1
|
Martins LS, Kruger HG, Naicker T, Alves CN, Lameira J, Araújo Silva JR. Computational insights for predicting the binding and selectivity of peptidomimetic plasmepsin IV inhibitors against cathepsin D. RSC Adv 2022; 13:602-614. [PMID: 36605626 PMCID: PMC9773328 DOI: 10.1039/d2ra06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by P. falciparum and are essential for the survival and growth of the parasite. Therefore, Plm enzymes are reported as an important antimalarial drug target. Herein, we have applied molecular docking, molecular dynamics (MD) simulations, and binding free energy with the Linear Interaction Energy (LIE) approach to investigate the binding of peptidomimetic PlmIV inhibitors with a particular focus on understanding their selectivity against the human Asp protease cathepsin D (CatD). The residual decomposition analysis results suggest that amino acid differences in the subsite S3 of PlmIV and CatD are responsible for the higher selectivity of the 5a inhibitor. These findings yield excellent agreement with experimental binding data and provide new details regarding van der Waals and electrostatic interactions of subsite residues as well as structural properties of the PlmIV and CatD systems.
Collapse
Affiliation(s)
- Lucas Sousa Martins
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | | | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-NatalDurban 4000South Africa
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | - José Rogério Araújo Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| |
Collapse
|
2
|
Schaller D, Pach S, Wolber G. PyRod: Tracing Water Molecules in Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:2818-2829. [PMID: 31117512 DOI: 10.1021/acs.jcim.9b00281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ligands entering a protein binding pocket essentially compete with water molecules for binding to the protein. Hence, the location and thermodynamic properties of water molecules in protein structures have gained increased attention in the drug design community. Including corresponding data into 3D pharmacophore modeling is essential for efficient high throughput virtual screening. Here, we present PyRod, a free and open-source Python software that allows for visualization of pharmacophoric binding pocket characteristics, identification of hot spots for ligand binding, and subsequent generation of pharmacophore features for virtual screening. The implemented routines analyze the protein environment of water molecules in molecular dynamics (MD) simulations and can differentiate between hydrogen bonded waters as well as waters in a protein environment of hydrophobic, charged, or aromatic atom groups. The gathered information is further processed to generate dynamic molecular interaction fields (dMIFs) for visualization and pharmacophoric features for virtual screening. The described software was applied to 5 therapeutically relevant drug targets, and generated pharmacophores were evaluated using DUD-E benchmarking sets. The best performing pharmacophore was found for the HIV1 protease with an early enrichment factor of 54.6. PyRod adds a new perspective to structure-based screening campaigns by providing easy-to-interpret dMIFs and purely protein-based pharmacophores that are solely based on tracing water molecules in MD simulations. Since structural information about cocrystallized ligands is not needed, screening campaigns can be followed, for which less or no ligand information is available. PyRod is freely available at https://github.com/schallerdavid/pyrod .
Collapse
Affiliation(s)
- David Schaller
- Pharmaceutical and Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Strasse 2+4 , 14195 Berlin , Germany
| | - Szymon Pach
- Pharmaceutical and Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Strasse 2+4 , 14195 Berlin , Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Strasse 2+4 , 14195 Berlin , Germany
| |
Collapse
|
3
|
Pecina A, Haldar S, Fanfrlík J, Meier R, Řezáč J, Lepšík M, Hobza P. SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein–Ligand Poses. J Chem Inf Model 2017; 57:127-132. [DOI: 10.1021/acs.jcim.6b00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Adam Pecina
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Susanta Haldar
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - René Meier
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jan Řezáč
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Palacký University, 77146 Olomouc, Czech Republic
| |
Collapse
|
4
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016; 55:4924-7. [PMID: 26958828 DOI: 10.1002/anie.201509989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/27/2016] [Indexed: 11/11/2022]
Abstract
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.
