1
|
Slitikov PV. Some Features of Phosphorylation of Aminomethylated 2,6-Dihydroxynaphthalene. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322212009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Hu J, Sun M, Qi N, Abuzeid AM, Li J, Cai H, Lv M, Lin X, Liao S, Li G. Inhibitory effect of morin on aldolase 2 from Eimeria tenella. Int J Parasitol Drugs Drug Resist 2022; 20:1-10. [PMID: 35952522 PMCID: PMC9385451 DOI: 10.1016/j.ijpddr.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Eimeria tenella (E. tenella) is a protozoal parasite that can cause severe cecal lesions and death in chickens, seriously harming the chicken industry. Conventional control strategies mainly rely on anticoccidial drugs. However, the emerging problems of anticoccidial resistance and drug residues necessitate exploring potential drug targets for developing new anticoccidial drugs. Fructose-1,6-bisphosphate aldolase (ALD) is an essential enzyme for parasite energy metabolism that has been considered a potential drug target. In this study, we analyzed the molecular and biochemical properties of E. tenella ALD2 (EtALD2). EtALD2 mRNA expression was highest in second-generation merozoites, whereas the protein level was highest in unsporulated oocysts. Indirect immunofluorescence showed that EtALD2 was mainly distributed in sporozoite' cytoplasm. The natural product inhibitor (morin) was screened by computer-aided drug screening. Enzyme kinetic and inhibition kinetic assays showed that morin had a good inhibitory effect on EtALD2 activity (IC50 = 10.37 μM, Ki = 48.97 μM). In vitro inhibition assay demonstrated that morin had an inhibitory effect on E. tenella development, with an IC50 value of 3.98 μM and drug selection index of 177.49. In vivo, morin significantly improved cecal lesions (p < 0.05) and reduced oocyst excretion (p < 0.05) in E. tenella-infected chickens compared with the untreated group. The anticoccidial index of the group receiving 450 mg morin per kg feed was 162, showing a good anticoccidial effect. These findings suggest that EtALD2 could be a novel drug target for E. tenella treatment, and morin should be further evaluated as a therapeutic candidate for chicken coccidiosis.
Collapse
Affiliation(s)
- Junjing Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Mingfei Sun
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Nanshan Qi
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Asmaa M.I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Juan Li
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Haiming Cai
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Minna Lv
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Xuhui Lin
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Shenquan Liao
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China,Corresponding author.
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Corresponding author.
| |
Collapse
|
3
|
Slitikov PV. Synthesis of Aminomethyl Derivatives of 2,6-Dihydroxynaphthalene. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
6
|
Novel and selective inactivators of Triosephosphate isomerase with anti-trematode activity. Sci Rep 2020; 10:2587. [PMID: 32054976 PMCID: PMC7018972 DOI: 10.1038/s41598-020-59460-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Trematode infections such as schistosomiasis and fascioliasis cause significant morbidity in an estimated 250 million people worldwide and the associated agricultural losses are estimated at more than US$ 6 billion per year. Current chemotherapy is limited. Triosephosphate isomerase (TIM), an enzyme of the glycolytic pathway, has emerged as a useful drug target in many parasites, including Fasciola hepatica TIM (FhTIM). We identified 21 novel compounds that selectively inhibit this enzyme. Using microscale thermophoresis we explored the interaction between target and compounds and identified a potent interaction between the sulfonyl-1,2,4-thiadiazole (compound 187) and FhTIM, which showed an IC50 of 5 µM and a Kd of 66 nM. In only 4 hours, this compound killed the juvenile form of F. hepatica with an IC50 of 3 µM, better than the reference drug triclabendazole (TCZ). Interestingly, we discovered in vitro inhibition of FhTIM by TCZ, with an IC50 of 7 µM suggesting a previously uncharacterized role of FhTIM in the mechanism of action of this drug. Compound 187 was also active against various developmental stages of Schistosoma mansoni. The low toxicity in vitro in different cell types and lack of acute toxicity in mice was demonstrated for this compound, as was demonstrated the efficacy of 187in vivo in F. hepatica infected mice. Finally, we obtained the first crystal structure of FhTIM at 1.9 Å resolution which allows us using docking to suggest a mechanism of interaction between compound 187 and TIM. In conclusion, we describe a promising drug candidate to control neglected trematode infections in human and animal health.
