute, Rome, Italy
| | - M Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo 90128, Italy
| | - G Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo 90128, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
43
|
Cohen NA, Stewart ML, Gavathiotis E, Tepper JL, Bruekner SR, Koss B, Opferman JT, Walensky LD. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. ACTA ACUST UNITED AC 2014; 19:1175-86. [PMID: 22999885 DOI: 10.1016/j.chembiol.2012.07.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/06/2012] [Accepted: 07/17/2012] [Indexed: 11/26/2022]
Abstract
Cancer cells hijack BCL-2 family survival proteins to suppress the death effectors and thereby enforce an immortal state. This is accomplished biochemically by an antiapoptotic surface groove that neutralizes the proapoptotic BH3 α helix of death proteins. Antiapoptotic MCL-1 in particular has emerged as a ubiquitous resistance factor in cancer. Although targeting the BCL-2 antiapoptotic subclass effectively restores the death pathway in BCL-2-dependent cancer, the development of molecules tailored to the binding specificity of MCL-1 has lagged. We previously discovered that a hydrocarbon-stapled MCL-1 BH3 helix is an exquisitely selective MCL-1 antagonist. By deploying this unique reagent in a competitive screen, we identified an MCL-1 inhibitor molecule that selectively targets the BH3-binding groove of MCL-1, neutralizes its biochemical lock-hold on apoptosis, and induces caspase activation and leukemia cell death in the specific context of MCL-1 dependence.
Collapse
Affiliation(s)
- Nicole A Cohen
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schilling J, Schöppe J, Sauer E, Plückthun A. Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W. J Mol Biol 2014; 426:2346-62. [PMID: 24747052 DOI: 10.1016/j.jmb.2014.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/29/2022]
Abstract
BCL-W is a member of the BCL-2 family of anti-apoptotic proteins. A key event in the regulation of apoptosis is the heterodimerization between anti-apoptotic and pro-apoptotic family members, which involves a conserved surface-exposed groove on the anti-apoptotic proteins. Crystal structures of the ligand binding-competent conformation exist for all anti-apoptotic family members, with the exception of BCL-W, due to the flexibility of the BCL-W groove region. Existing structures had suggested major deviations of the BCL-W groove region from the otherwise structurally highly related remaining anti-apoptotic family members. To capture its ligand binding-competent conformation by counteracting the conformational flexibility of the BCL-W groove, we had selected high-affinity groove-binding designed ankyrin repeat proteins (DARPins) using ribosome display. We now determined two high-resolution crystal structures of human BCL-W in complex with different DARPins at resolutions 1.5 and 1.85Å, in which the structure of BCL-W is virtually identical, and BCL-W adopts a conformation extremely similar to the ligand-free conformation of its closest relative BCL-XL in both structures. However, distinct differences to all previous BCL-W structures are evident, notably in the ligand-binding region. We provide the first structural explanation for the conformational flexibility of the BCL-W groove region in comparison to other BCL-2 family members. Due to the importance of the anti-apoptotic BCL-2 family as drug targets, the presented crystal structure of ligand binding-competent BCL-W may serve as a valuable basis for structure-based drug design in the future and provides a missing piece for the structural characterization of this protein family.
Collapse
Affiliation(s)
- Johannes Schilling
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jendrik Schöppe
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Evelyn Sauer
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andreas Plückthun
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
45
|
Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 2014; 14:248-62. [PMID: 24622521 DOI: 10.1038/nrc3690] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, targeting protein-protein interactions with small molecules was not thought possible because the corresponding interfaces were considered mostly flat and featureless and therefore 'undruggable'. Instead, such interactions were targeted with larger molecules, such as peptides and antibodies. However, the past decade has seen encouraging breakthroughs through the refinement of existing techniques and the development of new ones, together with the identification and exploitation of unexpected aspects of protein-protein interaction surfaces. In this Review, we describe some of the latest techniques to discover modulators of protein-protein interactions and how current drug discovery approaches have been adapted to successfully target these interfaces.
Collapse
Affiliation(s)
- Tracy L Nero
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Craig J Morton
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Jessica K Holien
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Jerome Wielens
- 1] Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. [2] Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Michael W Parker
- 1] Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. [2] Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
46
|
Schilling J, Schöppe J, Plückthun A. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J Mol Biol 2014; 426:691-721. [PMID: 24513107 DOI: 10.1016/j.jmb.2013.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/19/2022]
Abstract
Antibodies are the most versatile binding proteins in nature with six loops creating a flexible continuous interaction surface. However, in some molecular formats, antibodies are aggregation prone. Designed ankyrin repeat proteins (DARPins) were successfully created as alternative design solutions. Nevertheless, their concave shape, rigidity and incompletely randomized binding surface may limit the epitopes that can be targeted by this extremely stable scaffold. Combining conformational diversity and a continuous convex paratope found in many antibodies with the beneficial biophysical properties of DARPins, we created LoopDARPins, a next generation of DARPins with extended epitope binding properties. We employed X-ray structure determination of a LoopDARPin for design validation. Biophysical characterizations show that the introduction of an elongated loop through consensus design does not decrease the stability of the scaffold,consistent with molecular dynamics simulations. Ribosome-display selections against extracellular signal-regulated kinase 2 (ERK2) and four members of the BCL-2 family (BCL-2, BCL-XL, BCL-W and MCL-1) of anti-apoptotic regulators yielded LoopDARPins with affinities in the mid-picomolar to low nanomol arrange against all targets. The BCL-2 family binders block the interaction with their natural interaction partner and will be valuable reagents to test the apoptotic response in functional assays. With the LoopDARPin scaffold, binders for BCL-2 with an affinity of 30 pM were isolated with only a single round of ribosome display,an enrichment that has not been described for any scaffold. Identical stringent one-round selections with conventional DARPins without loop yielded no binders. The LoopDARPin scaffold may become a highly valuable tool for biotechnological high-throughput applications.