Collapse
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Amit Das
- Solid State Physics Division, BARC, Trombay, Mumbai, 400085, India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue Langevin, 71 avenue des Martyrs - CS 20156, 38042, Grenoble Cedex 9, France
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Irene T Weber
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
5
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Amit Das
- Solid State Physics Division; BARC; Trombay Mumbai 400085 India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - David A. Keen
- ISIS Facility; Rutherford Appleton Laboratory; Harwell Oxford Didcot OX11 0QX UK
| | - Matthew P. Blakeley
- Large-Scale Structures Group; Institut Laue Langevin; 71 avenue des Martyrs - CS 20156 38042 Grenoble Cedex 9 France
| | - John M. Louis
- Laboratory of Chemical Physics; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health, DHHS; Bethesda MD 20892-0520 USA
| | - Paul Langan
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Irene T. Weber
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| |
Collapse
|
6
|
Pecina A, Meier R, Fanfrlík J, Lepšík M, Řezáč J, Hobza P, Baldauf C. The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein–ligand interactions and implicit COSMO solvation. Chem Commun (Camb) 2016; 52:3312-5. [DOI: 10.1039/c5cc09499b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Strictly uphill – in cognate docking experiments we show that a quantum mechanical description of interaction and solvation outperforms established scoring functions in sharply distinguishing the native state from decoy poses.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - René Meier
- Institut für Biochemie
- Fakultät für Biowissenschaften
- Pharmazie und Psychologie
- Universität Leipzig
- D-04109 Leipzig
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- D-14195 Berlin
- Germany
| |
Collapse
|
7
|
Dostál J, Pecina A, Hrušková-Heidingsfeldová O, Marečková L, Pichová I, Řezáčová P, Lepšík M, Brynda J. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis. ACTA ACUST UNITED AC 2015; 71:2494-504. [PMID: 26627656 DOI: 10.1107/s1399004715019392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022]
Abstract
The virulence of the Candida pathogens is enhanced by the production of secreted aspartic proteases, which therefore represent possible targets for drug design. Here, the crystal structure of the secreted aspartic protease Sapp2p from Candida parapsilosis was determined. Sapp2p was isolated from its natural source and crystallized in complex with pepstatin A, a classical aspartic protease inhibitor. The atomic resolution of 0.83 Å allowed the protonation states of the active-site residues to be inferred. A detailed comparison of the structure of Sapp2p with the structure of Sapp1p, the most abundant C. parapsilosis secreted aspartic protease, was performed. The analysis, which included advanced quantum-chemical interaction-energy calculations, uncovered molecular details that allowed the experimentally observed equipotent inhibition of both isoenzymes by pepstatin A to be rationalized.
Collapse
Affiliation(s)
- Jiří Dostál
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Olga Hrušková-Heidingsfeldová
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Lucie Marečková
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Pavlina Řezáčová
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
8
|
Tiefenbrunn T, Forli S, Baksh MM, Chang MW, Happer M, Lin YC, Perryman AL, Rhee JK, Torbett BE, Olson AJ, Elder JH, Finn MG, Stout CD. Small molecule regulation of protein conformation by binding in the Flap of HIV protease. ACS Chem Biol 2013; 8:1223-31. [PMID: 23540839 DOI: 10.1021/cb300611p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fragment indole-6-carboxylic acid (1F1), previously identified as a flap site binder in a fragment-based screen against HIV protease (PR), has been cocrystallized with pepstatin-inhibited PR and with apo-PR. Another fragment, 3-indolepropionic acid (1F1-N), predicted by AutoDock calculations and confirmed in a novel inhibition of nucleation crystallization assay, exploits the same interactions in the flap site in two crystal structures. Both 1F1 and 1F1-N bind to the closed form of apo-PR and to pepstatin:PR. In solution, 1F1 and 1F1-N raise the Tm of apo-PR by 3.5-5 °C as assayed by differential scanning fluorimetry (DSF) and show equivalent low-micromolar binding constants to both apo-PR and pepstatin:PR, assayed by backscattering interferometry (BSI). The observed signal intensities in BSI are greater for each fragment upon binding to apo-PR than to pepstatin-bound PR, consistent with greater conformational change in the former binding event. Together, these data indicate that fragment binding in the flap site favors a closed conformation of HIV PR.