Collapse
|
7
|
Xin Q, Yuan M, Li H, Song X, Lu J, Jing T. In vitro and in vivo effects of 3-bromopyruvate against Echinococcus metacestodes. Vet Res 2019; 50:96. [PMID: 31744550 PMCID: PMC6862786 DOI: 10.1186/s13567-019-0710-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
While searching for novel anti-echinococcosis drugs, we have been focusing on glycolysis which is relied on by Echinococcus for energy production and intermediates for other metabolic processes. The aim of this study was to investigate the potential therapeutic implication of glycolytic inhibitors on Echinococcus. Our results demonstrate that at an initial concentration of 40 μM, all inhibitors of glycolysis used in the current experiment [3-bromopyruvate (3-BrPA), ornidazole, clorsulon (CLS), sodium oxamate and 2,6-dihydroxynaphthalene (NA-P2)] show considerable in vitro effects against Echinococcus granulosus protoscoleces and Echinococcus multilocularis metacestodes. Among them, 3-BrPA exhibited the highest activity which was similar to that of nitazoxanide (NTZ) and more efficacious than albendazole (ABZ). The activity of 3-BrPA was dose dependent and resulted in severe ultrastructural destructions, as visualized by electron microscopy. An additional in vivo study in mice infected with E. multilocularis metacestodes indicates a reduction in parasite weight after the twice-weekly treatment of 25 mg/kg 3-BrPA for 6 weeks, compared to that of the untreated control. In particular, in contrast to ABZ, the administration of 25 mg/kg 3-BrPA did not cause toxicity to the liver and kidney in mice. Similarly, at the effective dose against Echinococcus larvae, 3-BrPA showed no significant toxicity to human hepatocytes. Taken together, the results suggest that interfering with the glycolysis of the parasite may be a novel chemotherapeutical option and 3-BrPA, which exhibited a remarkable activity against Echinococcus, may be a promising potential drug against cystic echinococcosis (CE) and alveolar echinococcosis (AE).
Collapse
Affiliation(s)
- Qi Xin
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Miaomiao Yuan
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huanping Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoxia Song
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun Lu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Jing
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Méndez ST, Castillo-Villanueva A, Martínez-Mayorga K, Reyes-Vivas H, Oria-Hernández J. Structure-based identification of a potential non-catalytic binding site for rational drug design in the fructose 1,6-biphosphate aldolase from Giardia lamblia. Sci Rep 2019; 9:11779. [PMID: 31409864 PMCID: PMC6692403 DOI: 10.1038/s41598-019-48192-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Giardia lamblia is the causal agent of giardiasis, one of the most prevalent parasitosis in the world. Even though effective pharmacotherapies against this parasite are available, the disadvantages associated with its use call for the development of new antigiardial compounds. Based on the Giardia dependence on glycolysis as a main energy source, glycolytic enzymes appear to be attractive targets with antiparasitic potential. Among these, fructose 1,6-biphosphate aldolase (GlFBPA) has been highlighted as a promising target for drug design. Current efforts are based on the design of competitive inhibitors of GlFBPA; however, in the kinetic context of metabolic pathways, competitive inhibitors seem to have low potential as therapeutic agents. In this work, we performed an experimental and in silico structure-based approach to propose a non-catalytic binding site which could be used as a hot spot for antigardial drug design. The druggability of the selected binding site was experimentally tested; the alteration of the selected region by site directed mutagenesis disturbs the catalytic properties and the stability of the enzyme. A computational automated search of binding sites supported the potential of this region as functionally relevant. A preliminary docking study was performed, in order to explore the feasibility and type of molecules to be able to accommodate in the proposed binding region. Altogether, the results validate the proposed region as a specific molecular binding site with pharmacological potential.
Collapse
Affiliation(s)
- Sara-Teresa Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico.
