1
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
2
|
Qu Y, Zhou TY, Guo FW, Wei MY, Chen GY, Gu YC, Wang CY, Shao CL. Analogues of natural products yaequinolones as potential inflammatory inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 250:115183. [PMID: 36758306 DOI: 10.1016/j.ejmech.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Inflammation is connected with a variety of diseases and there is still a need to develop more effective and safer anti-inflammatory drugs. Herein, we synthesized, resolved, and characterized eight enantiopure isomers of yaequinolone J1 (1), yaequinolone J2 (2), 4'-desmethoxyyaequinolone J1 (3), and 4'-desmethoxyyaequinolone J2 (4). The key synthetic steps were extended and 34 racemic analogues modified at the 4-aryl, the N-position, and the pyran ring were designed and synthesized. All the synthesized compounds were evaluated for their anti-inflammatory activities in RAW 264.7 cells of which 13 compounds showed significant inhibition of nitric oxide (NO) production at a concentration of 0.1 μM, which was more potent than that of indomethacin. Furthermore, compounds (-)-3, (-)-4, 5h, and 6g reduced the production of IL-6 in LPS-stimulated RAW 264.7 cells at a concentration of 50 nM. A preliminary SAR indicated that 3'-Br (5h), 4'-NO2 (6g) on 4-phenyl and 3-bromobenzyl (7f) on the N-position were the most effective substituents. This is the first report of the anti-inflammatory yaequinolone alkaloids and the present study provided evidence for exploiting this series of highly efficacious derivatives for new anti-inflammatory agents.
Collapse
Affiliation(s)
- Yong Qu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China
| | - Tian-Yi Zhou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Feng-Wei Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
| |
Collapse
|
3
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
4
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
5
|
The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur J Med Chem 2020; 206:112692. [PMID: 32818869 DOI: 10.1016/j.ejmech.2020.112692] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/02/2023]
Abstract
The haemoflagellate protozoan Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas disease (CD), a potentially life-threatening disease. Little by little, remarkable progress has been achieved against CD, although it is still not enough. In the absence of effective chemotherapy, many research groups, organizations and pharmaceutical companies have focused their efforts on the search for compounds that could become viable drugs against CD. Within the wide variety of reported derivatives, this review summarizes and provides a global vision of the situation of those compounds that include broadly studied heterocycles in their structures due to their applications in medicinal chemistry: imidazole and benzimidazole rings. Therefore, the intention of this work is to present a compilation, as much as possible, of all the reported information, regarding these imidazole and benzimidazole derivatives against T. cruzi, as a starting point for future researchers in this field.
Collapse
|
6
|
Wang JR, Jiang XL, Hang QQ, Zhang S, Mei GJ, Shi F. Catalytic Asymmetric Conjugate Addition of Indoles to para-Quinone Methide Derivatives. J Org Chem 2019; 84:7829-7839. [PMID: 31117561 DOI: 10.1021/acs.joc.9b00710] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A catalytic asymmetric conjugate addition of indoles to o-hydroxyphenyl substituted p-quinone methides has been established in the presence of chiral phosphoric acid, which afforded chiral indole-containing triarylmethanes in generally high yields (54-98%) and good enantioselectivities (90:10-96:4 enantiomeric ratio). The control experiments indicated that o-hydroxyphenyl substituted p-quinone methides had a high possibility to transform into o-quinone methides in the presence of chiral phosphoric acid, and the formation of o-quinone methides might be a necessity for the reaction. This reaction will not only contribute to the research field of catalytic asymmetric transformations of p-quinone methides and o-quinone methides but also provide a useful method for the construction of enantioenriched triarylmethane frameworks.
Collapse
Affiliation(s)
- Jin-Rong Wang
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Xiao-Li Jiang
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Qing-Qing Hang
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Shu Zhang
- Department of Radiotherapy , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Feng Shi
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| |
Collapse
|
7
|
Synergic Effect of Allopurinol in Combination with Nitroheterocyclic Compounds against Trypanosoma cruzi. Antimicrob Agents Chemother 2019; 63:AAC.02264-18. [PMID: 30962342 PMCID: PMC6535576 DOI: 10.1128/aac.02264-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/24/2019] [Indexed: 11/20/2022] Open
Abstract
Combination therapy has gained attention as a possible strategy for overcoming the limitations of the present therapeutic arsenal for Chagas disease. The aim of this study was to evaluate the effect of allopurinol in association with nitroheterocyclic compounds on infection with the Y strain of Trypanosoma cruzi The in vitro effect of allopurinol plus benznidazole or nifurtimox on intracellular amastigotes in infected H9c2 cells was assessed in a 72-h assay. The interactions were classified as synergic for both allopurinol-nifurtimox (sums of fractional inhibitory concentrations [∑FICs] = 0.49 ± 0.08) and allopurinol-benznidazole (∑FICs = 0.48 ± 0.09). In the next step, infected Swiss mice were treated with allopurinol at 30, 60, and 90 mg/kg of body weight and with benznidazole at 25, 50, and 75 mg/kg in monotherapy and in combination at the same doses; as a reference treatment, another group of animals received benznidazole at 100 mg/kg. Allopurinol in monotherapy led to a smaller or nil effect in the reduction of parasite load and mortality rate. Treatment with benznidazole at suboptimal doses induced a transient suppression of parasitaemia with subsequent relapse in all animals treated with 25 and 50 mg/kg and in 80% of those that received 75 mg/kg. Administration of the drugs in combination significantly increased the cure rate to 60 to 100% among mice treated with benznidazole at 75 mg/kg plus 30, 60, or 90 mg/kg of allopurinol. These results show a positive interaction between allopurinol and benznidazole, and since both drugs are commercially available, their use in combination may be considered for the assessment in the treatment of Chagas disease patients.
