1
|
Jiang C, Ye Y, Kang W, Yang J, He Z, Cao Q, Lian C, Xing Y, Yang Q, Zhao J, Pan S, Feng M, Song C, Liu Z, Wang R, Yin F, Wu YD, Chen J, Huang Y. Elucidating Binding Selectivity in Cyclin-Dependent Kinases 4, 6, and 9: Development of Highly Potent and Selective CDK4/9 Inhibitors. J Med Chem 2025. [PMID: 39754579 DOI: 10.1021/acs.jmedchem.4c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
CDK4/6 inhibitors are effective in treating HR+/HER2- breast cancer but face limitations due to therapeutic resistance and hematological toxicity, particularly from strong CDK6 inhibition. To address these challenges, designing selective inhibitors targeting specific cyclin-dependent kinases (CDK) members could offer clinical advantages and broaden CDK inhibitor indications. However, the highly conserved binding pockets of CDKs complicate selective targeting. This study leverages in silico modeling and structural analysis of cocrystal data to identify subtle differences in key CDK binding pockets. Notably, a sequence difference in the αD-helix motif between CDK4 and CDK6 provides a targetable "sweet spot" for selectivity. By incorporating a 1,4-trans-cyclohexanediamine side chain, we designed molecules that favor interactions with CDK4 over CDK6 and explored potential dual CDK4/9 inhibition. This approach yielded a lead compound with distinct in vitro selectivity and promising in vivo pharmacokinetics, offering valuable insights for the development of selective next-generation CDK inhibitors.
Collapse
Affiliation(s)
- Chenran Jiang
- Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Wei Kang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jinglei Yang
- Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhipeng He
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Qixiong Cao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yajie Xing
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Qianqian Yang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Juan Zhao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Shuqiong Pan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Meixi Feng
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chunli Song
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yun-Dong Wu
- Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Susanti NMP, Kurniawan F, Damayanti S, Kartasasmita RE, Tjahjono DH. The novel selective inhibitors of cyclin-dependent kinase 4/6: in vitro and in silico study. Sci Rep 2024; 14:23505. [PMID: 39379427 PMCID: PMC11461483 DOI: 10.1038/s41598-024-71865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
One of the main regulators in the cell cycle is cyclin-dependent kinase 4 and 6 (CDK4/6). FDA has approved CDK4/6 inhibitors for the treatment of patients with metastatic breast cancer. However, the development of selective agents remains problematic due to the conservation of their ATP binding sites. In the previous in silico study, ZINC585292724, ZINC585292587, ZINC585291674, and ZINC585291474 have been identified as potential inhibitors. Therefore, the present study aimed to analyze the selectivity and inhibitory activity of the four compounds against CDK4/6 in vitro as well as determine the potential for their further development in silico. The in vitro results showed that the four compounds had good selectivity towards both kinases, due to their similar structure. In agreement with the in silico results, ZINC585291674 produced the best inhibitory activity against CDK4 and CDK6, with IC50 of 184.14 nM and 111.78 nM, respectively. Their ADMET profile were also similar to reference compound of Palbociclib. Based on this, ZINC585291674 can be used as a lead compound for further inhibitor development.
Collapse
Affiliation(s)
- Ni Made Pitri Susanti
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Study Program of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Udayana, Badung, 80361, Indonesia
| | - Fransiska Kurniawan
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Sophi Damayanti
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | | | | |
Collapse
|
3
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Wang Y, Nan X, Duan Y, Wang Q, Liang Z, Yin H. FDA-approved small molecule kinase inhibitors for cancer treatment (2001-2015): Medical indication, structural optimization, and binding mode Part I. Bioorg Med Chem 2024; 111:117870. [PMID: 39128361 DOI: 10.1016/j.bmc.2024.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xiang Nan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yanping Duan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hanrong Yin
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China.
| |
Collapse
|
5
|
Rani N, Kumar P. Exploring Natural Compounds as Potential CDK4 Inhibitors for Therapeutic Intervention in Neurodegenerative Diseases through Computational Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01258-8. [PMID: 39207668 DOI: 10.1007/s12033-024-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
CDK4 is a member of the serine-threonine kinase family, which has been found to be overexpressed in a plethora of studies related to neurodegenerative diseases. CDK4 is one of the most validated therapeutic targets for neurodegenerative diseases. Hence, the discovery of potent inhibitors of CDK4 is a promising candidate in the drug discovery field. Firstly, the reference drug Palbociclib was identified from the available literature as a potential candidate against target CDK4. In the present study, the Collection of Open Natural Products (COCONUT) database was accessed for determining potential CDK4 inhibitors using computational approaches based on the Tanimoto algorithm for similarity with the target drug, i.e., Palbociclib. The potential candidates were analyzed using SWISSADME, and the best candidates were filtered based on Lipinski's Rule of 5, Brenk, blood-brain barrier permeability, and Pains parameter. Further, the molecular docking protocol was accessed for the filtered compounds to anticipate the CDK4-ligand binding score, which was validated by the fastDRH web-based server. Based on the best docking score so obtained, the best four natural compounds were chosen for further molecular dynamic simulation to assess their stability with CDK4. In this study, two natural products, with COCONUT Database compound ID-CNP0396493 and CNP0070947, have been identified as the most suitable candidates for neuroprotection.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
6
|
Trouth A, Ravichandran K, Gafken PR, Martire S, Boyle GE, Veronezi GMB, La V, Namciu SJ, Banaszynski LA, Sarthy JF, Ramachandran S. G1 length dictates H3K27me3 landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570186. [PMID: 38106207 PMCID: PMC10723301 DOI: 10.1101/2023.12.05.570186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Stem cells have lower facultative heterochromatin as defined by trimethylation of histone H3 lysine 27 (H3K27me3) compared to differentiated cells. However, the mechanisms underlying these differential H3K27me3 levels remain elusive. Because H3K27me3 levels are diluted two-fold in every round of replication and then restored through the rest of the cell cycle, we reasoned that the cell cycle length could be a key regulator of total H3K27me3 levels. Here, we propose that a fast cell cycle restricts H3K27me3 levels in stem cells. To test this model, we determined changes to H3K27me3 levels in mESCs globally and at specific loci upon G1 phase lengthening - accomplished by thymidine block or growth in the absence of serum (with the "2i medium"). H3K27me3 levels in mESC increase with G1 arrest when grown in serum and in 2i medium. Additionally, we observed via CUT&RUN and ChIP-seq that regions that gain H3K27me3 in G1 arrest and 2i media overlap, supporting our model of cell cycle length as a critical regulator of the stem cell epigenome and cellular identity. Furthermore, we demonstrate the inverse effect - that G1 shortening in differentiated cells results in a loss of H3K27me3 levels. Finally, in tumor cells with extreme H3K27me3 loss, lengthening of the G1 phase leads to H3K27me3 recovery despite the presence of the dominant negative, sub-stoichiometric H3.1K27M mutation. Our results indicate that G1 length is an essential determinant of H3K27me3 landscapes across diverse cell types.
Collapse
|
7
|
Knudsen ES, Witkiewicz AK, Rubin SM. Cancer takes many paths through G1/S. Trends Cell Biol 2024; 34:636-645. [PMID: 37953123 PMCID: PMC11082069 DOI: 10.1016/j.tcb.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
In the commonly accepted paradigm for control of the mammalian cell cycle, sequential cyclin-dependent kinase (CDK) and cyclin activities drive the orderly transition from G1 to S phase. However, recent studies using different technological approaches and examining a broad range of cancer cell types are challenging this established paradigm. An alternative model is evolving in which cell cycles utilize different drivers and take different trajectories through the G1/S transition. We are discovering that cancer cells in particular can adapt their drivers and trajectories, which has important implications for antiproliferative therapies. These studies have helped to refine an understanding of how CDK inhibition impinges on proliferation and have significance for understanding fundamental features of cell biology and cancer.
Collapse
Affiliation(s)
- Erik S Knudsen
- Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY, USA.
| | - Agnieszka K Witkiewicz
- Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY, USA; Department of Pathology, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
8
|
Xu Z, Liu Y, Song B, Ren B, Xu X, Lin R, Zhu X, Chen C, Yang S, Zhu Y, Jiang W, Li W, Xia Y, Hu L, Chen S, Chan CC, Li J, Zhang X, Yang L, Tian X, Ding CZ. Discovery and preclinical evaluations of TQB3616, a novel CDK4-biased inhibitor. Bioorg Med Chem Lett 2024; 107:129769. [PMID: 38670537 DOI: 10.1016/j.bmcl.2024.129769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Among small-molecule CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) approved for metastatic breast cancers, abemaciclib has a more tolerable adverse effects in clinic. This is attributable to preferential inhibition of CDK4 over CDK6. In our search for a biased CDK4 inhibitor, we discovered a series of pyrimidine-indazole inhibitors. SAR studies led us to TQB3616 as a preferential CDK4 inhibitor. TQB3616 exhibited improvements in both enzymatic and cellular proliferation inhibitory potency when tested side-by-side with the FDA approved palbociclib and abemaciclib. TQB3616 also possessed favorable PK profile in multiple species. These differentiated properties, together with excellent GLP safety profile warranted TQB3616 moving to clinic. TQB3616 entered into clinical development in 2019 and currently in phase III clinical trials (NCT05375461, NCT05365178).