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Fabino Carr A, Patel DC, Lopez D, Armstrong DW, Ryzhov V. Comparison of reversed-phase, anion-exchange, and hydrophilic interaction HPLC for the analysis of nucleotides involved in biological enzymatic pathways. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1587622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Allison Fabino Carr
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| | - Darshan C. Patel
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- Process Research & Development, AbbVie Inc, North Chicago, IL, USA
| | - Diego Lopez
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- AZYP LLC, Arlington, TX, USA
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| |
Collapse
|
10
|
Heron PW, Abellán-Flos M, Salmon L, Sygusch J. Bisphosphonate Inhibitors of Mammalian Glycolytic Aldolase. J Med Chem 2018; 61:10558-10572. [PMID: 30418024 DOI: 10.1021/acs.jmedchem.8b01000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The glycolytic enzyme aldolase is an emerging drug target in diseases such as cancer and protozoan infections which are dependent on a hyperglycolytic phenotype to synthesize adenosine 5'-triphosphate and metabolic precursors for biomass production. To date, structural information for the enzyme in complex with phosphate-derived inhibitors has been lacking. Thus, we determined the crystal structure of mammalian aldolase in complex with naphthalene 2,6-bisphosphate (1) that served as a template for the design of bisphosphonate-based inhibitors, namely, 2-phosphate-naphthalene 6-bisphosphonate (2), 2-naphthol 6-bisphosphonate (3), and 1-phosphate-benzene 4-bisphosphonate (4). All inhibitors targeted the active site, and the most promising lead, 2, exhibited slow-binding inhibition with an overall inhibition constant of ∼38 nM. Compound 2 inhibited proliferation of HeLa cancer cells, whereas HEK293 cells expressing a normal phenotype were not inhibited. The crystal structures delineated the essential features of high-affinity phosphate-derived inhibitors and provide a template for the development of inhibitors with prophylaxis potential.
Collapse
Affiliation(s)
- Paul W Heron
- Département de Biochimie et Médecine Moléculaire , Université de Montréal , CP 6128, Succursale Centre-Ville, Montréal , Québec H3C 3J7 , Canada
| | - Marta Abellán-Flos
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux D'Orsay (ICMMO) , Univ Paris-Saclay, Univ Paris-Sud, CNRS UMR8182, LabEx LERMIT , rue du doyen Georges Poitou , F-91405 Orsay , France
| | - Laurent Salmon
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux D'Orsay (ICMMO) , Univ Paris-Saclay, Univ Paris-Sud, CNRS UMR8182, LabEx LERMIT , rue du doyen Georges Poitou , F-91405 Orsay , France
| | - Jurgen Sygusch
- Département de Biochimie et Médecine Moléculaire , Université de Montréal , CP 6128, Succursale Centre-Ville, Montréal , Québec H3C 3J7 , Canada
| |
Collapse
|
11
|
Lu CJ, Hu J, Wang Z, Xie S, Pan T, Huang L, Li X. Discovery of boron-containing compounds as Aβ aggregation inhibitors and antioxidants for the treatment of Alzheimer's disease. MEDCHEMCOMM 2018; 9:1862-1870. [PMID: 30568754 DOI: 10.1039/c8md00315g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/09/2018] [Indexed: 01/28/2023]
Abstract
A novel series of boron-containing compounds were designed, synthesized and evaluated as multi-target-directed ligands against Alzheimer's disease. The biological activity results demonstrated that these compounds possessed a significant ability to inhibit self-induced Aβ aggregation (20.5-82.8%, 20 μM) and to act as potential antioxidants (oxygen radical absorbance capacity assay using fluorescein (ORAC-FL) values of 2.70-5.87). In particular, compound 17h is a potential lead compound for AD therapy (IC50 = 3.41 μM for self-induced Aβ aggregation; ORAC-FL value = 4.55). Compound 17h also functions as a metal chelator. These results indicated that boron-containing compounds could be new structural scaffolds for the treatment of AD.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Jinhui Hu
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ; Tel: +086 20 3994 3051
| | - Zechen Wang
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ; Tel: +086 20 3994 3051
| | - Shishun Xie
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ; Tel: +086 20 3994 3051
| | - Tingting Pan
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ; Tel: +086 20 3994 3051
| | - Ling Huang
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ; Tel: +086 20 3994 3051
| | - Xingshu Li
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ; Tel: +086 20 3994 3051
| |
Collapse
|
12
|
ENOblock Does Not Inhibit the Activity of the Glycolytic Enzyme Enolase. PLoS One 2016; 11:e0168739. [PMID: 28030597 PMCID: PMC5193436 DOI: 10.1371/journal.pone.0168739] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/20/2016] [Indexed: 11/19/2022] Open
Abstract