Collapse
|
8
|
Huang G, Huang W, Guo J, Xu D, Qu X, Zhai P, Zheng X, Weng J, Lu G. Enantioselective Synthesis of Triarylmethanes
via
Organocatalytic 1,6‐Addition of Arylboronic Acids to
para
‐Quinone Methides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801446] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gong‐Bin Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Wei‐Hua Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Dong‐Liang Xu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiao‐Chen Qu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Pei‐Hong Zhai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiu‐Hua Zheng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
9
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
10
|
A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/bs.aihch.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Teixeira SF, de Azevedo RA, Silva AC, Braga RC, Jorge SD, Barbuto JAM, Andrade CH, Ferreira AK. Evaluation of cytotoxic effect of the combination of a pyridinyl carboxamide derivative and oxaliplatin on NCI-H1299 human non-small cell lung carcinoma cells. Biomed Pharmacother 2016; 84:1019-1028. [PMID: 27768927 DOI: 10.1016/j.biopha.2016.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/24/2016] [Accepted: 10/09/2016] [Indexed: 01/18/2023] Open
Abstract
Even with all improvements in both diagnostic and therapeutic techniques, lung cancer remains as the most lethal and prevalent cancer in the world. Therefore, new therapeutic drugs and new strategies of drug combination are necessary to provide treatments that are more efficient. Currently, standard therapy regimen for lung cancer includes platinum drugs, such as cisplatin, oxaliplatin, and carboplatin. Besides of the better toxicity profile of oxaliplatin when compared with cisplatin, peripheral neuropathy remains as a limitation of oxaliplatin dose. This study presents LabMol-12, a new pyridinyl carboxamide derivative with antileishmanial and antichagasic activity, as a new hit for lung cancer treatment, which induces apoptosis dependent of caspases in NCI-H1299 lung cancer cells both in monolayer and 3D culture. Moreover, LabMol-12 allows a reduction of oxaliplatin dose when they are combined, thereby, it is a relevant strategy for reducing the side effects of oxaliplatin with the same response. Molecular modeling studies corroborated the biological findings and suggested that the combined therapy can provide a better therapeutically profile effects against NSCLC. All these findings support the fact that the combination of oxaliplatin and LabMol-12 is a promising drug combination for lung cancer.
Collapse
Affiliation(s)
- Sarah Fernandes Teixeira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Prof. Lineu Prestes Avenue, 1730 Sao Paulo - SP, Brazil
| | - Ricardo Alexandre de Azevedo
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Science, University of São Paulo, Prof. Lineu Prestes Avenue, 1730 Sao Paulo - SP, Brazil
| | - Arthur Carvalho Silva
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, 240 Street, 74605-170, Goiania - GO, Brazil
| | - Rodolpho Campos Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, 240 Street, 74605-170, Goiania - GO, Brazil
| | - Salomão Dória Jorge
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Science, University of São Paulo, Prof. Lineu Prestes Avenue, 1730 Sao Paulo - SP, Brazil
| | - José Alexandre Marzagão Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Science, University of São Paulo, Prof. Lineu Prestes Avenue, 1730 Sao Paulo - SP, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, 240 Street, 74605-170, Goiania - GO, Brazil
| | - Adilson Kleber Ferreira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Science, University of São Paulo, Prof. Lineu Prestes Avenue, 1730 Sao Paulo - SP, Brazil.
| |
Collapse
|
12
|
Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors. Eur J Med Chem 2016; 109:173-86. [DOI: 10.1016/j.ejmech.2015.12.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022]
|
13
|
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev 2014; 114:11242-71. [PMID: 25337991 PMCID: PMC4254036 DOI: 10.1021/cr5003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Yong Choi
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, and Department of
Pathology, University of California—San
Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Vieira DF, Choi JY, Calvet CM, Siqueira-Neto JL, Johnston JB, Kellar D, Gut J, Cameron MD, McKerrow JH, Roush WR, Podust LM. Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51. J Med Chem 2014; 57:10162-75. [PMID: 25393646 PMCID: PMC4266343 DOI: 10.1021/jm501568b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Chagas disease is a chronic infection
in humans caused by Trypanosoma cruzi and manifested
in progressive cardiomyopathy
and/or gastrointestinal dysfunction. Limited therapeutic options to
prevent and treat Chagas disease put 8 million people infected with T. cruzi worldwide at risk. CYP51, involved in the biosynthesis
of the membrane sterol component in eukaryotes, is a promising drug
target in T. cruzi. We report the structure–activity
relationships (SAR) of an N-arylpiperazine series
of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors
designed to probe the impact of substituents in the terminal N-phenyl
ring on binding mode, selectivity and potency. Depending on the substituents
at C-4, two distinct ring binding modes, buried and solvent-exposed,
have been observed by X-ray structure analysis (resolution of 1.95–2.48
Å). The 5-chloro-substituted analogs 9 and 10 with no substituent at C-4 demonstrated improved selectivity
and potency, suppressing ≥99.8% parasitemia in mice when administered
orally at 25 mg/kg, b.i.d., for 4 days.
Collapse
Affiliation(s)
- Debora F Vieira
- Center for Discovery and Innovation in Parasitic Diseases, ‡Department of Pathology, and §Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Calvet C, Vieira D, Choi JY, Kellar D, Cameron MD, Siqueira-Neto JL, Gut J, Johnston JB, Lin L, Khan S, McKerrow JH, Roush WR, Podust LM. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency. J Med Chem 2014; 57:6989-7005. [PMID: 25101801 PMCID: PMC4148169 DOI: 10.1021/jm500448u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 12/26/2022]
Abstract
CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4-aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection.