Collapse
Affiliation(s)
- Zhaobing Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yingchun Liu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Baohui Song
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Bingjie Ren
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Xiongbin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Ruibin Lin
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Chen Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Shuqun Yang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yusong Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Wen Jiang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Wei Li
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yuanfeng Xia
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Lihong Hu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Shuhui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Chi-Chung Chan
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Jian Li
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Xiquan Zhang
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Rd, Jiangning District, Nanjing, Jiangsu Province 211122, PR China
| | - Ling Yang
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Rd, Jiangning District, Nanjing, Jiangsu Province 211122, PR China
| | - Xin Tian
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Rd, Jiangning District, Nanjing, Jiangsu Province 211122, PR China
| | - Charles Z Ding
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China.
| |
Collapse
|
9
|
Caria CA, Faà V, Porcu S, Marongiu MF, Poddie D, Perseu L, Meloni A, Vaccargiu S, Ristaldi MS. Post-GWAS Validation of Target Genes Associated with HbF and HbA 2 Levels. Cells 2024; 13:1185. [PMID: 39056767 PMCID: PMC11274989 DOI: 10.3390/cells13141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap delays the development of possible therapies. This issue also impacts beta-hemoglobinopathies, such as beta-thalassemia and sickle cell disease (SCD). The definitive cures for these diseases are currently bone marrow transplantation and gene therapy. However, limitations regarding their effective use restrict their worldwide application. Great efforts have been made to identify whether modulators of fetal hemoglobin (HbF) and, to a lesser extent, hemoglobin A2 (HbA2) are possible therapeutic targets. Herein, we performed the post-GWAS in vivo validation of two genes, cyclin D3 (CCND3) and nuclear factor I X (NFIX), previously associated with HbF and HbA2 levels. The absence of Ccnd3 expression in vivo significantly increased g (HbF) and d (HbA2) globin gene expression. Our data suggest that CCND3 is a possible therapeutic target in sickle cell disease. We also confirmed the association of Nfix with γ-globin gene expression and present data suggesting a possible role for Nfix in regulating Kruppel-like transcription factor 1 (Klf1), a master regulator of hemoglobin switching. This study contributes to filling the gap between GWAS variant identification and target validation for beta-hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Serafina Ristaldi
- Istituto di Ricerca Genetica e Biomedica, Cittadella Universitaria di Monserrato, SS 554, Bivio Sestu Km 4,500, 09042 Cagliari, Italy; (C.A.C.); (V.F.); (S.P.); (M.F.M.); (D.P.); (L.P.); (A.M.); (S.V.)
| |
Collapse
|
10
|
Lasnon C, Morel A, Aide N, Silva AD, Emile G. Baseline and early 18F-FDG PET/CT evaluations as predictors of progression-free survival in metastatic breast cancer patients treated with targeted anti-CDK therapy. Cancer Imaging 2024; 24:90. [PMID: 38982546 PMCID: PMC11232230 DOI: 10.1186/s40644-024-00727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Exploring the value of baseline and early 18F-FDG PET/CT evaluations in prediction PFS in ER+/HER2- metastatic breast cancer patients treated with a cyclin-dependent kinase inhibitor in combination with an endocrine therapy. METHODS Sixty-six consecutive breast cancer patients who underwent a pre-therapeutic 18F-FDG PET/CT and a second PET/CT within the first 6 months of treatment were retrospectively included. Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) and Dmax, which represents tumour dissemination and is defined as the distance between the two most distant lesions, were computed. The variation in these parameters between baseline and early evaluation PET as well as therapeutic evaluation using PERCIST were assessed as prognosticators of PFS at 18 months. RESULTS The median follow-up was equal to 22.5 months. Thirty progressions occurred (45.4%). The average time to event was 17.8 ± 10.4 months. At baseline, Dmax was the only predictive metabolic parameter. Patients with a baseline Dmax ≤ 18.10 cm had a significantly better 18 m-PFS survival than the others: 69.2% (7.7%) versus 36.7% (8.8%), p = 0.017. There was no association between PERCIST evaluation and 18 m-PFS status (p = 0.149) and there was no difference in 18 m-PFS status between patients classified as complete, partial metabolic responders or having stable metabolic disease. CONCLUSION Disease spread at baseline PET, as assessed by Dmax, is predictive of an event occurring within 18 months. In the absence of early metabolic progression, which occurs in 15% of patients, treatment should be continued regardless of the quality of the initial response to treatment.
Collapse
Affiliation(s)
- Charline Lasnon
- Nuclear Medicine Department, François Baclesse Comprehensive Cancer Center, UNICANCER, 3 Avenue du General Harris, BP 45026, Caen Cedex 5, 14076, France.
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France.
| | - Adeline Morel
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| | - Nicolas Aide
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France
| | - Angélique Da Silva
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| | - George Emile
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| |
Collapse
|
11
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
12
|
Škarková A, Bizzarri M, Janoštiak R, Mašek J, Rosel D, Brábek J. Educate, not kill: treating cancer without triggering its defenses. Trends Mol Med 2024; 30:673-685. [PMID: 38658206 DOI: 10.1016/j.molmed.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Traditionally, anticancer therapies focus on restraining uncontrolled proliferation. However, these cytotoxic therapies expose cancer cells to direct killing, instigating the process of natural selection favoring survival of resistant cells that become the foundation for tumor progression and therapy failure. Recognizing this phenomenon has prompted the development of alternative therapeutic strategies. Here we propose strategies targeting cancer hallmarks beyond proliferation, aiming at re-educating cancer cells towards a less malignant phenotype. These strategies include controlling cell dormancy, transdifferentiation therapy, normalizing the cancer microenvironment, and using migrastatic therapy. Adaptive resistance to these educative strategies does not confer a direct proliferative advantage to resistant cells, as non-resistant cells are not subject to eradication, thereby delaying or preventing the development of therapy-resistant tumors.
Collapse
Affiliation(s)
- Aneta Škarková
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Mariano Bizzarri
- System Biology Group Laboratory, Sapienza University, Rome, Italy
| | - Radoslav Janoštiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| |
Collapse
|
13
|
Martínez-Jañez N, Ezquerra MB, Manso Sanchez LM, Carrasco FH, Torres AA, Morales S, Ortega PT, Gil VLO, Sampedro T, Conejero RA, Calvo-Martinez L, Galve-Calvo E, López R, de la Pena FA, Lopez-Tarruella S, de Araguiz BAHF, Ruiz LB, Cardenas TM, Chacon JI, Antón FM. First-line therapy with palbociclib in patients with advanced HR +/HER2 - breast cancer: The real-life study PALBOSPAIN. Breast Cancer Res Treat 2024; 206:317-328. [PMID: 38561577 PMCID: PMC11182794 DOI: 10.1007/s10549-024-07287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To evaluate the efficacy and safety of first-line therapy with palbociclib in a Spanish cohort treated after palbociclib approval. METHODS PALBOSPAIN is an observational, retrospective, multicenter study evaluating real-world patterns and outcomes with 1 L palbociclib in men and women (any menopausal status) with advanced HR+/HER2- BC diagnosed between November 2017 and November 2019. The primary endpoint was real-world progression-free survival (rw-PFS). Secondary endpoints included overall survival (OS), the real-world response rate (rw-RR), the clinical benefit rate, palbociclib dose reduction, and safety. RESULTS A total of 762 patients were included. The median rw-PFS and OS were 24 months (95% CI 21-27) and 42 months (40-not estimable [NE]) in the whole population, respectively. By cohort, the median rw-PFS and OS were as follows: 28 (95% CI 23-39) and 44 (95% CI 38-NE) months in patients with de novo metastatic disease, 13 (95% CI 11-17) and 36 months (95% CI 31-41) in patients who experienced relapse < 12 months after the end of ET, and 31 months (95% CI 26-37) and not reached (NR) in patients who experienced relapse > 12 months after the end of ET. rw-PFS and OS were longer in patients with oligometastasis and only one metastatic site and those with non-visceral disease. The most frequent hematologic toxicity was neutropenia (72%; grade ≥ 3: 52.5%), and the most common non-hematologic adverse event was asthenia (38%). CONCLUSION These findings, consistent with those from clinical trials, support use of palbociclib plus ET as 1 L for advanced BC in the real-world setting, including pre-menopausal women and men. TRIAL REGISTRATION NUMBER NCT04874025 (PALBOSPAIN). Date of registration: 04/30/2021 retrospectively registered.