Inhibition of glycolysis is of great potential for the treatment of cancer. However, inhibitors of glycolytic enzymes with favorable pharmacological profiles have not been forthcoming. Due to the nature of their active sites, most high-affinity transition-state analogue inhibitors of glycolysis enzymes are highly polar with poor cell permeability. A recent publication reported a novel, non-active site inhibitor of the glycolytic enzyme Enolase, termed ENOblock (N-[2-[2-2-aminoethoxy)ethoxy]ethyl]4-4-cyclohexylmethyl)amino]6-4-fluorophenyl)methyl]amino]1,3,5-triazin-2-yl]amino]benzeneacetamide). This would present a major advance, as this is heterocyclic and fully cell permeable molecule. Here, we present evidence that ENOblock does not inhibit Enolase enzymatic activity in vitro as measured by three different assays, including a novel 31P NMR based method which avoids complications associated with optical interferences in the UV range. Indeed, we note that due to strong UV absorbance, ENOblock interferes with the direct spectrophotometric detection of the product of Enolase, phosphoenolpyruvate. Unlike established Enolase inhibitors, ENOblock does not show selective toxicity to ENO1-deleted glioma cells in culture. While our data do not dispute the biological effects previously attributed to ENOblock, they indicate that such effects must be caused by mechanisms other than direct inhibition of Enolase enzymatic activity.
Collapse
|
13
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
14
|
Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology 2012; 140:1-20. [PMID: 22914253 DOI: 10.1017/s0031182012001278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glycosomes are specialized peroxisomes found in all kinetoplastid organisms. The organelles are unique in harbouring most enzymes of the glycolytic pathway. Matrix proteins, synthesized in the cytosol, cofactors and metabolites have to be transported across the membrane. Recent research on Trypanosoma brucei has provided insight into how these translocations across the membrane occur, although many details remain to be elucidated. Proteins are imported by a cascade of reactions performed by specialized proteins, called peroxins, in which a cytosolic receptor with bound matrix protein inserts itself in the membrane to deliver its cargo into the organelle and is subsequently retrieved from the glycosome to perform further rounds of import. Bulky solutes, such as cofactors and acyl-CoAs, seem to be translocated by specific transporter molecules, whereas smaller solutes such as glycolytic intermediates probably cross the membrane through pore-forming channels. The presence of such channels is in apparent contradiction with previous results that suggested a low permeability of the glycosomal membrane. We propose 3 possible, not mutually exclusive, solutions for this paradox. Glycosomal glycolytic enzymes have been validated as drug targets against trypanosomatid-borne diseases. We discuss the possible implications of the new data for the design of drugs to be delivered into glycosomes.
Collapse
|
15
|
de la Paz Santangelo M, Gest PM, Guerin ME, Coinçon M, Pham H, Ryan G, Puckett SE, Spencer JS, Gonzalez-Juarrero M, Daher R, Lenaerts AJ, Schnappinger D, Therisod M, Ehrt S, Sygusch J, Jackson M. Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli. J Biol Chem 2011; 286:40219-31. [PMID: 21949126 PMCID: PMC3220552 DOI: 10.1074/jbc.m111.259440] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/09/2011] [Indexed: 12/29/2022] Open
Abstract
The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose-1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experiments at the fba-tb locus indicated that this gene is required for the growth of Mycobacterium tuberculosis on gluconeogenetic substrates and in glucose-containing medium. Surface labeling and enzymatic activity measurements revealed that this enzyme was exported to the cell surface of M. tuberculosis and produced under various axenic growth conditions including oxygen depletion and hence by non-replicating bacilli. Importantly, FBA-tb was also produced in vivo in the lungs of infected guinea pigs and mice. FBA-tb bound human plasmin(ogen) and protected FBA-tb-bound plasmin from regulation by α(2)-antiplasmin, suggestive of an involvement of this enzyme in host/pathogen interactions. The crystal structures of FBA-tb in the native form and in complex with a hydroxamate substrate analog were determined to 2.35- and 1.9-Å resolution, respectively. Whereas inhibitor attachment had no effect on the plasminogen binding activity of FBA-tb, it competed with the natural substrate of the enzyme, fructose 1,6-bisphosphate, and substantiated a previously unknown reaction mechanism associated with metallodependent aldolases involving recruitment of the catalytic zinc ion by the substrate upon active site binding. Altogether, our results highlight the potential of FBA-tb as a novel therapeutic target against both replicating and non-replicating bacilli.