Collapse
Affiliation(s)
- Claudia
M. Calvet
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
- Cellular
Ultra-Structure Laboratory, Oswaldo Cruz
Institute (IOC), FIOCRUZ, Rio de
Janeiro, Re de Janeiro 21040-362, Brazil
| | - Debora
F. Vieira
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| | - Jun Yong Choi
- Department
of Chemistry, Department of Molecular Therapeutics, Scripps
Florida, Jupiter, Florida 33458, United
States
| | - Danielle Kellar
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| | - Michael D. Cameron
- Department
of Chemistry, Department of Molecular Therapeutics, Scripps
Florida, Jupiter, Florida 33458, United
States
| | - Jair Lage Siqueira-Neto
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| | - Jiri Gut
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| | - Jonathan B. Johnston
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| | - Li Lin
- Department
of Chemistry, Department of Molecular Therapeutics, Scripps
Florida, Jupiter, Florida 33458, United
States
| | - Susan Khan
- Department
of Chemistry, Department of Molecular Therapeutics, Scripps
Florida, Jupiter, Florida 33458, United
States
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department
of Chemistry, Department of Molecular Therapeutics, Scripps
Florida, Jupiter, Florida 33458, United
States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic
Diseases, Department of Pathology and Department of Medicine, Department of Pharmaceutical
Chemistry, University of California San
Francisco, San Francisco, California 94158, United States
| |
Collapse
|
16
|
Friggeri L, Hargrove TY, Rachakonda G, Williams AD, Wawrzak Z, Di Santo R, De Vita D, Waterman MR, Tortorella S, Villalta F, Lepesheva GI. Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition. J Med Chem 2014; 57:6704-17. [PMID: 25033013 PMCID: PMC4136671 DOI: 10.1021/jm500739f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Chagas
disease, which was once thought to be confined to endemic
regions of Latin America, has now gone global, becoming a new worldwide
challenge with no cure available. The disease is caused by the protozoan
parasite Trypanosoma cruzi, which depends on the
production of endogenous sterols, and therefore can be blocked by
sterol 14α-demethylase (CYP51) inhibitors. Here we explore the
spectral binding parameters, inhibitory effects on T. cruzi CYP51 activity, and antiparasitic potencies of a new set of β-phenyl
imidazoles. Comparative structural characterization of the T. cruzi CYP51 complexes with the three most potent inhibitors
reveals two opposite binding modes of the compounds ((R)-6, EC50 = 1.2 nM, vs (S)-2/(S)-3, EC50 = 1.0/5.5 nM) and suggests the entrance into the CYP51 substrate
access channel and the heme propionate-supporting ceiling of the binding
cavity as two distinct areas of the protein that enhance molecular
recognition and therefore could be used for the development of more
effective antiparasitic drugs.
Collapse
Affiliation(s)
- Laura Friggeri
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bahia MT, Diniz LDF, Mosqueira VCF. Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opin Investig Drugs 2014; 23:1225-37. [DOI: 10.1517/13543784.2014.922952] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Suryadevara PK, Racherla KK, Olepu S, Norcross NR, Tatipaka HB, Arif JA, Planer JD, Lepesheva G, Verlinde CLMJ, Buckner FS, Gelb MH. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents. Bioorg Med Chem Lett 2013; 23:6492-9. [PMID: 24120539 PMCID: PMC4111244 DOI: 10.1016/j.bmcl.2013.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022]
Abstract
New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate.
Collapse
Affiliation(s)
| | | | - Srinivas Olepu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Neil R. Norcross
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Hari Babu Tatipaka
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jennifer A. Arif
- Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Joseph D. Planer
- Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Galina Lepesheva
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
19
|
Hargrove TY, Wawrzak Z, Alexander PW, Chaplin JH, Keenan M, Charman SA, Perez CJ, Waterman MR, Chatelain E, Lepesheva GI. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity. J Biol Chem 2013; 288:31602-15. [PMID: 24047900 DOI: 10.1074/jbc.m113.497990] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chagas disease, caused by the eukaryotic (protozoan) parasite Trypanosoma cruzi, is an alarming emerging global health problem with no clinical drugs available to treat the chronic stage. Azole inhibitors of sterol 14α-demethylase (CYP51) were proven effective against Chagas, and antifungal drugs posaconazole and ravuconazole have entered clinical trials in Spain, Bolivia, and Argentina. Here we present the x-ray structures of T. cruzi CYP51 in complexes with two alternative drug candidates, pyridine derivatives (S)-(4-chlorophenyl)-1-(4-(4-(trifluoromethyl)phenyl)-piperazin-1-yl)-2-(pyridin-3-yl)ethanone (UDO; Protein Data Bank code 3ZG2) and N-[4-(trifluoromethyl)phenyl]-N-[1-[5-(trifluoromethyl)-2-pyridyl]-4-piperi-dyl]pyridin-3-amine (UDD; Protein Data Bank code 3ZG3). These compounds have been developed by the Drugs for Neglected Diseases initiative (DNDi) and are highly promising antichagasic agents in both cellular and in vivo experiments. The binding parameters and inhibitory effects on sterol 14α-demethylase activity in reconstituted enzyme reactions confirmed UDO and UDD as potent and selective T. cruzi CYP51 inhibitors. Comparative analysis of the pyridine- and azole-bound CYP51 structures uncovered the features that make UDO and UDD T. cruzi CYP51-specific. The structures suggest that although a precise fit between the shape of the inhibitor molecules and T. cruzi CYP51 active site topology underlies their high inhibitory potency, a longer coordination bond between the catalytic heme iron and the pyridine nitrogen implies a weaker influence of pyridines on the iron reduction potential, which may be the basis for the observed selectivity of these compounds toward the target enzyme versus other cytochrome P450s, including human drug-metabolizing P450s. These findings may pave the way for the development of novel CYP51-targeted drugs with optimized metabolic properties that are very much needed for the treatment of human infections caused by eukaryotic microbial pathogens.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- From the Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Upadhayaya RS, Dixit SS, Földesi A, Chattopadhyaya J. New antiprotozoal agents: Their synthesis and biological evaluations. Bioorg Med Chem Lett 2013; 23:2750-8. [DOI: 10.1016/j.bmcl.2013.02.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/26/2022]
|
21
|
Andriani G, Amata E, Beatty J, Clements Z, Coffey BJ, Courtemanche G, Devine W, Erath J, Juda CE, Wawrzak Z, Wood JT, Lepesheva GI, Rodriguez A, Pollastri MP. Antitrypanosomal lead discovery: identification of a ligand-efficient inhibitor of Trypanosoma cruzi CYP51 and parasite growth. J Med Chem 2013; 56:2556-67. [PMID: 23448316 DOI: 10.1021/jm400012e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi , and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T. cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Grasiella Andriani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Keenan M, Alexander PW, Diao H, Best WM, Khong A, Kerfoot M, Thompson RCA, White KL, Shackleford DM, Ryan E, Gregg AD, Charman SA, von Geldern TW, Scandale I, Chatelain E. Design, structure-activity relationship and in vivo efficacy of piperazine analogues of fenarimol as inhibitors of Trypanosoma cruzi. Bioorg Med Chem 2013; 21:1756-63. [PMID: 23462713 DOI: 10.1016/j.bmc.2013.01.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
A scaffold hopping exercise undertaken to expand the structural diversity of the fenarimol series of anti-Trypanosoma cruzi (T. cruzi) compounds led to preparation of simple 1-[phenyl(pyridin-3-yl)methyl]piperazinyl analogues of fenarimol which were investigated for their ability to inhibit T. cruzi in vitro in a whole organism assay. A range of compounds bearing amide, sulfonamide, carbamate/carbonate and aryl moieties exhibited low nM activities and two analogues were further studied for in vivo efficacy in a mouse model of T. cruzi infection. One compound, the citrate salt of 37, was efficacious in a mouse model of acute T. cruzi infection after once daily oral dosing at 20, 50 and 100 mg/kg for 5 days.