Collapse
Affiliation(s)
- Theresa Tiefenbrunn
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Stefano Forli
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Michael M. Baksh
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Max W. Chang
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Meaghan Happer
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Ying-Chuan Lin
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Alexander L. Perryman
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Jin-Kyu Rhee
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Bruce E. Torbett
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Arthur J. Olson
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - John H. Elder
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - M. G. Finn
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - C. David Stout
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
9
|
Pecina A, Přenosil O, Fanfrlík J, Řezáč J, Granatier J, Hobza P, Lepšík M. On the reliability of the corrected semiempirical quantum chemical method (PM6-DH2) for assigning the protonation states in HIV-1 protease/inhibitor complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel computational protocol for determining the most probable protonation states in protein/ligand complexes is presented. The method consists in treating large parts of the enzyme using the corrected semiempirical quantum chemical (QM) method – PM6-D2 for optimization and PM6-DH2 for single-point energies – while the rest is calculated using molecular mechanics (MM) within a hybrid QM/MM fashion. The surrounding solvent is approximated by an implicit model. This approach is applied to two model systems, two different carboxylate pairs in one general and one unique HIV-1 protease/inhibitor complex. The effect of the size of the movable QM part is investigated in a series of several sizes, 3-, 6-, 8- and 10-Å regions surrounding the inhibitor. For the smallest region (< 450 atoms) the computationally more costly DFT QM/MM optimizations are performed as a check of the correctness. Proton transfer (PT) phenomena occur at both the PM6-D2 and DFT levels, which underlines the requirement for a QM approach. The barriers of PT are checked in model carboxylic acid pairs using the highly accurate MP2 and CCSD(T) values. An important result of this study is the fine-tuning of the protocol which can be used in further applications; its limitations are also shown, pointing to future developments. The calculations reveal which protonation variants of the active site are the most stable. In conclusion, the presented protocol can also be utilized for defining probable isomers in biomolecular systems. It can also serve as a preparatory step for further interaction-energy and binding-score calculations.
Collapse
|
10
|
Cleland W. The low-barrier hydrogen bond in enzymic catalysis. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0065-3160(08)44001-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Orrling KM, Marzahn MR, Gutiérrez-de-Terán H, Åqvist J, Dunn BM, Larhed M. α-Substituted norstatines as the transition-state mimic in inhibitors of multiple digestive vacuole malaria aspartic proteases. Bioorg Med Chem 2009; 17:5933-49. [DOI: 10.1016/j.bmc.2009.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/24/2009] [Accepted: 06/28/2009] [Indexed: 11/16/2022]
|
12
|
Juneja A, Riedesel H, Hodoscek M, Knapp EW. Bound Ligand Conformer Revealed by Flexible Structure Alignment in Absence of Crystal Structures: Indirect Drug Design Probed for HIV-1 Protease Inhibitors. J Chem Theory Comput 2009; 5:659-73. [DOI: 10.1021/ct8004886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alok Juneja
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Henning Riedesel
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Milan Hodoscek
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - E. W. Knapp
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
13
|
Sasková KG, Kozísek M, Lepsík M, Brynda J, Rezácová P, Václavíková J, Kagan RM, Machala L, Konvalinka J. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci 2008; 17:1555-64. [PMID: 18560011 DOI: 10.1110/ps.036079.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lopinavir (LPV) is a second-generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long-term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (K(i) ) value for lopinavir by two orders of magnitude higher than for the wild-type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three-order-of-magnitude increase in K(i) in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2' subsites. This is caused by the loss of three side-chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel beta-strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.
Collapse
Affiliation(s)
- Klára Grantz Sasková
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tyndall JDA, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL. Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism. Biochemistry 2008; 47:3736-44. [DOI: 10.1021/bi7023157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joel D. A. Tyndall
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Leonard K. Pattenden
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Robert C. Reid
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Shu-Hong Hu
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Dianne Alewood
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Paul F. Alewood
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Terry Walsh
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - David P. Fairlie
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Jennifer L. Martin
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
15
|
Synthesis of chiral β2,2,3-3-amino-2-hydroxyalkanoates and 3-alkyl-3-hydroxy-β-lactams by double asymmetric induction. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.05.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Gutiérrez-de-Terán H, Nervall M, Dunn BM, Clemente JC, Aqvist J. Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor. FEBS Lett 2006; 580:5910-6. [PMID: 17045991 DOI: 10.1016/j.febslet.2006.09.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 09/18/2006] [Accepted: 09/26/2006] [Indexed: 11/15/2022]
Abstract
The plasmepsin proteases from the malaria parasite Plasmodium falciparum are attracting attention as putative drug targets. A recently published crystal structure of Plasmodium malariae plasmepsin IV bound to an allophenylnorstatine inhibitor [Clemente, J.C. et al. (2006) Acta Crystallogr. D 62, 246-252] provides the first structural insights regarding interactions of this family of inhibitors with plasmepsins. The compounds in this class are potent inhibitors of HIV-1 protease, but also show nM binding affinities towards plasmepsin IV. Here, we utilize automated docking, molecular dynamics and binding free energy calculations with the linear interaction energy LIE method to investigate the binding of allophenylnorstatine inhibitors to plasmepsin IV from two different species. The calculations yield excellent agreement with experimental binding data and provide new information regarding protonation states of active site residues as well as conformational properties of the inhibitor complexes.