Collapse
Affiliation(s)
- N Martínez-Jañez
- Medical Oncology Department, Ramon y Cajal University Hospital, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo km. 9,100, Madrid, 28034, Spain
| | - M Bellet Ezquerra
- Oncology Department, Vall d'Hebron Institute of Oncology (VHIO)-Cellex Center, Barcelona, Spain
| | - L M Manso Sanchez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - F Henao Carrasco
- Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - A Anton Torres
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - S Morales
- Medical Oncology Department, Hospital Arnau de Vilanova - Lleida, Alpicat, Spain
| | - P Tolosa Ortega
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - V L Obadia Gil
- Breast Cancer Unit, ICO - Institut Català d'Oncologia l'Hospitalet (Hospital Duran i Reynals) L'Hospitalet De, Llobregat, Spain
| | - T Sampedro
- Medical Oncology Department, Hospital Universitario de Cabuenes, Gijón, Spain
| | - R Andrés Conejero
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - L Calvo-Martinez
- Medical Oncology Department, CHUAC - Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - E Galve-Calvo
- Medical Oncology Department, Hospital Universitario de Basurto, Bilbao, Spain
| | - R López
- Servicio de Oncología Médica y Grupo de Oncología Médica Traslacional, Hospital Clínico Universitario e Instituto de Investigación Sanitaria-CIBERONC, Santiago de Compostela, Spain
| | - F Ayala de la Pena
- Medical Oncology Department, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - S Lopez-Tarruella
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERONC, Geicam, Universidad Complutense, Madrid, Spain
| | | | - L Boronat Ruiz
- Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - T Martos Cardenas
- Medical Oncology Department, Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
| | - J I Chacon
- Medical Oncology Department, Hospital Virgen de la Salud, Toledo, Spain
| | - F Moreno Antón
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain.
| |
Collapse
|
14
|
Ploumaki I, Triantafyllou E, Koumprentziotis IA, Karampinos K, Drougkas K, Karavolias I, Kotteas E. Cyclin-Dependent Kinase 4/6 Inhibitors as Neoadjuvant Therapy of Hormone Receptor-Positive/HER2-Negative Early Breast Cancer: What do we Know so Far? Clin Breast Cancer 2024; 24:e177-e185. [PMID: 38320891 DOI: 10.1016/j.clbc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
The introduction of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors to the treatment of hormone receptor-positive and human epidermal growth factor receptor 2-negative (HR+/HER2-) metastatic breast cancer is regarded as one of the greatest achievements of the last decades in breast oncology. To date, palbociclib, abemaciclib and ribociclib are the 3 approved CDK4/6 inhibitors that combined with endocrine therapy are now considered as the standard first-line treatment of metastatic HR+/HER2- breast cancer. The great success of these drugs in the setting of metastatic disease and the need to combat the high risk of recurrence have paved the way for a number of clinical trials to explore the use of CDK4/6 inhibitors in the neoadjuvant treatment of early breast cancer. In this review, we summarize the main findings of clinical trials that examined the use of CDK4/6 inhibitors in combination with hormone therapy or chemotherapy as neoadjuvant treatment of hormone receptor-positive and HER2-negative breast cancer. Active clinical trials that investigate different treatment schemes are also briefly presented and current limitations and future goals are discussed.
Collapse
Affiliation(s)
- Ioanna Ploumaki
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece.
| | - Efthymios Triantafyllou
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece
| | - Konstantinos Karampinos
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece
| | - Konstantinos Drougkas
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece
| | - Ioannis Karavolias
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Αthens, Greece
| |
Collapse
|
15
|
Sun Y, Chen M, Han Y, Li W, Ma X, Shi Z, Zhou Y, Xu L, Yu L, Wang Y, Yu J, Diao X, Meng L, Xu S. Discovery of Pyrido[2,3- d]pyrimidin-7-one Derivatives as Highly Potent and Efficacious Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Cancer Treatment. J Med Chem 2024; 67:3986-4006. [PMID: 38387074 DOI: 10.1021/acs.jmedchem.3c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an extracellular enzyme responsible for hydrolyzing cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), the endogenous agonist for the stimulator of interferon genes (STING) pathway. Inhibition of ENPP1 can trigger STING and promote antitumor immunity, offering an attractive therapeutic target for cancer immunotherapy. Despite progress in the discovery of ENPP1 inhibitors, the diversity in chemical structures and the efficacy of the agents are far from desirable, emphasizing the demand for novel inhibitors. Herein, we describe the design, synthesis, and biological evaluation of a series of ENPP1 inhibitors based on the pyrido[2,3-d]pyrimidin-7-one scaffold. Optimization efforts led to compound 31 with significant potency in both ENPP1 inhibition and STING pathway stimulation in vitro. Notably, 31 demonstrated in vivo efficacy in a syngeneic 4T1 mouse triple negative breast cancer model. These findings provide a promising lead compound with a novel scaffold for further drug development in cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Manman Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyan Han
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Li
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Ma
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lan Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuxiang Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghua Meng
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Maddeboina K, Yada B, Kumari S, McHale C, Pal D, Durden DL. Recent advances in multitarget-directed ligands via in silico drug discovery. Drug Discov Today 2024; 29:103904. [PMID: 38280625 DOI: 10.1016/j.drudis.2024.103904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
To combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | - Bharath Yada
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Shikha Kumari
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Cody McHale
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
17
|
Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011-2023. Molecules 2023; 29:68. [PMID: 38202651 PMCID: PMC10780301 DOI: 10.3390/molecules29010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Science, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy; (L.B.); (A.G.); (D.M.); (G.M.); (E.T.)
| | | | | | | | | | | |
Collapse
|
18
|
He S, Silva LD, Rutter GA, Lim GE. A high-throughput screening approach to discover potential colorectal cancer chemotherapeutics: Repurposing drugs to disrupt 14-3-3 protein-BAD interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571727. [PMID: 38168191 PMCID: PMC10760183 DOI: 10.1101/2023.12.14.571727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Inducing apoptosis in different types of cancer cells is an effective therapeutic strategy. However, the success of existing chemotherapeutics can be compromised by tumor cell resistance and systemic off-target effects. Therefore, the discovery of pro-apoptotic compounds with minimal systemic side-effects is crucial. 14-3-3 proteins are molecular scaffolds that serve as important regulators of cell survival. Our previous study demonstrated that 14-3-3ζ can sequester BAD, a pro-apoptotic member of the BCL-2 protein family, in the cytoplasm and prevent its translocation to mitochondria to inhibit the induction of apoptosis. Despite being a critical mechanism of cell survival, it is unclear whether disrupting 14-3-3 protein:BAD interactions could be harnessed as a chemotherapeutic approach. Herein, we established a BRET-based high-throughput drug screening approach (Z'-score= 0.52) capable of identifying molecules that can disrupt 14-3-3ζ:BAD interactions. An FDA-approved drug library containing 1971 compounds was used for screening, and the capacity of identified hits to induce cell death was examined in NIH3T3-fibroblasts and colorectal cancer cell lines, HT-29 and Caco-2. Our in vitro results suggest that terfenadine, penfluridol, and lomitapide could be potentially repurposed for treating colorectal cancer. Moreover, our screening method demonstrates the feasibility of identifying pro-apoptotic agents that can be applied towards conditions where aberrant cell growth or function are key determinants of disease pathogenesis.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Luis Delgadillo Silva
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Guy A. Rutter
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Department of Diabetes, Endocrinology and Medicine, Faculty of Medicine, Imperial College, London, UK
- LKC School of Medicine, Nanyang Technological College, Singapore, Republic of Singapore
| | - Gareth E. Lim
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
19
|
Yang B, Quan Y, Zhao W, Ji Y, Yang X, Li J, Li Y, Liu X, Wang Y, Li Y. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors. J Enzyme Inhib Med Chem 2023; 38:2169282. [PMID: 36656085 PMCID: PMC9858427 DOI: 10.1080/14756366.2023.2169282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To explore the potential use of CDK inhibitors in pancreatic ductal adenocarcinoma (PDAC) therapy, a series of novel 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives was designed, synthesised, and investigated for inhibition on both CDK kinase activity and cellular proliferation of pancreatic cancer. Most of new sulphonamide-containing derivatives demonstrated strong inhibitory activity on CDK9 and obvious anti-proliferative activity in cell culture. Moreover, two new compounds suppressed cell proliferation of multiple human pancreatic cancer cell lines. The most potent compound 2g inhibited cancer cell proliferation by blocking Rb phosphorylation and induced apoptosis via downregulation of CDK9 downstream proteins Mcl-1 and c-Myc in MIA PaCa-2 cells. CDK9 knockdown experiment suggests its anti-proliferative activity is mainly mediated by CDK9. Additionally, 2g displayed moderate tumour inhibition effect in AsPC-1 derived xenograft mice model. Altogether, this study provided a new start for further optimisation to develop potential CDK inhibitor candidates for PDAC treatment by alone or combination use.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanni Quan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yingjie Ji