Collapse
Affiliation(s)
- Martine Keenan
- Epichem Pty Ltd, Murdoch University Campus, South Street, Murdoch, Western Australia 6150, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Choy JW, Bryant C, Calvet CM, Doyle PS, Gunatilleke SS, Leung SSF, Ang KKH, Chen S, Gut J, Oses-Prieto JA, Johnston JB, Arkin MR, Burlingame AL, Taunton J, Jacobson MP, McKerrow JM, Podust LM, Renslo AR. Chemical-biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target. Beilstein J Org Chem 2013; 9:15-25. [PMID: 23400640 PMCID: PMC3566858 DOI: 10.3762/bjoc.9.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibition of the Trypanosoma cruzi cysteine protease cruzain has been proposed as a therapeutic approach for the treatment of Chagas’ disease. Among the best-studied cruzain inhibitors to date is the vinylsulfone K777 (1), which has proven effective in animal models of Chagas’ disease. Recent structure–activity studies aimed at addressing potential liabilities of 1 have now produced analogues such as N-[(2S)-1-[[(E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]amino]-3-(4-methylphenyl)-1-oxopropan-2-yl]pyridine-4-carboxamide (4), which is trypanocidal at ten-fold lower concentrations than for 1. We now find that the trypanocidal activity of 4 derives primarily from the inhibition of T. cruzi 14-α-demethylase (TcCYP51), a cytochrome P450 enzyme involved in the biosynthesis of ergosterol in the parasite. Compound 4 also inhibits mammalian CYP isoforms but is trypanocidal at concentrations below those required to significantly inhibit mammalian CYPs in vitro. A chemical-proteomics approach employing an activity-based probe derived from 1 was used to identify mammalian cathepsin B as a potentially important off-target of 1 and 4. Computational docking studies and the evaluation of truncated analogues of 4 reveal structural determinants for TcCYP51 binding, information that will be useful in further optimization of this new class of inhibitors.
Collapse
Affiliation(s)
- Jonathan W Choy
- Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA ; Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA ; Department of Cellular and Molecular Pharmacology, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Recent Developments in Sterol 14-demethylase Inhibitors for Chagas Disease. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:236-242. [PMID: 23277882 DOI: 10.1016/j.ijpddr.2011.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The protozoan parasite, Trypanosoma cruzi, causes the most prevalent parasitic infection in the American continent. It gives rise to life-long infection in humans and results in severe cardiomyopathy or other life-threatening manifestations (Chagas disease) in ~30% of those infected. Animal models and clinical studies indicate that etiological treatment of the infection reduces the risk of developing the disease manifestations. Unfortunately, the existing chemotherapeutics have suboptimal antiparasitic activity and cause significant side effects in many patients, thus better anti-trypanosomal drugs are greatly needed. The sterol biosynthesis pathway has received attention as a target for the development of new drugs for Chagas disease. In particular, inhibitors of sterol 14-demethylase (CYP51) are shown to be extremely active on Trypanosoma cruzi in vitro and in animal models. Antifungal drugs (i.e. azoles) in clinical use or in clinical studies have been extensively tested preclinically on Trypanosoma cruzi with posaconazole and ravuconazole demonstrating the most promising activity. As a result, posaconazole and a pro-drug of ravuconazole (E1224) are currently being evaluated in Phase II studies for Chagas disease. Additional CYP51 inhibitors that are specifically optimized for anti-Trypanosoma cruzi activity are in development by academia. These represent an alternative to proprietary antifungal drugs if the latter fall short in clinical trials or are too expensive for widespread clinical use in disease endemic countries. The research over the next few years will help define the role of CYP51 inhibitors, alone or in combination with other drugs, for managing patients with Chagas disease.
Collapse
|
25
|
Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Negl Trop Dis 2012; 6:e1896. [PMID: 23209849 PMCID: PMC3510080 DOI: 10.1371/journal.pntd.0001896] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. Human African Sleeping Sickness (HAT) is a disease caused by sub-species of Trypanosoma. The disease affects developing countries within Africa, mainly occurring in rural regions that lack resources to purchase drugs for treatment. Drugs that are currently available have significant side effects, and treatment regimes are lengthy and not always transferrable to the field. In consideration of these factors, new drugs are urgently needed for the treatment of HAT. To discover compounds suitable for drug discovery, cultured trypanosomes can be tested against libraries of compounds to identify candidates for further biological analysis. We have utilised a 384-well format, Alamar Blue viability assay to screen a large non-proprietary compound collection against Trypanosoma brucei brucei bloodstream form lister 427. The assay was shown to be reproducible, with reference compounds exhibiting activity in agreement with previously published results. Primary screening hits were retested against T.b. brucei and HEK293 mammalian cells in order to assess selectivity against the parasite. Selective hits were characterised by chemical analysis, taking into consideration drug-like properties amenable to further progression. Priority compounds were tested against a panel of protozoan parasites, including Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Five new compound classes were discovered that are amenable to progression in the drug discovery process for HAT.
Collapse
|
26
|
Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei. Int J Parasitol 2012; 42:975-89. [PMID: 22964455 DOI: 10.1016/j.ijpara.2012.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/19/2012] [Accepted: 07/22/2012] [Indexed: 11/22/2022]
Abstract
Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro.
Collapse
|
27
|
Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J, Engel JC, Ang KKH, Mulvaney J, Chen S, Arkin MR, McKerrow JH, Podust LM. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis 2012; 6:e1736. [PMID: 22860142 PMCID: PMC3409115 DOI: 10.1371/journal.pntd.0001736] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. METHODOLOGY/PRINCIPAL FINDINGS The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D) values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50) <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50) of 17 nM and was trypanocidal at 40 nM. CONCLUSIONS/SIGNIFICANCE The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.