Collapse
Affiliation(s)
- Maria de la Paz Santangelo
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas-Instituto Nacional de Tecnología Agropecuaria, 1686 Buenos Aires, Argentina
| | - Petra M. Gest
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Marcelo E. Guerin
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, 48940 Bizkaia, Spain
- Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Mathieu Coinçon
- Département de Biochimie, Université de Montréal, CP 6128, Station centre-ville, Montréal PQ H3C 3J7, Canada
| | - Ha Pham
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Gavin Ryan
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Susan E. Puckett
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - John S. Spencer
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Mercedes Gonzalez-Juarrero
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Racha Daher
- Laboratoire de Chimie Bioorganique et Bioinorganique-Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris Sud, 91405 Orsay, France and
| | - Anne J. Lenaerts
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - Michel Therisod
- Laboratoire de Chimie Bioorganique et Bioinorganique-Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris Sud, 91405 Orsay, France and
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - Jurgen Sygusch
- Département de Biochimie, Université de Montréal, CP 6128, Station centre-ville, Montréal PQ H3C 3J7, Canada
| | - Mary Jackson
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| |
Collapse
|
16
|
Mabiala-Bassiloua CG, Arthus-Cartier G, Hannaert V, Thérisod H, Sygusch J, Thérisod M. Mannitol Bis-phosphate Based Inhibitors of Fructose 1,6-Bisphosphate Aldolases. ACS Med Chem Lett 2011; 2:804-8. [PMID: 24900268 DOI: 10.1021/ml200129s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022] Open
Abstract
Several 5-O-alkyl- and 5-C-alkyl-mannitol bis-phosphates were synthesized and comparatively assayed as inhibitors of fructose bis-phosphate aldolases (Fbas) from rabbit muscle (taken as surrogate model of the human enzyme) and from Trypanosoma brucei. A limited selectivity was found in several instances. Crystallographic studies confirm that the 5-O-methyl derivative binds competitively with substrate and the 5-O-methyl moiety penetrating deeper into a shallow hydrophobic pocket at the active site. This observation can lead to the preparation of selective competitive or irreversible inhibitors of the parasite Fba.
Collapse
Affiliation(s)
| | | | - Véronique Hannaert
- Research Unit for Tropical Diseases, de Duve Institute, TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Hélène Thérisod
- ECBB, ICMMO (UMR 8182), LabEx LERMIT, Université Paris-Sud, UMR 8182, F-91405 Orsay, France
| | - Jurgen Sygusch
- Biochimie, Université de Montréal, CP 6128, Stn Centre-Ville Montréal, PQ H3C 3J7 Canada
| | - Michel Thérisod
- ECBB, ICMMO (UMR 8182), LabEx LERMIT, Université Paris-Sud, UMR 8182, F-91405 Orsay, France
| |
Collapse
|
17
|
Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP. Development of novel drugs for human African trypanosomiasis. Future Microbiol 2011; 6:677-91. [DOI: 10.2217/fmb.11.44] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human African trypanosomiasis (HAT) or ‘sleeping sickness’ is a neglected tropical disease caused by the parasite Trypanosoma brucei. Novel models for funding pharmaceutical development against HAT are beginning to yield results. The Drugs for Neglected Diseases initiative (DNDi) rediscovered a nitroimidazole, fexinidazole, which is currently in Phase I clinical trials. Novel benzoxaboroles, discovered by Anacor, Scynexis and DNDi, have good pharmacokinetic properties in plasma and in the brain and are curative in a murine model of stage two HAT with brain infection. The Consortium for Parasitic Drug Development (CPDD) has identified a series of dicationic compounds that can cure a monkey model of stage two HAT. With other screening programs yielding hits, the pipeline for new HAT drugs might finally begin to fill.