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaotang Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianrui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Ying Wang Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, China
| | - Yanping Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,CONTACT Yanping Li
| |
Collapse
|
20
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
21
|
Kumarasamy V, Gao Z, Zhao B, Jiang B, Rubin SM, Burgess K, Witkiewicz AK, Knudsen ES. PROTAC-mediated CDK degradation differentially impacts cancer cell cycles due to heterogeneity in kinase dependencies. Br J Cancer 2023; 129:1238-1250. [PMID: 37626264 PMCID: PMC10575895 DOI: 10.1038/s41416-023-02399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition yields differential cellular responses in multiple tumor models due to redundancy in cell cycle. We investigate whether the differential requirements of CDKs in multiple cell lines function as determinant of response to pharmacological agents that target these kinases. METHODS We utilized proteolysis-targeted chimeras (PROTACs) that are conjugated with palbociclib (Palbo-PROTAC) to degrade both CDK4 and CDK6. FN-POM was synthesized by chemically conjugating pomalidomide moiety with a multi-kinase inhibitor, FN-1501. Patient derived PDAC organoids and PDX model were utilized to investigate the effect of FN-POM in combination with palbociclib. RESULTS Palbo-PROTAC mediates differential impact on cell cycle in different tumor models, indicating that the dependencies to CDK4 and 6 kinases are heterogenous. Cyclin E overexpression uncouples cell cycle from CDK4/6 and drives resistance to palbo-PROTAC. Elevated expression of P16INK4A antagonizes PROTAC-mediated degradation of CDK4 and 6. FN-POM degrades cyclin E and CDK2 and inhibits cell cycle progression in P16INK4A-high tumor models. Combination of palbociclib and FN-POM cooperatively inhibit tumor cell proliferation via RB activation. CONCLUSION Resistance to CDK4/6 inhibition could be overcome by pharmacologically limiting Cyclin E/CDK2 complex and proves to be a potential therapeutic approach.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zhe Gao
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, USA
| | - Bosheng Zhao
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, USA
| | - Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, USA
| | - Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
22
|
Wang C, Luo H, Chen X, Zhang Y, Lu D, Liu X, Yin F, Li S, Kong L, Wang X. Discovery of dual PARP and CDK6 inhibitors for triple-negative breast cancer with wild-type BRCA. Bioorg Chem 2023; 139:106683. [PMID: 37379778 DOI: 10.1016/j.bioorg.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Inhibition of PARP is synthetic lethal with defects in BRCA, which provide effective targeted therapy strategy for BRCA mutation type of TNBC patients. However, approximately 80% of TNBC patients do not have BRCA mutations. Recent studies have shown that CDK4/6 inhibitors can increase the sensitivity of wild-type BRCA cells to PARP inhibitors. We designed a series of dual PARP and CDK6 inhibitors, and the most promising compound, P4i, showed good inhibitory activity against PARP1 and CDK6 and good inhibitory effects on MDA-MB-231 (IC50 = 1.96 μM), MDA-MB-468 (IC50 = 2.81 μM) and BT-549 (IC50 = 2.37 μM) cells with wild-type BRCA. Compared with Olaparib, the inhibition capacity of the three BRCA wild-type (MDA-MB-231, MDA-MB-468 and BT-549) cells was about 10-20 times higher, and even better than the combination of Olaparib and Palbociclib. As a novel PARP multifunctional molecule, it is a potential compound for the treatment of BRCA wild-type TNBC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Clinical Pharmacology Institute, School of Pharmacy, Nanchang University, Nanchang 330031, People's Republic of China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
23
|
Li L, Chen F, Li M, Liao Y, Wang Y, Jiang W, Luan Y, Xue X. Development of novel palbociclib-based CDK4/6 inhibitors exploring the back pocket behind the gatekeeper. Invest New Drugs 2023; 41:638-651. [PMID: 37470887 DOI: 10.1007/s10637-023-01385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
CDK4/6 inhibitors plus endocrine therapy is a standard therapy for HR+/HER2- breast cancer. Herein, using structure-based drug design strategy, a novel series of palbociclib derivatives were designed and synthesized as CDK4/6 inhibitors, among which compound 17m exhibited more potent CDK4/6 inhibitory activity and in vitro antiproliferative activity against the phosphorylated Rb-positive cell line MDA-MB-453 than the approved drug palbociclib. Moreover, compound 17m possessed remarkable CDK4/6 selectivity over other CDK family members including CDK1, CDK2, CDK3, CDK5, CDK7 and CDK9. The potent and selective CDK4/6 inhibitory activity endowed compound 17m with robust G1 cell cycle arrest ability in MDA-MB-453 cells. The intracellular inhibition of CDK4/6 by 17m was confirmed by western blot analysis of the levels of phosphorylated Rb in MDA-MB-453 cells. With respect to the metabolic stability, compound 17m possessed longer half-life (t1/2) in mouse liver microsome than palbociclib.
Collapse
Affiliation(s)
- Lina Li
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Fengquan Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Mengzhe Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yongxiang Liao
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yongjie Wang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wen Jiang
- Institute of Medical Science, Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yun Luan
- Institute of Medical Science, Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
24
|
Xu YJ, Zeng K, Ren Y, Mao CY, Ye YH, Zhu XT, Sun ZY, Cao BY, Zhang ZB, Xu GQ, Huang ZQ, Mao XL. Inhibition of USP10 induces myeloma cell apoptosis by promoting cyclin D3 degradation. Acta Pharmacol Sin 2023; 44:1920-1931. [PMID: 37055530 PMCID: PMC10462714 DOI: 10.1038/s41401-023-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
The cell cycle regulator cyclin D3 (CCND3) is highly expressed in multiple myeloma (MM) and it promotes MM cell proliferation. After a certain phase of cell cycle, CCND3 is rapidly degraded, which is essential for the strict control of MM cell cycle progress and proliferation. In the present study, we investigated the molecular mechanisms regulating CCND3 degradation in MM cells. By utilizing affinity purification-coupled tandem mass spectrometry, we identified the deubiquitinase USP10 interacting with CCND3 in human MM OPM2 and KMS11 cell lines. Furthermore, USP10 specifically prevented CCND3 from K48-linked polyubiquitination and proteasomal degradation, therefore enhancing its activity. We demonstrated that the N-terminal domain (aa. 1-205) of USP10 was dispensable for binding to and deubiquitinating CCND3. Although Thr283 was important for CCND3 activity, it was dispensable for CCND3 ubiquitination and stability modulated by USP10. By stabilizing CCND3, USP10 activated the CCND3/CDK4/6 signaling pathway, phosphorylated Rb, and upregulated CDK4, CDK6 and E2F-1 in OPM2 and KMS11 cells. Consistent with these findings, inhibition of USP10 by Spautin-1 resulted in accumulation of CCND3 with K48-linked polyubiquitination and degradation that synergized with Palbociclib, a CDK4/6 inhibitor, to induce MM cell apoptosis. In nude mice bearing myeloma xenografts with OPM2 and KMS11 cells, combined administration of Spautin-l and Palbociclib almost suppressed tumor growth within 30 days. This study thus identifies USP10 as the first deubiquitinase of CCND3 and also finds that targeting the USP10/CCND3/CDK4/6 axis may be a novel modality for the treatment of myeloma.
Collapse
Affiliation(s)
- Yu-Jia Xu
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kun Zeng
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Ying Ren
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Chen-Yu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying-Hui Ye
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiao-Ting Zhu
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zi-Ying Sun
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bi-Yin Cao
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zu-Bin Zhang
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zhen-Qian Huang
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xin-Liang Mao
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China.
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Pharmacology, Soochow University, Suzhou, 215123, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
25
|
Klapp V, Bloy N, Jiménez-Cortegana C, Buqué A, Petroni G. Flow cytometry-assisted quantification of cell cycle arrest in cancer cells treated with CDK4/6 inhibitors. Methods Cell Biol 2023; 181:197-212. [PMID: 38302240 DOI: 10.1016/bs.mcb.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (i.e., palbociclib, abemaciclib, and ribociclib) are well known for their capacity to mediate cytostatic effects by promoting cell cycle arrest in the G1 phase, thus inhibiting cancer cell proliferation. Cytostatic effects induced by CDK4/6 inhibitors can be transient or lead to a permanent state of cell cycle arrest, commonly defined as cellular senescence. Induction of senescence is often associated to metabolic modifications and to the acquisition of a senescence-associated secretory phenotype (SASP) by cancer cells, which in turn can promote or limit antitumor immunity (and thus the efficacy of CDK4/6 inhibitors) depending on SASP components. Thus, although accumulating evidence suggests that anti-cancer effects of CDK4/6 inhibitors also depend on the promotion of antitumor immune responses, assessing cell cycle arrest and progression in cells treated with palbociclib remains a key approach for investigating the efficacy of CDK4/6 inhibitors. Here, we describe a method to assess cell cycle distribution simultaneously with active DNA replication by flow cytometry in cultured hormone receptor-positive breast cancer MCF7 cells.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States; Tumor Stroma Interactions, Department of Cancer Research, Luxembourg, Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Norma Bloy
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States
| | - Carlos Jiménez-Cortegana
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States.