Collapse
Affiliation(s)
- Shamila S. Gunatilleke
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Claudia M. Calvet
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Chiung-Kuang Chen
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Grigori Erenburg
- King's University College at the University of Western Ontario, London, Ontario, Canada
| | - Jiri Gut
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Juan C. Engel
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Kenny K. H. Ang
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph Mulvaney
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Steven Chen
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Michelle R. Arkin
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Larissa M. Podust
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
28
|
Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib. Antimicrob Agents Chemother 2012; 56:4914-21. [PMID: 22777048 DOI: 10.1128/aac.06244-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas disease, caused by the protozoan pathogen Trypanosoma cruzi, remains a challenging infection due to the unavailability of safe and efficacious drugs. Inhibitors of the trypanosome sterol 14α-demethylase enzyme (CYP51), including azole antifungal drugs, are promising candidates for development as anti-Chagas disease drugs. Posaconazole is under clinical investigation for Chagas disease, although the high cost of this drug may limit its widespread use. We have previously reported that the human protein farnesyltransferase (PFT) inhibitor tipifarnib has potent anti-T. cruzi activity by inhibiting the CYP51 enzyme. Furthermore, we have developed analogs that minimize the PFT-inhibitory activity and enhance the CYP51 inhibition. In this paper, we describe the efficacy of the lead tipifarnib analog compared to that of posaconazole in a murine model of T. cruzi infection. The plasma exposure profiles for each compound following a single oral dose in mice and estimated exposure parameters after repeated twice-daily dosing for 20 days are also presented. The lead tipifarnib analog had potent suppressive activity on parasitemia in mice but was unsuccessful at curing mice, whereas posaconazole as well as benznidazole cured 3 of 5 and 4 of 6 mice, respectively. The efficacy results are consistent with posaconazole having substantially higher predicted exposure than that of the tipifarnib analog after repeat twice-daily administration. Further changes to the tipifarnib analogs to reduce plasma clearance are therefore likely to be important. A crystal structure of a trypanosomal CYP51 bound to a tipifarnib analog is reported here and provides new insights to guide structure-based drug design for further optimized compounds.
Collapse
|
29
|
Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). ADVANCES IN PARASITOLOGY 2011; 75:65-87. [PMID: 21820552 DOI: 10.1016/b978-0-12-385863-4.00004-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are at least two obvious features that must be considered upon targeting specific metabolic pathways/enzymes for drug development: the pathway must be essential and the enzyme must allow the design of pharmacologically useful inhibitors. Here, we describe Trypanosoma cruzi sterol 14α-demethylase as a promising target for anti-Chagasic chemotherapy. The use of anti-fungal azoles, which block sterol biosynthesis and therefore membrane formation in fungi, against the protozoan parasite has turned out to be highly successful: a broad spectrum anti-fungal drug, the triazole compound posaconazole, is now entering phase II clinical trials for treatment of Chagas disease. This review summarizes comparative information on anti-fungal azoles and novel inhibitory scaffolds selective for Trypanosomatidae sterol 14α-demethylase through the lens of recent structure/functional characterization of the target enzyme. We believe our studies open wide opportunities for rational design of novel, pathogen-specific and therefore more potent and efficient anti-trypanosomal drugs.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
30
|
Muscia GC, Cazorla SI, Frank FM, Borosky GL, Buldain GY, Asís SE, Malchiodi EL. Synthesis, trypanocidal activity and molecular modeling studies of 2-alkylaminomethylquinoline derivatives. Eur J Med Chem 2011; 46:3696-703. [PMID: 21664012 DOI: 10.1016/j.ejmech.2011.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/19/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Research and development of new drugs effective in the treatment of Trypanosoma cruzi infections are a real need for the 16 million people infected in the Americas. In a previous work, a quinoline derivative substituted by a 2-piperidylmethyl moiety showed to be active against Chagas disease and was considered a lead compound for further optimization. A series of ten analogous derivatives were tested against epimastigotes as a first approach. In view of their promising results, six of them were evaluated against the blood and intracellular replicative forms of the parasite in humans. Among them, compound 12 which possesses a 6-acetamidohexylamino substituent showed remarkable improvement in activity against epimastigotes, trypomastigotes and amastigotes compared with the structure lead, as well as a good selectivity index for the two parasite stages present in humans. In addition, treatment of infected mice with compound 12 induced a significant reduction in parasitemia compared with non-treated mice. Molecular modeling studies were performed by computational methods in order to elucidate the factors determining these experimental bioactivities.
Collapse
Affiliation(s)
- Gisela C Muscia
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
31
|
Robertson SA, Renslo AR. Drug discovery for neglected tropical diseases at the Sandler Center. Future Med Chem 2011; 3:1279-88. [PMID: 21859302 PMCID: PMC3199145 DOI: 10.4155/fmc.11.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Sandler Center's approach to target-based drug discovery for neglected tropical diseases is to focus on parasite targets that are homologous to human targets being actively investigated in the pharmaceutical industry. In this way we attempt to use both the know-how and actual chemical matter from other drug-development efforts to jump start the discovery process for neglected tropical diseases. Our approach is akin to drug repurposing, except that we seek to repurpose leads rather than drugs. Medicinal chemistry can then be applied to optimize the leads specifically for the desired antiparasitic indication.
Collapse
Affiliation(s)
- Stephanie A Robertson
- Sandler Center for Drug Discovery, Department of Pharmaceutical Chemistry, University of California, 600 16th Street, S-272, San Francisco, CA 94158, USA.
| | | |
Collapse
|
32
|
|
33
|
Apt W. Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des Devel Ther 2010; 4:243-53. [PMID: 20957215 PMCID: PMC2948934 DOI: 10.2147/dddt.s8338] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Indexed: 12/21/2022] Open
Abstract
Chagas disease must be treated in all its stages: acute, indeterminate, chronic, and initial and middle determinant chronic, due to the fact that DNA of the parasite can be demonstrated by PCR in chronic cases, where optical microscopy does not detect parasites. Nifurtimox (NF) and benznidazole (BNZ) are the drugs accepted to treat humans based upon ethical considerations and efficiency. However, both the drugs produce secondary effects in 30% of the cases, and the treatment must be given for at least 30-60 days. Other useful drugs are itraconazole and posaconazole. The latter may be the drug to treat Chagas disease in the future when all the investigations related to it are finished. At present, there is no criterion of cure for chronic cases since in the majority, the serology remains positive, although it may decrease. In acute cases, 70% cure with NF and 75% with BNZ is achieved. In congenital cases, 100% cure is obtained if the treatment is performed during the first year of life. In chronic acquired cases, 20% cure and 50% improvement of the electrocardiographic changes are obtained with itraconazole.