Collapse
Affiliation(s)
- Reto Brun
- Department Medical Parasitology & Infection Biology, Swiss Tropical & Public Health Institute, and, University of Basel, CH-4002 Basel, Switzerland
| | - Robert Don
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Robert T Jacobs
- Department of Chemistry, SCYNEXIS, Inc., PO Box 12878, Research Triangle Park, NC, 27709-2878, USA
| | - Michael Zhuo Wang
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
18
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
19
|
Cáceres AJ, Michels PAM, Hannaert V. Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 2009; 169:50-4. [PMID: 19748525 DOI: 10.1016/j.molbiopara.2009.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Aldolase (ALD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Trypanosoma brucei are considered to be promising targets for chemotherapeutic treatment of African sleeping sickness, because glycolysis is the single source of ATP for the parasite when living in the human bloodstream. Moreover, these enzymes appeared to possess distinct kinetic and structural properties that have already been exploited for the discovery of effective and selective inhibitors with trypanocidal activity. Here we present an experimental, quantitative assessment of the importance of these enzymes for the glycolytic pathway. This was achieved by decreasing the concentrations of ALD and GAPDH by RNA interference. The effects of these knockdowns on parasite growth, levels of various enzymes and transcripts, enzyme activities and glucose consumption were studied. A partial depletion of ALD and GAPDH was already sufficient to rapidly kill the trypanosomes. An effect was also observed on the activity of some other glycolytic enzymes.
Collapse
Affiliation(s)
- Ana Judith Cáceres
- Centro de Ingeniería Genética, Universidad de Los Andes, Mérida, Venezuela
| | | | | |
Collapse
|
20
|
Houjou H, Motoyama T, Araki K. Electronic Spectra of Mono- and Dinuclear Complexes of Fully π-Conjugated salphen Ligands Synthesized by Using 2,6-Dihydroxynaphthalene Carbaldehydes. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200801030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Houjou H, Motoyama T, Banno S, Yoshikawa I, Araki K. Experimental and Theoretical Studies on Constitutional Isomers of 2,6-Dihydroxynaphthalene Carbaldehydes. Effects of Resonance-Assisted Hydrogen Bonding on the Electronic Absorption Spectra. J Org Chem 2008; 74:520-9. [DOI: 10.1021/jo802345f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hirohiko Houjou
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takatoshi Motoyama
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Seisaku Banno
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Isao Yoshikawa
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Koji Araki
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
22
|
Mabiala-Bassiloua CG, Zwolinska M, Therisod H, Sygusch J, Therisod M. Separate synthesis and evaluation of glucitol bis-phosphate and mannitol bis-phosphate, as competitive inhibitors of fructose bis-phosphate aldolases. Bioorg Med Chem Lett 2008; 18:1735-7. [PMID: 18261903 DOI: 10.1016/j.bmcl.2008.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 11/16/2022]
Abstract
We report the first unambiguous syntheses of glucitol-1,6-bis-phosphate and mannitol-1,6-bis-phosphate and their competitive inhibition of various fructose bis-phosphate aldolases.
Collapse
|
23
|
Gayathri P, Balaram H, Murthy MRN. Structural biology of plasmodial proteins. Curr Opin Struct Biol 2007; 17:744-54. [PMID: 17875391 DOI: 10.1016/j.sbi.2007.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/29/2022]
Abstract
Malaria is a global disease infecting several million individuals annually. Malarial infection is particularly severe in the poorest parts of the world and is a major drain on their limited resources. Development of drug resistance and absence of a preventive vaccine have led to an immediate necessity for identifying new drug targets to combat malaria. Understanding the intricacies of parasite biology is essential to design novel intervention strategies that can prevent the growth of the parasite. The structural biology approach towards this goal involves the identification of key differences in the structures of the human and parasite enzymes and the determination of unique protein structures essential for parasite survival. This review covers the work on structural biology of plasmodial proteins carried out during the period of January 2006 to June 2007.