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
26
|
Zhou J, Yan GG, Cluckey D, Meade C, Ruth M, Sorm R, Tam AS, Lim S, Petridis C, Lin L, D’Antona AM, Zhong X. Exploring Parametric and Mechanistic Differences between Expi293F TM and ExpiCHO-S TM Cells for Transient Antibody Production Optimization. Antibodies (Basel) 2023; 12:53. [PMID: 37606437 PMCID: PMC10443273 DOI: 10.3390/antib12030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Rapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields than the stable cell line approach, facing the technical challenge of achieving universal high expression titers for a broad range of antibodies and therapeutics modalities. In this study, we explored various parameters for antibody production in the TGE cell host Expi293FTM and ExpiCHO-STM with the transfection reagents ExpiFectamineTM and polyethylenimine. We discovered that there are significant differences between Expi293FTM and ExpiCHO-STM cells with regards to DNA complex formation time and ratio, complex formation buffers, DNA complex uptake trafficking routes, responses to dimethyl sulfoxide and cell cycle inhibitors, as well as light-chain isotype expression preferences. This investigation mechanistically dissected the TGE processes and provided a new direction for future transient antibody production optimization.
Collapse
|
27
|
Abstract
The steady, incremental improvements in outcomes for both early-stage and advanced breast cancer patients are, in large part, attributable to the success of novel systemic therapies. In this review, we discuss key conceptual paradigms that have underpinned this success including (1) targeting the driver: the identification and targeting of major oncoproteins in breast cancers; (2) targeting the lineage pathway: inhibition of those pathways that drive normal mammary epithelial cell proliferation that retain importance in cancer; (3) targeting precisely: the application of molecular classifiers to refine therapy selection for specific cancers, and of antibody-drug conjugates to pinpoint tumor and tumor promoting cells for eradication; and (4) exploiting synthetic lethality: leveraging unique vulnerabilities that cancer-specific molecular alterations induce. We describe promising examples of novel therapies that have been discovered within each of these paradigms and suggest how future drug development efforts might benefit from the continued application of these principles.
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Weill Cornell Medicine, New York, New York 10021, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
28
|
Mortoglou M, Miralles F, Mould RR, Sengupta D, Uysal-Onganer P. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur J Cell Biol 2023; 102:151318. [PMID: 37105116 DOI: 10.1016/j.ejcb.2023.151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5-10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Francesc Miralles
- Centre of Biomedical Education/Molecular and Clinical Sciences, Cell Biology Research Centre, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Dipankar Sengupta
- Health Data Sciences Research Group, Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK.
| |
Collapse
|
29
|
Noor R, Zahoor AF, Mansha A, Khan SG, Haq AU, Ahmad S, Al-Hussain SA, Irfan A, Zaki MEA. Synthetic Potential of Regio- and Stereoselective Ring Expansion Reactions of Six-Membered Carbo- and Heterocyclic Ring Systems: A Review. Int J Mol Sci 2023; 24:ijms24076692. [PMID: 37047665 PMCID: PMC10094819 DOI: 10.3390/ijms24076692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 04/07/2023] Open
Abstract
Ring expansion reactions fascinate synthetic chemists owing to their importance in synthesizing biologically active compounds and their efficacy in medicinal chemistry. The present review summarizes a number of synthetic methodologies, including stereoselective and regioselective pathways adopted by scientists, for framing medium- to large-size carbo- and heterocycles involving lactams, lactone, azepine and azulene derivatives via ring expansion of six-membered carbo- and heterocycles that have been reported from 2007–2022. Numerous rearrangement and cycloaddition reactions involving Tiffeneau–Demjanov rearrangement, Aza–Claisen rearrangement, Schmidt rearrangement, Beckmann rearrangement, etc., have been described in this regard.
Collapse
Affiliation(s)
- Rida Noor
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
30
|
Portales AE, Miguel I, Rodriguez MJ, Novaro V, Gambaro SE, Giovambattista A. CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sci 2023; 322:121652. [PMID: 37011871 DOI: 10.1016/j.lfs.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
AIMS In white adipose tissue (WAT) the cell cycle regulators CDK4 and CDK6 (CDK4/6) promote adipogenesis and maintain the adipocyte mature state. Here we aimed to investigate their role in the Ucp1-mediated thermogenesis of WAT depots and in the biogenesis of beige adipocytes. MAIN METHODS We treated mice with the CDK4/6 inhibitor palbociclib at room temperature (RT) or cold and analyzed thermogenic markers in the epididymal (abdominal) and inguinal (subcutaneous) WAT depots. We also assessed the effect of in vivo palbociclib-treatment on the percentage of beige precursors in the stroma vascular fraction (SVF), and on its beige adipogenic potential. Finally, we treated SVFs and mature adipocytes from WAT depots with palbociclib in vitro to study the role of CDK4/6 in beige adipocytes biogenesis. KEY FINDINGS In vivo CDK4/6 inhibition downregulated thermogenesis at RT and impaired cold-induced browning of both WAT depots. It also reduced the percentage of beige precursors and the beige adipogenic potential of the SVF upon differentiation. A similar result was observed with direct CDK4/6 inhibition in the SVF of control mice in vitro. Importantly, CDK4/6 inhibition also downregulated the thermogenic program of beige differentiated- and depots-derived adipocytes. SIGNIFICANCE CDK4/6 modulate Ucp1-mediated thermogenesis of WAT depots in basal and cold-stressing conditions controlling beige adipocytes biogenesis by adipogenesis and transdifferentiation. This shows a pivotal role of CDK4/6 in WAT browning that could be applied to fight obesity or browning-associated hypermetabolic conditions such as cancer cachexia.
Collapse
|
31
|
Aydin B, Beklen H, Arga KY, Bayrakli F, Turanli B. Epigenomic and transcriptomic landscaping unraveled candidate repositioned therapeutics for non-functioning pituitary neuroendocrine tumors. J Endocrinol Invest 2023; 46:727-747. [PMID: 36306107 DOI: 10.1007/s40618-022-01923-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Non-functioning pituitary neuroendocrine tumors are challengingly diagnosed tumors in the clinic. Transsphenoidal surgery remains the first-line treatment. Despite the development of state-of-the-art techniques, no drug therapy is currently approved for the treatment. There are also no randomized controlled trials comparing therapeutic strategies or drug therapy for the management after surgery. Therefore, novel therapeutic interventions for the therapeutically challenging NF-PitNETs are urgently needed. METHODS We integrated epigenome and transcriptome data (both coding and non-coding) that elucidate disease-specific signatures, in addition to biological and pharmacological data, to utilize rational pathway and drug prioritization in NF-PitNETs. We constructed an epigenome- and transcriptome-based PPI network and proposed hub genes. The signature-based drug repositioning based on the integration of multi-omics data was performed. RESULTS The construction of a disease-specific network based on three different biological levels revealed DCC, DLG5, ETS2, FOXO1, HBP1, HMGA2, PCGF3, PSME4, RBPMS, RREB1, SMAD1, SOCS1, SOX2, YAP1, ZFHX3 as hub proteins. Signature-based drug repositioning using hub proteins yielded repositioned drug candidates that were confirmed in silico via molecular docking. As a result of molecular docking simulations, palbociclib, linifanib, trametinib, eplerenone, niguldipine, and zuclopenthixol showed higher binding affinities with hub genes compared to their inhibitors and were proposed as potential repositioned therapeutics for the management of NF-PitNETs. CONCLUSION The proposed systems' biomedicine-oriented multi-omics data integration for drug repurposing to provide promising results for the construction of effective clinical therapeutics. To the best of our knowledge, this is the first study reporting epigenome- and transcriptome-based drug repositioning for NF-PitNETs using in silico confirmations.