Collapse
Affiliation(s)
- Werner Apt
- University of Chile, Faculty of Medicine, Santiago, Chile.
| |
Collapse
|
34
|
Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 2010; 115:55-68. [PMID: 19900395 DOI: 10.1016/j.actatropica.2009.10.023] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/31/2023]
Abstract
A critical review of the development of specific chemotherapeutic approaches for the management of American Trypanosomiasis or Chagas disease is presented, including controversies on the pathogenesis of the disease, the initial efforts that led to the development of currently available drugs (nifurtimox and benznidazole), limitations of these therapies and novel approaches for the development of anti-Trypanosoma cruzi drugs, based on our growing understanding of the biology of this parasite. Among the later, the most promising approaches are ergosterol biosynthesis inhibitors such as posaconazole and ravuconazole, poised to enter clinical trials for chronic Chagas disease in the short term; inhibitors of cruzipain, the main cysteine protease of T. cruzi, essential for its survival and proliferation in vitro and in vivo; bisphosphonates, metabolic stable pyrophosphate analogs that have trypanocidal activity through the inhibition of the parasite's farnesyl-pyrophosphate synthase or hexokinase; inhibitors of trypanothione synthesis and redox metabolism and inhibitors of hypoxanthine-guanine phosphoribosyl-transferase, an essential enzyme for purine salvage in T. cruzi and related organisms. Finally, the economic and political challenges faced by development of drugs for the treatment of neglected tropical diseases, which afflict almost exclusively poor populations in developing countries, are analyzed and recent potential solutions for this conundrum are discussed.
Collapse
|
35
|
Kraus JM, Tatipaka HB, McGuffin SA, Chennamaneni NK, Karimi M, Arif J, Verlinde CLMJ, Buckner FS, Gelb MH. Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery. J Med Chem 2010; 53:3887-98. [PMID: 20429511 DOI: 10.1021/jm9013136] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that the cancer drug clinical candidate tipifarnib kills the causative agent of Chagas disease, Trypanosoma cruzi, by blocking ergosterol biosynthesis at the level of inhibition of lanosterol 14alpha-demethylase. Tipifarnib is an inhibitor of human protein farnesyltransferase. We synthesized tipifarnib analogues that no longer bind to protein farnesyltransferase and display increased potency for killing parasites. This was achieved in a structure-guided fashion by changing the substituents attached to the phenyl group at the 4-position of the quinoline ring of tipifarnib and by replacing the amino group by OMe. Several compounds that kill Trypanosoma cruzi at subnanomolar concentrations and are devoid of protein farnesyltransferase inhibition were discovered. The compounds are shown to be advantageous over other lanosterol 14alpha-demethylase inhibitors in that they show only modest potency for inhibition of human cytochrome P450 (3A4). Since tipifarnib displays high oral bioavailability and acceptable pharmacokinetic properties, the newly discovered tipifarnib analogues are ideal leads for the development of drugs to treat Chagas disease.
Collapse
Affiliation(s)
- James M Kraus
- Department of Chemistry, University of Washington, Seattle, Washington 98195-7185, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Doyle PS, Chen CK, Johnston JB, Hopkins SD, Leung SSF, Jacobson MP, Engel JC, McKerrow JH, Podust LM. A nonazole CYP51 inhibitor cures Chagas' disease in a mouse model of acute infection. Antimicrob Agents Chemother 2010; 54:2480-8. [PMID: 20385875 PMCID: PMC2876414 DOI: 10.1128/aac.00281-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease, the leading cause of heart failure in Latin America, is caused by the kinetoplastid protozoan Trypanosoma cruzi. The sterols of T. cruzi resemble those of fungi, both in composition and in biosynthesis. Azole inhibitors of sterol 14alpha-demethylase (CYP51) successfully treat fungal infections in humans, and efforts to adapt the success of antifungal azoles posaconazole and ravuconazole as second-use agents for Chagas' disease are under way. However, to address concerns about the use of azoles for Chagas' disease, including drug resistance and cost, the rational design of nonazole CYP51 inhibitors can provide promising alternative drug chemotypes. We report the curative effect of the nonazole CYP51 inhibitor LP10 in an acute mouse model of T. cruzi infection. Mice treated with an oral dose of 40 mg LP10/kg of body weight twice a day (BID) for 30 days, initiated 24 h postinfection, showed no signs of acute disease and had histologically normal tissues after 6 months. A very stringent test of cure showed that 4/5 mice had negative PCR results for T. cruzi, and parasites were amplified by hemoculture in only two treated mice. These results compare favorably with those reported for posaconazole. Electron microscopy and gas chromatography-mass spectrometry (GC-MS) analysis of sterol composition confirmed that treatment with LP10 blocked the 14alpha-demethylation step and induced breakdown of parasite cell membranes, culminating in severe ultrastructural and morphological alterations and death of the clinically relevant amastigote stage of the parasite.
Collapse
Affiliation(s)
- Patricia S. Doyle
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Chiung-Kuang Chen
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Jonathan B. Johnston
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Stephanie D. Hopkins
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Siegfried S. F. Leung
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Matthew P. Jacobson
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Juan C. Engel
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Larissa M. Podust
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
37
|
Chen CK, Leung SSF, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis 2010; 4:e651. [PMID: 20386598 PMCID: PMC2850312 DOI: 10.1371/journal.pntd.0000651] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/16/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51), which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding. METHODOLOGY/PRINCIPAL FINDINGS We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 A and 2.27 A), and from the related pathogen T. brucei (resolutions of 2.7 A and 2.6 A), co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180 degrees depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target. CONCLUSIONS/SIGNIFICANCE The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and offer a starting point for rationally designed anti-Chagasic drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Chiung-Kuang Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Siegfried S. F. Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Christophe Guilbert
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California, United States of America
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| |
Collapse
|
38
|
Cerecetto H, González M. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase. Pharmaceuticals (Basel) 2010; 3:810-838. [PMID: 27713281 PMCID: PMC4034012 DOI: 10.3390/ph3040810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.