Collapse
Affiliation(s)
- P Gayathri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
24
|
de A S Navarro MV, Gomes Dias SM, Mello LV, da Silva Giotto MT, Gavalda S, Blonski C, Garratt RC, Rigden DJ. Structural flexibility in Trypanosoma brucei enolase revealed by X-ray crystallography and molecular dynamics. FEBS J 2007; 274:5077-89. [PMID: 17822439 DOI: 10.1111/j.1742-4658.2007.06027.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enolase is a validated drug target in Trypanosoma brucei. To better characterize its properties and guide drug design efforts, we have determined six new crystal structures of the enzyme, in various ligation states and conformations, and have carried out complementary molecular dynamics simulations. The results show a striking structural diversity of loops near the catalytic site, for which variation can be interpreted as distinct modes of conformational variability that are explored during the molecular dynamics simulations. Our results show that sulfate may, unexpectedly, induce full closure of catalytic site loops whereas, conversely, binding of inhibitor phosphonoacetohydroxamate may leave open a tunnel from the catalytic site to protein surface offering possibilities for drug development. We also present the first complex of enolase with a novel inhibitor 2-fluoro-2-phosphonoacetohydroxamate. The molecular dynamics results further encourage efforts to design irreversible species-specific inhibitors: they reveal that a parasite enzyme-specific lysine may approach the catalytic site more closely than crystal structures suggest and also cast light on the issue of accessibility of parasite enzyme-specific cysteines to chemically modifying reagents. One of the new sulfate structures contains a novel metal-binding site IV within the catalytic site cleft.
Collapse
|
25
|
Bosch J, Buscaglia CA, Krumm B, Ingason BP, Lucas R, Roach C, Cardozo T, Nussenzweig V, Hol WGJ. Aldolase provides an unusual binding site for thrombospondin-related anonymous protein in the invasion machinery of the malaria parasite. Proc Natl Acad Sci U S A 2007; 104:7015-20. [PMID: 17426153 PMCID: PMC1855406 DOI: 10.1073/pnas.0605301104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actomyosin motor located underneath the plasma membrane drives motility and host-cell invasion of apicomplexan parasites such as Plasmodium falciparum and Plasmodium vivax, the causative agents of malaria. Aldolase connects the motor actin filaments to transmembrane adhesive proteins of the thrombospondin-related anonymous protein (TRAP) family and transduces the motor force across the parasite surface. The TRAP-aldolase interaction is a distinctive and critical trait of host hepatocyte invasion by Plasmodium sporozoites, with a likely similar interaction crucial for erythrocyte invasion by merozoites. Here, we describe 2.4-A and 2.7-A structures of P. falciparum aldolase (PfAldo) obtained from crystals grown in the presence of the C-terminal hexapeptide of TRAP from Plasmodium berghei. The indole ring of the critical penultimate Trp-residue of TRAP fits snugly into a newly formed hydrophobic pocket, which is exclusively delimited by hydrophilic residues: two arginines, one glutamate, and one glutamine. Comparison with the unliganded PfAldo structure shows that the two arginines adopt new side-chain rotamers, whereas a 25-residue subdomain, forming a helix-loop-helix unit, shifts upon binding the TRAP-tail. The structural data are in agreement with decreased TRAP binding after mutagenesis of PfAldo residues in and near the induced TRAP-binding pocket. Remarkably, the TRAP- and actin-binding sites of PfAldo seem to overlap, suggesting that both the plasticity of the aldolase active-site region and the multimeric nature of the enzyme are crucial for its intriguing nonenzymatic function in the invasion machinery of the malaria parasite.
Collapse
Affiliation(s)
- Jürgen Bosch
- *Department of Biochemistry and
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, University of Washington, Seattle, WA 98195; and
| | - Carlos A. Buscaglia
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology and
| | | | | | | | | | - Timothy Cardozo
- Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Victor Nussenzweig
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology and
| | - Wim G. J. Hol
- *Department of Biochemistry and
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, University of Washington, Seattle, WA 98195; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Azéma L, Lherbet C, Baudoin C, Blonski C. Cell permeation of a Trypanosoma brucei aldolase inhibitor: evaluation of different enzyme-labile phosphate protecting groups. Bioorg Med Chem Lett 2006; 16:3440-3. [PMID: 16632348 DOI: 10.1016/j.bmcl.2006.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/03/2006] [Accepted: 04/03/2006] [Indexed: 11/22/2022]
Abstract
A series of four prodrugs directed against Trypanosoma brucei aldolase bearing various transient enzyme-labile phosphate protecting groups was developed. Herein, we describe the synthesis and evaluation of cell permeation of these prodrugs. The oxymethyl derivative was the most efficient prodrug with a good recovering of the free drug (IC(50)=20 microM) and without any measurable cytotoxicity.
Collapse
Affiliation(s)
- Laurent Azéma
- Laboratoire SPCMIB, Groupe de Chimie Organique Biologique, Université Paul Sabatier UMR CNRS 5068, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|