Collapse
Affiliation(s)
- B Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - H Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, RTE Basibuyuk Campus, 34720, Istanbul, Turkey
| | - K Y Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, RTE Basibuyuk Campus, 34720, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - F Bayrakli
- Department of Neurosurgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - B Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, RTE Basibuyuk Campus, 34720, Istanbul, Turkey.
| |
Collapse
|
32
|
Watanabe K, Niikura N, Kikawa Y, Oba M, Kobayashi K, Tada H, Ozaki S, Toh U, Yamamoto Y, Tsuneizumi M, Okuno T, Iwakuma N, Takeshita T, Iwamoto T, Ishiguro H, Masuda N, Saji S. Fulvestrant plus palbociclib in advanced or metastatic hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer after fulvestrant monotherapy: Japan Breast Cancer Research Group-M07 (FUTURE trial). Breast Cancer Res Treat 2023; 199:253-263. [PMID: 37000345 PMCID: PMC10175424 DOI: 10.1007/s10549-023-06911-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE The combination of cyclin-dependent kinase 4/6 inhibitors and endocrine therapy is a standard treatment for hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC); however, their toxicities and financial burden are major issues, especially for prolonged treatment. We investigated fulvestrant plus palbociclib in patients with HR-positive MBC resistant to fulvestrant monotherapy. METHODS Patients who initially received fulvestrant as their first- or second-line endocrine therapy were assigned to group A. Patients with disease progression during fulvestrant monotherapy who subsequently received fulvestrant plus palbociclib were assigned to group B. The primary endpoint was progression-free survival (PFS1) in group B. We set the threshold median PFS of 5 months (null hypothesis). RESULTS Between January 2018 and February 2020 we enrolled 167 patients in group A (January 2018-February 2020) from 55 institutions, of whom 72 subsequently received fulvestrant plus palbociclib and were enrolled in group B. The median follow-up was 23.8 and 8.9 months in groups A and B, respectively. The median PFS in group B (combination therapy) was 9.4 (90% confidence interval [CI]: 6.9-11.2) months (p < 0.001). This was 25.7 (90% CI: 21.2-30.3) months in group A (fulvestrant monotherapy). The TTF in group B was 7.2 (90% CI: 5.5-10.4) months. In the post-hoc analysis, the median PFS1 in group B among patients with longer-duration fulvestrant monotherapy (> 1 year) was longer than that of patients with shorter-duration monotherapy (≤ 1 year) (11.3 vs. 7.6 months). No new toxicities were observed. CONCLUSION Our findings suggest that palbociclib plus fulvestrant after disease progression despite fulvestrant monotherapy is potentially safe and effective in patients with HR-positive/HER2-negative advanced MBC.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Breast Surgery, Hokkaido Cancer Center, Sapporo, Japan
| | - Naoki Niikura
- Department of Breast and Endocrine Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yuichiro Kikawa
- Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Mari Oba
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kokoro Kobayashi
- Department of Breast Medical Oncology, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinji Ozaki
- Department of Gastrointestinal and Breast Surgery, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Uhi Toh
- Department of Breast Surgery, Kurume University Hospital, Kurume, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Michiko Tsuneizumi
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Toshitaka Okuno
- Department of Breast Surgery, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Nobutaka Iwakuma
- Department of Breast Surgery, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takashi Takeshita
- Department of Breast and Endocrine Surgery, Kumamoto City Hospital, Kumamoto, Japan
| | - Takayuki Iwamoto
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Ishiguro
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Japan.
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
33
|
Kumar A, Bhagat KK, Singh AK, Singh H, Angre T, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Medicinal chemistry perspective of pyrido[2,3- d]pyrimidines as anticancer agents. RSC Adv 2023; 13:6872-6908. [PMID: 36865574 PMCID: PMC9972360 DOI: 10.1039/d3ra00056g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cancer is a major cause of deaths across the globe due to chemoresistance and lack of selective chemotherapy. Pyrido[2,3-d]pyrimidine is an emerging scaffold in medicinal chemistry having a broad spectrum of activities, including antitumor, antibacterial, CNS depressive, anticonvulsant, and antipyretic activities. In this study, we have covered different cancer targets, including tyrosine kinase, extracellular regulated protein kinases - ABL kinase, phosphatidylinositol-3 kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinases, BCR-ABL, dihydrofolate reductase, cyclin-dependent kinase, phosphodiesterase, KRAS and fibroblast growth factor receptors, their signaling pathways, mechanism of action and structure-activity relationship of pyrido[2,3-d]pyrimidine derivatives as inhibitors of the above-mentioned targets. This review will represent the complete medicinal and pharmacological profile of pyrido[2,3-d]pyrimidines as anticancer agents, and will help scientists to design new selective, effective and safe anticancer agents.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Kuber Kumar Bhagat
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and SciencesPrayagraj211007India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology P.O. Box 4700 Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs Thuwal 23955-6900 Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
34
|
Tambo CS, Tripathi S, Perera BGK, Maly DJ, Bridges AJ, Kiss G, Rubin SM. Biolayer Interferometry Assay for Cyclin-Dependent Kinase-Cyclin Association Reveals Diverse Effects of Cdk2 Inhibitors on Cyclin Binding Kinetics. ACS Chem Biol 2023; 18:431-440. [PMID: 36724382 PMCID: PMC10029018 DOI: 10.1021/acschembio.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are key mediators of cell proliferation and have been a subject of oncology drug discovery efforts for over two decades. Several CDK and activator cyclin family members have been implicated in regulating the cell division cycle. While it is thought that there are canonical CDK-cyclin pairing preferences, the extent of selectivity is unclear, and increasing evidence suggests that the cell-cycle CDKs can be activated by a pool of available cyclins. The molecular details of CDK-cyclin specificity are not completely understood despite their importance for understanding cancer cell cycles and for pharmacological inhibition of cancer proliferation. We report here a biolayer interferometry assay that allows for facile quantification of CDK binding interactions with their cyclin activators. We applied this assay to measure the impact of Cdk2 inhibitors on Cyclin A (CycA) association and dissociation kinetics. We found that Type I inhibitors increase the affinity between Cdk2 and CycA by virtue of a slowed cyclin dissociation rate. In contrast, Type II inhibitors and other small-molecule Cdk2 binders have distinct effects on the CycA association and dissociation processes to decrease affinity. We propose that the differential impact of small molecules on the cyclin binding kinetics arises from the plasticity of the Cdk2 active site as the kinase transitions between active, intermediate, and inactive states.
Collapse
Affiliation(s)
- Carrie S Tambo
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - B Gayani K Perera
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Gert Kiss
- Type6 Therapeutics Inc., Santa Clara, California 95051, United States
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
35
|
Liu M, Zhou G, Su W, Gu Y, Gao M, Wang K, Huo R, Li Y, Zhou Z, Chen K, Zheng M, Zhang S, Xu T. Design, Synthesis, and Bioevaluation of Pyrido[2,3- d]pyrimidin-7-ones as Potent SOS1 Inhibitors. ACS Med Chem Lett 2023; 14:183-190. [PMID: 36793426 PMCID: PMC9923844 DOI: 10.1021/acsmedchemlett.2c00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The use of small molecular modulators to target the guanine nucleotide exchange factor SOS1 has been demonstrated to be a promising strategy for the treatment of various KRAS-driven cancers. In the present study, we designed and synthesized a series of new SOS1 inhibitors with the pyrido[2,3-d]pyrimidin-7-one scaffold. One representative compound 8u showed comparable activities to the reported SOS1 inhibitor BI-3406 in both the biochemical assay and the 3-D cell growth inhibition assay. Compound 8u obtained good cellular activities against a panel of KRAS G12-mutated cancer cell lines and inhibited downstream ERK and AKT activation in MIA PaCa-2 and AsPC-1 cells. In addition, it displayed synergistic antiproliferative effects when used in combination with KRAS G12C or G12D inhibitors. Further modifications of the new compounds may give us a promising SOS1 inhibitor with favorable druglike properties for use in the treatment of KRAS-mutated patients.
Collapse
Affiliation(s)
- Meiying Liu
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Guizhen Zhou
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
| | - Wenhong Su
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Nano
Science and Technology Institute, University
of Science and Technology of China, Suzhou 215123, China
| | - Yuejiao Gu
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingshan Gao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kun Wang
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ruifeng Huo
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
| | - Yupeng Li
- Masonic
Cancer
Center & Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zehui Zhou
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixian Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Sulin Zhang
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
| | - Tianfeng Xu
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| |
Collapse
|
36
|
Li Z, Ma S, Zhang L, Zhang S, Ma Z, Du L, Li M. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. J Med Chem 2023; 66:733-751. [PMID: 36574496 DOI: 10.1021/acs.jmedchem.2c01648] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Targeted protein degradation (TPD) strategies open up new avenues for therapeutics and provide powerful tools for biological inquiry. Herein, we present a brand-new approach, termed heat shock protein 90 (HSP90)-mediated targeting chimeras (HEMTACs), to induce intracellular protein degradation by bridging a target protein to HSP90 to drive the downregulation of proteins. We successfully showcase HEMTACs for cyclin-dependent kinase 4 and 6 (CDK4/6) by using a flexible linker to connect the targeting warhead of CDK4/6 with the HSP90 ligand. Overall, our study delivers a series of evidence that HEMTACs can serve as a valuable addition to TPD strategies, most prominently proteolysis-targeting chimera technology.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siyue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ling Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuxin Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
37
|
Kuminek G, Salehi N, Waltz NM, Sperry DC, Greenwood DE, Hate SS, Amidon GE. Use of Gastrointestinal Simulator, Mass Transport Analysis, and Absorption Simulation to Investigate the Impact of pH Modifiers in Mitigating Weakly Basic Drugs' Performance Issues Related to Gastric pH: Palbociclib Case Study. Mol Pharm 2023; 20:147-158. [PMID: 36367432 DOI: 10.1021/acs.molpharmaceut.2c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that reduced gastric acidity, for example with concomitant administration of acid reducing agents, can result in variable pharmacokinetics and decreased absorption of weakly basic drugs. It is important to identify the risk of reduced and variable absorption early in development, so that product design options to address the risk can be considered. This article describes the utilization of in vitro and in silico tools to predict the effect of gastric pH, as well as the impact of adding pH modifiers, in mitigating the effect of acid reducing agents on weak base drugs' dissolution and absorption. Palbociclib, a weakly basic drug, was evaluated in low and high gastric pH conditions in a multicompartmental dissolution apparatus referred to as a gastrointestinal simulator (GIS). The GIS permits the testing of pharmaceutical products in a way that better assesses dissolution under physiologically relevant conditions of pH, buffer concentration, formulation additives, and physiological variations including GI pH, buffer concentrations, secretions, stomach emptying rate, residence time in the GI, and aqueous luminal volume. To predict drug dissolution in the GIS, a hierarchical mass transport model was used and validated using in vitro experimental data. Dissolution results were then compared to observed human clinical plasma data with and without proton pump inhibitors using a GastroPlus absorption model to predict palbociclib plasma profiles and pharmacokinetic parameters. The results showed that the in silico model successfully predicted palbociclib dissolution in the GIS under low and high gastric pH conditions with and without pH modifiers. Furthermore, the GIS data coupled with the in silico tools anticipated (1) the reduced palbociclib exposure due to proton pump inhibitor coadministration and (2) the mitigating effect of a pH-modifying agent. This study provides tools to help in the development of orally administered formulations to overcome the effect of elevated gastric pH, especially when formulating with pH modifiers.