Collapse
Affiliation(s)
- Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
17
|
Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono-δ-lactone. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.8.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Liu F, Boross PI, Wang YF, Tozser J, Louis JM, Harrison RW, Weber IT. Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S. J Mol Biol 2005; 354:789-800. [PMID: 16277992 PMCID: PMC1403828 DOI: 10.1016/j.jmb.2005.09.095] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
The crystal structures, dimer stabilities, and kinetics have been analyzed for wild-type human immunodeficiency virus type 1 (HIV-1) protease (PR) and resistant mutants PR(L24I), PR(I50V), and PR(G73S) to gain insight into the molecular basis of drug resistance. The mutations lie in different structural regions. Mutation I50V alters a residue in the flexible flap that interacts with the inhibitor, L24I alters a residue adjacent to the catalytic Asp25, and G73S lies at the protein surface far from the inhibitor-binding site. PR(L24I) and PR(I50V), showed a 4% and 18% lower k(cat)/K(m), respectively, relative to PR. The relative k(cat)/K(m) of PR(G73S) varied from 14% to 400% when assayed using different substrates. Inhibition constants (K(i)) of the antiviral drug indinavir for the reaction catalyzed by the mutant enzymes were about threefold and 50-fold higher for PR(L24I) and PR(I50V), respectively, relative to PR and PR(G73S). The dimer dissociation constant (K(d)) was estimated to be approximately 20 nM for both PR(L24I) and PR(I50V), and below 5 nM for PR(G73S) and PR. Crystal structures of the mutants PR(L24I), PR(I50V) and PR(G73S) were determined in complexes with indinavir, or the p2/NC substrate analog at resolutions of 1.10-1.50 Angstrom. Each mutant revealed distinct structural changes relative to PR. The mutated residues in PR(L24I) and PR(I50V) had reduced intersubunit contacts, consistent with the increased K(d) for dimer dissociation. Relative to PR, PR(I50V) had fewer interactions of Val50 with inhibitors, in agreement with the dramatically increased K(i). The distal mutation G73S introduced new hydrogen bond interactions that can transmit changes to the substrate-binding site and alter catalytic activity. Therefore, the structural alterations observed for drug-resistant mutations were in agreement with kinetic and stability changes.
Collapse
Affiliation(s)
- Fengling Liu
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
| | - Peter I. Boross
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, H4012 Hungary
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
| | - Jozsef Tozser
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, H4012 Hungary
| | - John M. Louis
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda MD 20892, USA
| | - Robert W. Harrison
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- Department of Computer Science, Molecular Basis of Disease Program, Georgia State University, Atlanta GA 30303, USA
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- Department of Chemistry Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- * E-mail address of the corresponding author:
| |
Collapse
|
19
|
Lepsík M, Kríz Z, Havlas Z. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins 2004; 57:279-93. [PMID: 15340915 DOI: 10.1002/prot.20192] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV-1) protease, designated QF34, potently inhibits the wild-type and drug-resistant enzyme. To explain its broad activity, the binding of QF34 to the wild-type HIV-1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics-generalized Born surface area (MM-GBSA) methodology using three protocols. The most consistent results were obtained using the single-trajectory approach, due to cancellation of errors and inadequate sampling in the separate-trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main-chain:side-chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad-specificity second-generation HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- M Lepsík
- Department of Molecular Modeling and Center for Complex Molecular Systems and Biomolecules, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | | | | |
Collapse
|