Collapse
Affiliation(s)
- Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Laboratorio de Química Orgánica, Instituto de Química Biológica-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
39
|
Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:311-8. [PMID: 19753490 DOI: 10.1590/s0074-02762009000900041] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022] Open
Abstract
This article presents an overview of the currently available drugs nifurtimox (NFX) and benznidazole (BZN) used against Trypanosoma cruzi, the aetiological agent of Chagas disease; herein we discuss their limitations along with potential alternatives with a focus on ergosterol biosynthesis inhibitors (EBI). These compounds are currently the most advanced candidates for new anti-T. cruzi agents given that they block de novo production of 24-alkyl-sterols, which are essential for parasite survival and cannot be replaced by a host's own cholesterol. Among these compounds, new triazole derivatives that inhibit the parasite's C14alpha sterol demethylase are the most promising, as they have been shown to have curative activity in murine models of acute and chronic Chagas disease and are active against NFX and BZN-resistant T. cruzi strains; among this class of compounds, posaconazole (Schering-Plough Research Institute) and ravuconazole (Eisai Company) are poised for clinical trials in Chagas disease patients in the short term. Other T. cruzi-specific EBI, with in vitro and in vivo potency, include squalene synthase, lanosterol synthase and squalene epoxidase-inhibitors as well as compounds with dual mechanisms of action (ergosterol biosynthesis inhibition and free radical generation), but they are less advanced in their development process. The main putative advantages of EBI over currently available therapies include their higher potency and selectivity in both acute and chronic infections, activity against NFX and BZN-resistant T. cruzi strains, and much better tolerability and safety profiles. Limitations may include complexity and cost of manufacture of the new compounds. As for any new drug, such compounds will require extensive clinical testing before being introduced for clinical use, and the complexity of such studies, particularly in chronic patients, will be compounded by the current limitations in the verification of true parasitological cures for T. cruzi infections.
Collapse
Affiliation(s)
- Julio A Urbina
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
40
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
41
|
Chennamaneni NK, Arif J, Buckner FS, Gelb MH. Isoquinoline-based analogs of the cancer drug clinical candidate tipifarnib as anti-Trypanosoma cruzi agents. Bioorg Med Chem Lett 2009; 19:6582-4. [PMID: 19875282 DOI: 10.1016/j.bmcl.2009.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
We developed a synthetic route to prepare isoquinoline analogs of the cancer drug clinical candidate tipifarnib. We show that these compounds kill Trypanosoma cruzi amastigotes grown in mammalian host cells at concentrations in the low nanomolar range. These isoquinolines represent new leads for the development of drugs to treat Chagas disease.
Collapse
|
42
|
Suryadevara PK, Olepu S, Lockman JW, Ohkanda J, Karimi M, Verlinde CLMJ, Kraus JM, Schoepe J, Van Voorhis WC, Hamilton AD, Buckner FS, Gelb MH. Structurally simple inhibitors of lanosterol 14alpha-demethylase are efficacious in a rodent model of acute Chagas disease. J Med Chem 2009; 52:3703-15. [PMID: 19463001 DOI: 10.1021/jm900030h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report structure-activity studies of a large number of dialkyl imidazoles as inhibitors of Trypanosoma cruzi lanosterol-14alpha-demethylase (L14DM). The compounds have a simple structure compared to posaconazole, another L14DM inhibitor that is an anti-Chagas drug candidate. Several compounds display potency for killing T. cruzi amastigotes in vitro with values of EC(50) in the 0.4-10 nM range. Two compounds were selected for efficacy studies in a mouse model of acute Chagas disease. At oral doses of 20-50 mg/kg given after establishment of parasite infection, the compounds reduced parasitemia in the blood to undetectable levels, and analysis of remaining parasites by PCR revealed a lack of parasites in the majority of animals. These dialkyl imidazoles are substantially less expensive to produce than posaconazole and are appropriate for further development toward an anti-Chagas disease clinical candidate.
Collapse
|
43
|
Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, Chang S, Pecoul B. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis 2009; 3:e484. [PMID: 19582163 PMCID: PMC2702098 DOI: 10.1371/journal.pntd.0000484] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Isabela Ribeiro
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | | | - Fabiana Alves
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Graciela Diap
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Robert Don
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Michael O. Harhay
- Masters of Public Health Program, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Shing Chang
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Bernard Pecoul
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| |
Collapse
|
44
|
Sousa SF, Fernandes PA, Ramos MJ. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme. Bioorg Med Chem 2009; 17:3369-78. [DOI: 10.1016/j.bmc.2009.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
45
|
Kraus JM, Verlinde CLMJ, Karimi M, Lepesheva GI, Gelb MH, Buckner FS. Rational modification of a candidate cancer drug for use against Chagas disease. J Med Chem 2009; 52:1639-47. [PMID: 19239254 DOI: 10.1021/jm801313t] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chagas disease is one of the major neglected diseases of the world. Existing drug therapies are limited, ineffective, and highly toxic. We describe a novel strategy of drug discovery of adapting an existing clinical compound with excellent pharmaceutical properties to target a pathogenic organism. The protein farnesyltransferase (PFT) inhibitor tipifarnib, now in phase III anticancer clinical trials, was previously found to kill Trypanosoma cruzi by blocking sterol 14 alpha-demethylase (14DM). We rationally developed tipifarnib analogues that display reduced affinity for human PFT to reduce toxicity while increasing affinity for parasite 14DM. The lead compound has picomolar activity against cultured T. cruzi and is efficacious in a mouse model of acute Chagas disease.