Collapse
Affiliation(s)
- Gislaine Kuminek
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Niloufar Salehi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Nicholas M Waltz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States.,College of Pharmacy, Ohio State University, Columbus, Ohio43210, United States
| | - David C Sperry
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Dale E Greenwood
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Siddhi S Hate
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States
| |
Collapse
|
38
|
Estepa-Fernández A, García-Fernández A, Lérida-Viso A, Blandez JF, Galiana I, Sancenon-Galarza F, Orzáez M, Martínez-Máñez R. Combination of palbociclib with navitoclax based-therapies enhances in vivo antitumoral activity in triple-negative breast cancer. Pharmacol Res 2023; 187:106628. [PMID: 36566002 DOI: 10.1016/j.phrs.2022.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with a poor prognosis and limited effective therapeutic options. Induction of senescence, arrest of cell proliferation, has been explored as an effective method to limit tumor progression in metastatic breast cancer. However, relapses occur in some patients, possibly as a result of the accumulation of senescent tumor cells in the body after treatment, which promote metastasis. In this study, we explored the combination of senescence induction and the subsequent removal of senescent cells (senolysis) as an alternative approach to improve outcomes in TNBC patients. We demonstrate that a combination treatment, using the senescence-inducer palbociclib and the senolytic agent navitoclax, delays tumor growth and reduces metastases in a mouse xenograft model of aggressive human TNBC (hTNBC). Furthermore, considering the off-target effects and toxicity derived from the use of navitoclax, we propose a strategy aimed at minimizing the associated side effects. We use a galacto-conjugated navitoclax (nav-Gal) as a senolytic prodrug that can preferentially be activated by β-galactosidase overexpressed in senescent cells. Concomitant treatment with palbociclib and nav-Gal in vivo results in the eradication of senescent hTNBC cells with consequent reduction of tumor growth, while reducing the cytotoxicity of navitoclax. Taken together, our results support the efficacy of combination therapy of senescence-induction with senolysis for hTNBC, as well as the development of a targeted approach as an effective and safer therapeutic opportunity.
Collapse
Affiliation(s)
- Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Araceli Lérida-Viso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain
| | - Juan F Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Félix Sancenon-Galarza
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain.
| |
Collapse
|
39
|
Xiong Y, Zhong Y, Yim H, Yang X, Park KS, Xie L, Poulikakos PI, Han X, Xiong Y, Chen X, Liu J, Jin J. Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets. J Am Chem Soc 2022; 144:22622-22632. [PMID: 36448571 PMCID: PMC9772293 DOI: 10.1021/jacs.2c09255] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are attractive therapeutic modalities for degrading disease-causing proteins. While many PROTACs have been developed for numerous protein targets, current small-molecule PROTAC approaches cannot target undruggable proteins that do not have small-molecule binders. Here, we present a novel PROTAC approach, termed bridged PROTAC, which utilizes a small-molecule binder of the target protein's binding partner to recruit the protein complex into close proximity with an E3 ubiquitin ligase to target undruggable proteins. Applying this bridged PROTAC strategy, we discovered MS28, the first-in-class degrader of cyclin D1, which lacks a small-molecule binder. MS28 effectively degrades cyclin D1, with faster degradation kinetics and superior degradation efficiency than CDK4/6, through recruiting the CDK4/6-cyclin D1 complex to the von Hippel-Lindau E3 ligase. MS28 also suppressed the proliferation of cancer cells more effectively than CDK4/6 inhibitors and degraders. Altogether, the bridged PROTAC strategy could provide a generalizable platform for targeting undruggable proteins.
Collapse
Affiliation(s)
- Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaoran Han
- Cullgen Inc., San Diego, California 92130, United States
| | - Yue Xiong
- Cullgen Inc., San Diego, California 92130, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
40
|
Rugo HS, Im SA, Joy AA, Shparyk Y, Walshe JM, Sleckman B, Loi S, Theall KP, Kim S, Huang X, Bananis E, Mahtani R, Finn RS, Diéras V. Effect of palbociclib plus endocrine therapy on time to chemotherapy across subgroups of patients with hormone receptor‒positive/human epidermal growth factor receptor 2‒negative advanced breast cancer: Post hoc analyses from PALOMA-2 and PALOMA-3. Breast 2022; 66:324-331. [PMID: 36463643 PMCID: PMC9720565 DOI: 10.1016/j.breast.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Previous analyses from the PALOMA-2 and PALOMA-3 studies showed that palbociclib (PAL) plus endocrine therapy (ET) prolongs time to first subsequent chemotherapy (TTC) versus placebo (PBO) plus ET in the overall population of patients with hormone receptor‒positive/human epidermal growth factor receptor 2‒negative (HR+/HER2-) advanced breast cancer (ABC). Here, we evaluated TTC in relevant patient subgroups. METHODS These post hoc analyses evaluated TTC by subgroup using data from 2 randomized, phase 3 studies of women with HR+/HER2- ABC. In PALOMA-2, postmenopausal patients previously untreated for ABC were randomized 2:1 to receive PAL (125 mg/day, 3/1-week schedule) plus letrozole (LET; 2.5 mg/day; n = 444) or PBO plus LET (n = 222). In PALOMA-3, premenopausal or postmenopausal patients whose disease had progressed after prior ET were randomized 2:1 to receive PAL (125 mg/day, 3/1-week schedule) plus fulvestrant (FUL; 500 mg; n = 347) or PBO plus FUL (n = 174). RESULTS First subsequent chemotherapy was received by 35.5% and 56.2% in PALOMA-2 and PALOMA-3 after progression on palbociclib plus ET or placebo plus ET. Across all subgroups analyzed, the median progression-free survival (PFS) was longer in the PAL plus ET arm than the PBO plus ET arm. TTC was longer with PAL plus ET versus PBO plus ET across the same patient subgroups in both studies. CONCLUSIONS Across all subgroups, PAL plus ET versus PBO plus ET had longer median PFS and resulted in prolonged TTC in both the PALOMA-2 and PALOMA-3 studies. Pfizer Inc (NCT01740427, NCT01942135).
Collapse
Affiliation(s)
- Hope S Rugo
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, Department of Medicine (Hematology/Oncology), 1825 4th Street, 3rd Floor, Box 1710, San Francisco, CA, 94158, USA.
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, 101 Daehak-ro, Jonro-gu, Seoul 03080, Republic of Korea.
| | - Anil A Joy
- Cross Cancer Institute, University of Alberta, 11560 University Ave NW, Edmonton, AB T6G1Z2, Canada.
| | - Yaroslav Shparyk
- Lviv State Oncologic Regional Treatment and Diagnostic Center, Lviv, Ukraine.
| | - Janice M Walshe
- Cancer Trials Ireland, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - Bethany Sleckman
- Mercy Hospital St. Louis, 607 S New Ballas Road, Suite 3300, St. Louis, MO, 63141, USA.
| | - Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, Australia.
| | | | - Sindy Kim
- Pfizer Inc, 10555 Science Center Dr, San Diego, CA 92121, USA.
| | - Xin Huang
- Pfizer Inc, 10555 Science Center Dr, San Diego, CA 92121, USA.
| | | | - Reshma Mahtani
- Miami Cancer Institute, Baptist Health South Florida, Member, Memorial Sloan Kettering Cancer Alliance, 1228 South Pine Island Road, Plantation, FL, 33324, USA.
| | - Richard S Finn
- David Geffen School of Medicine, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, 90404, USA.
| | - Véronique Diéras
- Unicancer Centre Eugène Marquis, Avenue de la Bataille Flandres-Dunkerque, CS 44229, 35042, Rennes Cedex, France.