Collapse
|
47
|
Azam SS, Abro A, Tanvir F, Parvaiz N. Identification of unique binding site and molecular docking studies for structurally diverse Bcl-xL inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0957-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Jamal MS, Parveen S, Beg MA, Suhail M, Chaudhary AGA, Damanhouri GA, Abuzenadah AM, Rehan M. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches. PLoS One 2014; 9:e87309. [PMID: 24586269 PMCID: PMC3937309 DOI: 10.1371/journal.pone.0087309] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/19/2013] [Indexed: 12/31/2022] Open
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. The present study is the first attempt to provide structural insights into the binding mode of plumbagin to five cancer signaling proteins viz. PI3Kγ, AKT1/PKBα, Bcl-2, NF-κB, and Stat3 using molecular docking and (un)binding simulation analysis. We validated plumbagin docking to these targets with previously known important residues. The study also identified and characterized various novel interacting residues of these targets which mediate the binding of plumbagin. Moreover, the exact modes of inhibition when multiple mode of inhibition existed was also shown. Results indicated that the engaging of these important interacting residues in plumbagin binding leads to inhibition of these cancer-signaling proteins which are key players in the pathogenesis of cancer and thereby ceases the progression of the disease.
Collapse
Affiliation(s)
- Mohammad S. Jamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shadma Parveen
- Bareilly College, M.J.P. Rohilkhand University, Bareilly, U.P., India
| | - Mohd A. Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Adeel G. A. Chaudhary
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Adel M. Abuzenadah
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Agrawal P, Lin C, Mathad R, Carver M, Yang D. The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J Am Chem Soc 2014; 136:1750-3. [PMID: 24450880 PMCID: PMC4732354 DOI: 10.1021/ja4118945] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Indexed: 11/29/2022]
Abstract
The human BCL-2 gene contains a 39-bp GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of BCL-2 gene expression. Inhibition of BCL-2 expression can decrease cellular proliferation and enhance the efficacy of chemotherapy. Here we report the major G-quadruplex formed in the Pu39 G-rich strand in this BCL-2 promoter region. The 1245G4 quadruplex adopts a parallel structure with one 13-nt and two 1-nt chain-reversal loops. The 1245G4 quadruplex involves four nonsuccessive G-runs, I, II, IV, V, unlike the previously reported bcl2 MidG4 quadruplex formed on the central four G-runs. The parallel 1245G4 quadruplex with the 13-nt loop, unexpectedly, appears to be more stable than the mixed parallel/antiparallel MidG4. Parallel-stranded structures with two 1-nt loops and one variable-length middle loop are found to be prevalent in the promoter G-quadruplexes; the variable middle loop is suggested to determine the specific overall structure and potential ligand recognition site. A limit of 7 nt in loop length is used in all quadruplex-predicting software. Thus, the formation and high stability of the 1245G4 quadruplex with a 13-nt loop is significant. The presence of two distinct interchangeable G-quadruplexes in the overlapping region of the BCL-2 promoter is intriguing, suggesting a novel mechanism for gene transcriptional regulation and ligand modulation.
Collapse
Affiliation(s)
- Prashansa Agrawal
- Department of Pharmacology and Toxicology, College
of Pharmacy, Department of Chemistry, BIO5 Institute, The Arizona Cancer
Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Clement Lin
- Department of Pharmacology and Toxicology, College
of Pharmacy, Department of Chemistry, BIO5 Institute, The Arizona Cancer
Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Raveendra
I. Mathad
- Department of Pharmacology and Toxicology, College
of Pharmacy, Department of Chemistry, BIO5 Institute, The Arizona Cancer
Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Megan Carver
- Department of Pharmacology and Toxicology, College
of Pharmacy, Department of Chemistry, BIO5 Institute, The Arizona Cancer
Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Danzhou Yang
- Department of Pharmacology and Toxicology, College
of Pharmacy, Department of Chemistry, BIO5 Institute, The Arizona Cancer
Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
50
|
Abstract
Apoptosis is a cell death program that is well-orchestrated for normal tissue homeostasis and for removal of damaged, old or infected cells. It is regulated by intrinsic and extrinsic pathways. The intrinsic pathway responds to signals such as ultraviolet radiation or DNA damage and activates "executioner" caspases through a mitochondria-dependent pathway. The extrinsic pathway is activated by death signals induced, for example, by an infection that activates the immune system or receptor-mediated pathways. The extrinsic pathway signals also cascade down to executioner caspases that cleave target proteins and lead to cell death. Strict control of cellular apoptosis is important for the hematopoietic system as it has a high turnover rate. However, the apoptosis program is often deregulated in hematologic malignancies leading to the accumulation of malignant cells. Therefore, apoptosis pathways have been identified for the development of anticancer therapeutics. We review here the proteins that have been targeted for anticancer drug development in hematologic malignancies. These include BCL-2 family proteins, death ligands and receptors, inhibitor of apoptosis family proteins and caspases. Except for caspase activators, drugs that target each of these classes of proteins have advanced into clinical trials.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|