Collapse
Affiliation(s)
- James M Kraus
- Department of Chemistry, University of Washington, Seattle, Washington 98195-7185, USA
| | | | | | | | | | | |
Collapse
|
46
|
Buckner FS. Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:61-80. [PMID: 18365659 DOI: 10.1007/978-0-387-77570-8_6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chagas disease is caused by infection with the protozoan pathogen, Trypanosoma cruzi. The only approved therapeutics for treating Chagas disease are two nitroheterocyclic compounds (benznidazole and nifurtimox) that are suboptimal due to poor curative activity for chronic Chagas disease and high rates of adverse drug reactions. Sterol 14-demethylase inhibitors include azole antifungal drugs such as ketoconazole, fluconazole, itraconazole, and others. The first reports of potent activity of azole antifungal drugs against Trypanosoma cruzi came out about 25 years ago. Since then, a sizeable literature has accumulated on this topic. Newer triazole compounds such as posaconazole and D0870 have been shown to be effective at curing mice with chronic Trypanosoma cruzi infection. Small clinical studies with-ketoconazole or itraconazole in humans with chronic Chagas disease have not demonstrated significant curative activity. However, there is good reason for optimism that newer compounds with greater potency and improved pharmacokinetic properties might be more efficacious. Data have been published demonstrating synergistic activity of azole drugs with various other compounds, indicating that combination chemotherapy may be an effective strategy as this field moves ahead. In light of the near absence of adequate therapeutics for curing patients with chronic Chagas disease, additional effort to develop better drugs needs to be a priority.
Collapse
|
47
|
Eddine AN, von Kries JP, Podust MV, Warrier T, Kaufmann SHE, Podust LM. X-ray structure of 4,4'-dihydroxybenzophenone mimicking sterol substrate in the active site of sterol 14alpha-demethylase (CYP51). J Biol Chem 2008; 283:15152-9. [PMID: 18367444 PMCID: PMC2397474 DOI: 10.1074/jbc.m801145200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
A universal step in the biosynthesis of membrane sterols and steroid hormones is the oxidative removal of the 14alpha-methyl group from sterol precursors by sterol 14alpha-demethylase (CYP51). This enzyme is a primary target in treatment of fungal infections in organisms ranging from humans to plants, and development of more potent and selective CYP51 inhibitors is an important biological objective. Our continuing interest in structural aspects of substrate and inhibitor recognition in CYP51 led us to determine (to a resolution of 1.95A) the structure of CYP51 from Mycobacterium tuberculosis (CYP51(Mt)) co-crystallized with 4,4'-dihydroxybenzophenone (DHBP), a small organic molecule previously identified among top type I binding hits in a library screened against CYP51(Mt). The newly determined CYP51(Mt)-DHBP structure is the most complete to date and is an improved template for three-dimensional modeling of CYP51 enzymes from fungal and prokaryotic pathogens. The structure demonstrates the induction of conformational fit of the flexible protein regions and the interactions of conserved Phe-89 essential for both fungal drug resistance and catalytic function, which were obscure in the previously characterized CYP51(Mt)-estriol complex. DHBP represents a benzophenone scaffold binding in the CYP51 active site via a type I mechanism, suggesting (i) a possible new class of CYP51 inhibitors targeting flexible regions, (ii) an alternative catalytic function for bacterial CYP51 enzymes, and (iii) a potential for hydroxybenzophenones, widely distributed in the environment, to interfere with sterol biosynthesis. Finally, we show the inhibition of M. tuberculosis growth by DHBP in a mouse macrophage model.
Collapse
Affiliation(s)
- Ali Nasser Eddine
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Jens P. von Kries
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Mikhail V. Podust
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Thulasi Warrier
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Stefan H. E. Kaufmann
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Larissa M. Podust
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
48
|
Lepesheva GI, Ott RD, Hargrove TY, Kleshchenko YY, Schuster I, Nes WD, Hill GC, Villalta F, Waterman MR. Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. ACTA ACUST UNITED AC 2008; 14:1283-93. [PMID: 18022567 DOI: 10.1016/j.chembiol.2007.10.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 11/17/2022]
Abstract
Sterol 14alpha-demethylases (CYP51) serve as primary targets for antifungal drugs, and specific inhibition of CYP51s in protozoan parasites Trypanosoma brucei (TB) and Trypanosoma cruzi (TC) might provide an effective treatment strategy for human trypanosomiases. Primary inhibitor selection is based initially on the cytochrome P450 spectral response to ligand binding. Ligands that demonstrate strongest binding parameters were examined as inhibitors of reconstituted TB and TC CYP51 activity in vitro. Direct correlation between potency of the compounds as CYP51 inhibitors and their antiparasitic effect in TB and TC cells implies essential requirements for endogenous sterol production in both trypanosomes and suggests a lead structure with a defined region most promising for further modifications. The approach developed here can be used for further large-scale search for new CYP51 inhibitors.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Labadie GR, Viswanathan R, Poulter CD. Farnesyl diphosphate analogues with omega-bioorthogonal azide and alkyne functional groups for protein farnesyl transferase-catalyzed ligation reactions. J Org Chem 2007; 72:9291-7. [PMID: 17979291 DOI: 10.1021/jo7017747] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eleven farnesyl diphosphate analogues, which contained omega-azide or alkyne substituents suitable for bioorthogonal Staudinger and Huisgen [3 + 2] cycloaddition coupling reactions, were synthesized. The analogues were evaluated as substrates for the alkylation of peptide cosubstrates by yeast protein farnesyl transferase. Five of the diphosphates were good alternative substrates for farnesyl diphosphate (FPP). Steady-state kinetic constants were measured for the active compounds, and the products were characterized by HPLC and LC-MS. Two of the analogues gave steady-state kinetic parameters (kcat and Km) very similar to those of the natural substrate.
Collapse
|
50
|
Puntambekar DS, Giridhar R, Yadav MR. Inhibition of farnesyltransferase: a rational approach to treat cancer? J Enzyme Inhib Med Chem 2007; 22:127-40. [PMID: 17518338 DOI: 10.1080/14756360601072841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This article presents in brief the development of farnesyltransferase inhibitors (FTIs) and their preclinical and clinical status. In this review the mechanism of action of FTIs is discussed and their selectivity issue towards tumor cells is also addressed. The significant efficacy of FTIs as single or combined agents in preclinical studies stands in contrast with only moderate effects in Clinical Phase II-III studies. This suggests that there is a need to further explore and understand the complex mechanism of action of FTIs and their interaction with cytotoxic agents.
Collapse
Affiliation(s)
- Devendra S Puntambekar
- Pharmacy Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, Gujarat, India
| | | | | |
Collapse
|