| |
Collapse
|
41
|
Pang J, Li H, Sheng Y. CDK4/6 inhibitor resistance: A bibliometric analysis. Front Oncol 2022; 12:917707. [PMID: 36530984 PMCID: PMC9752919 DOI: 10.3389/fonc.2022.917707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/17/2022] [Indexed: 07/22/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) 4/6 inhibitors are a type of cell cycle regulation that prevents cell proliferation by blocking retinoblastoma protein (Rb) phosphorylation in the G1 to S phase transition. CDK 4/6 inhibitors are currently used mainly in patients with hormone receptor-positive/human epidermal growth factor receptor 2 (HER2) negative breast cancer in combination with endocrine therapy. However, primary or acquired resistance to drugs severely affect drug efficacy. Our study aims at summarizing and visualizing the current research direction and development trend of CDK4/6 inhibitor resistance to provide clinicians and research power with a summary of the past and ideas for the future. Methods The Web of Science Core Collection and PubMed was searched for all included articles on CDK4/6 inhibitor resistance for bibliometric statistics and graph plotting. The metrological software and graphing tools used were R language version 4.2.0, Bibliometrix 4.0.0, Vosviewer 1.6.18, GraphPad Prism 9, and Microsoft Excel 2019. Results A total of 1278 English-language articles related to CDK4/6 inhibitor resistance were included in the Web of Science core dataset from 1996-2022, with an annual growth rate of14.56%. In PubMed, a total of 1123 articles were counted in the statistics, with an annual growth rate of 17.41% Cancer Research is the most included journal (102/1278, 7.98%) with an impact factor of 13.312 and is the Q1 of the Oncology category of the Journal Citation Reports. Professor Malorni Luca from Italy is probably the most contributing author in the current field (Publications 21/1278, 1.64%), while Prof. Turner Nicholas C from the USA is perhaps the most authoritative new author in the field of CDK4/6 inhibitor resistance (Total Citations2584, M-index 1.429). The main research efforts in this field are currently focused on Palbociclib and Abemaciclib. Studies on drug resistance mechanisms or post-drug resistance therapies focus on MEK inhibitors and related pathways, PI3K-AKT-MTOR pathways or inhibitors, EGFR-related pathways, EGFR inhibitors, TKI inhibitors, MAPK pathways and inhibitors, and so on. Conclusion This study provides researchers with a reliable basis and guidance for finding authoritative references, understanding research trends, and mining research neglect directions.
Collapse
Affiliation(s)
| | | | - Yuan Sheng
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Dond BD, Pansare DN, Sarkate AP, Thore SN. A facile synthesis of sulfonate esters from phenols using catalytic KF/NFSI and K2CO3. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Deb Roy A, Gross EG, Pillai GS, Seetharaman S, Etienne-Manneville S, Inoue T. Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation. J Cell Biol 2022; 221:213540. [PMID: 36222836 PMCID: PMC9565784 DOI: 10.1083/jcb.202202100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Spatiotemporally dynamic microtubule acetylation underlies diverse physiological and pathological events. Despite its ubiquity, the molecular mechanisms that regulate the sole microtubule acetylating agent, α-tubulin-N-acetyltransferase-1 (α-TAT1), remain obscure. Here, we report that dynamic intracellular localization of α-TAT1 along with its catalytic activity determines efficiency of microtubule acetylation. Specifically, we newly identified a conserved signal motif in the intrinsically disordered C-terminus of α-TAT1, consisting of three competing regulatory elements-nuclear export, nuclear import, and cytosolic retention. Their balance is tuned via phosphorylation by CDK1, PKA, and CK2, and dephosphorylation by PP2A. While the unphosphorylated form binds to importins and resides both in cytosol and nucleus, the phosphorylated form binds to specific 14-3-3 adapters and accumulates in the cytosol for maximal substrate access. Unlike other molecules with a similar phospho-regulated signal motif, α-TAT1 uniquely uses the nucleus as a hideout. This allosteric spatial regulation of α-TAT1 function may help uncover a spatiotemporal code of microtubule acetylation in normal and aberrant cell behavior.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
44
|
Li M, Zhong A, Wu Y, Sidharta M, Beaury M, Zhao X, Studer L, Zhou T. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nat Commun 2022; 13:6354. [PMID: 36302757 PMCID: PMC9613702 DOI: 10.1038/s41467-022-34045-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Precise gene editing in human pluripotent stem cells (hPSCs) holds great promise for studying and potentially treating human diseases. Both prime editing and base editing avoid introducing double strand breaks, but low editing efficiencies make those techniques still an arduous process in hPSCs. Here we report that co-delivering of p53DD, a dominant negative fragment of p53, can greatly enhance prime editing and cytosine base editing efficiencies in generating precise mutations in hPSCs. We further apply PE3 in combination with p53DD to efficiently create multiple isogenic hPSC lines, including lines carrying GBA or LRRK2 mutations associated with Parkinson disease and a LMNA mutation linked to Hutchinson-Gilford progeria syndrome. We also correct GBA and LMNA mutations in the patient-specific iPSCs. Our data show that p53DD improves PE3 efficiency without compromising the genome-wide safety, making it feasible for safe and routine generation of isogenic hPSC lines for disease modeling.
Collapse
Affiliation(s)
- Mu Li
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Aaron Zhong
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Youjun Wu
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Mega Sidharta
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Michael Beaury
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Xiaolan Zhao
- grid.51462.340000 0001 2171 9952Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Lorenz Studer
- grid.51462.340000 0001 2171 9952The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Ting Zhou
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
45
|
Homoharringtonine demonstrates a cytotoxic effect against triple-negative breast cancer cell lines and acts synergistically with paclitaxel. Sci Rep 2022; 12:15663. [PMID: 36123435 PMCID: PMC9485251 DOI: 10.1038/s41598-022-19621-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
The lack of targeted therapies for triple-negative breast cancer (TNBC) contributes to their high mortality rates and high risk of relapse compared to other subtypes of breast cancer. Most TNBCs (75%) have downregulated the expression of CREB3L1 (cAMP-responsive element binding protein 3 like 1), a transcription factor and metastasis suppressor that represses genes that promote cancer progression and metastasis. In this report, we screened an FDA-approved drug library and identified four drugs that were highly cytotoxic towards HCC1806 CREB3L1-deficient TNBC cells. These four drugs were: (1) palbociclib isethionate, a CDK4/6 inhibitor, (2) lanatocide C (also named isolanid), a Na+/K+-ATPase inhibitor, (3) cladribine, a nucleoside analog, and (4) homoharringtonine (also named omacetaxine mepesuccinate), a protein translation inhibitor. Homoharringtonine consistently showed the most cytotoxicity towards an additional six TNBC cell lines (BT549, HCC1395, HCC38, Hs578T, MDA-MB-157, MDA-MB-436), and several luminal A breast cancer cell lines (HCC1428, MCF7, T47D, ZR-75-1). All four drugs were then separately evaluated for possible synergy with the chemotherapy agents, doxorubicin (an anthracycline) and paclitaxel (a microtubule stabilizing agent). A strong synergy was observed using the combination of homoharringtonine and paclitaxel, with high cytotoxicity towards TNBC cells at lower concentrations than when each was used separately.
Collapse
|
46
|
Mechanisms of Resistance to CDK4/6 Inhibitors in Hormone Receptor-Positive (HR +) Breast Cancer: Spotlight on Convergent CDK6 Upregulation and Immune Signaling. CURRENT BREAST CANCER REPORTS 2022. [DOI: 10.1007/s12609-022-00461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
48
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
49
|
Jacobs AT, Martinez Castaneda-Cruz D, Rose MM, Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem Pharmacol 2022; 204:115209. [PMID: 35973582 DOI: 10.1016/j.bcp.2022.115209] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022]
Abstract
The last 25 years have seen significant growth in new therapeutic options for breast cancer, termed targeted therapies based on their ability to block specific pathways known to drive breast tumor growth and survival. Introduction of these drugs has been made possible through advances in the understanding of breast cancer biology. While the promise of targeted therapy for breast cancer has been clear for some time, the experience of the clinical use of multiple drugs and drug classes allows us to now present a summary and perspective as to the success and impact of this endeavor. Here we will review breast cancer targeted therapeutics in clinical use. We will provide the rationale for their indications and summarize clinical data in patients with different breast cancer subtypes, their impact on breast cancer progression and survival and their major adverse effects. The focus of this review will be on the development that has occurred within classes of targeted therapies and subsequent impact on breast cancer patient outcomes. We will conclude with a perspective on the role of targeted therapy in breast cancer treatment and highlight future areas of development.
Collapse
Affiliation(s)
- Aaron T Jacobs
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | | | - Mark M Rose
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | - Linda Connelly
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States.
| |
Collapse
|
50
|
Radwan MA, Al Rugaie O, Al Abdulmonem W, Awad H, Zayed E. Molecular Docking Studies, Antiproliferative Evaluation, and Synthesis of 7-(1H-Indol-3-yl)pyrido[2,3-d]pyrimidine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|