1
|
Dat TTH, Cuc NTK, Cuong PV, Smidt H, Sipkema D. Diversity and Antimicrobial Activity of Vietnamese Sponge-Associated Bacteria. Mar Drugs 2021; 19:md19070353. [PMID: 34206202 PMCID: PMC8307940 DOI: 10.3390/md19070353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the diversity and antimicrobial activity of cultivable bacteria associated with Vietnamese sponges. In total, 460 bacterial isolates were obtained from 18 marine sponges. Of these, 58.3% belonged to Proteobacteria, 16.5% to Actinobacteria, 18.0% to Firmicutes, and 7.2% to Bacteroidetes. At the genus level, isolated strains belonged to 55 genera, of which several genera, such as Bacillus, Pseudovibrio, Ruegeria, Vibrio, and Streptomyces, were the most predominant. Culture media influenced the cultivable bacterial composition, whereas, from different sponge species, similar cultivable bacteria were recovered. Interestingly, there was little overlap of bacterial composition associated with sponges when the taxa isolated were compared to cultivation-independent data. Subsequent antimicrobial assays showed that 90 isolated strains exhibited antimicrobial activity against at least one of seven indicator microorganisms. From the culture broth of the isolated strain with the strongest activity (Bacillus sp. M1_CRV_171), four secondary metabolites were isolated and identified, including cyclo(L-Pro-L-Tyr) (1), macrolactin A (2), macrolactin H (3), and 15,17-epoxy-16-hydroxy macrolactin A (4). Of these, compounds 2-4 exhibited antimicrobial activity against a broad spectrum of reference microorganisms.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence: (T.T.H.D.); (D.S.); Tel.: +84-94-949-2778 (T.T.H.D.); +31-317-483-113 (D.S.)
| | - Nguyen Thi Kim Cuc
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
| | - Pham Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence: (T.T.H.D.); (D.S.); Tel.: +84-94-949-2778 (T.T.H.D.); +31-317-483-113 (D.S.)
| |
Collapse
|
2
|
Olugbodi JO, Tincho MB, Oguntibeju OO, Olaleye MT, Akinmoladun AC. Glyphaea brevis - In vitro antioxidant and in silico biological activity of major constituents and molecular docking analyses. Toxicol In Vitro 2019; 59:187-196. [PMID: 30998971 DOI: 10.1016/j.tiv.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/26/2022]
Abstract
Previous studies have revealed that leaf extracts of Glyphaea brevis possess antioxidant activity but the bioactivity and mechanisms of action of its major constituents remain unknown. This study evaluated in vitro antioxidant and free radical scavenging activities of Glyphaea brevis twigs and leaves, and probable toxicity profile, pharmacological activities and mechanisms of action of major phytoconstituents in silico. Phytochemical screening detected saponins, tannins, steroids, anthraquinones, flavonoids, terpenoids and phenolics in the extracts. HPLC fingerprinting revealed major compounds as ferulic, catechuic and coumaric acids. Twig extract contained more flavanols compared to the leaf extract while the leaf extract had more flavonol content. Extract of the twigs demonstrated higher ORAC, TEAC and FRAP compared to the leaf extract. In silico analyses predicted low acute toxicity risk and pharmacological activities which are in agreement with traditional use of the plant in the management of diseases such as dyspepsia, ulcers, chest pains, diarrhea, dysentery and sleeping sickness. The molecular docking studies revealed that coumaric acid and ferulic acid have the best binding for all proteins tested. In summary, Glyphaea brevis twigs possess higher antioxidant activity than the leaves and major constituents showed low toxicological potential and promising biological activities which support its ethnomedical use.
Collapse
Affiliation(s)
- Janet Olayemi Olugbodi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, PMB 704, The Federal University of Technology, Akure, Nigeria; Department of Biochemistry, Bingham University, PMB 005, Karu, Nasarawa State, Nigeria.
| | - Marius Belmondo Tincho
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, P.O. Box1906, Bellville Campus, Bellville 7535, South Africa
| | - Mary Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, PMB 704, The Federal University of Technology, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, PMB 704, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
3
|
Zin PPK, Williams G, Fourches D. Cheminformatics-based enumeration and analysis of large libraries of macrolide scaffolds. J Cheminform 2018; 10:53. [PMID: 30421084 PMCID: PMC6755550 DOI: 10.1186/s13321-018-0307-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/01/2018] [Indexed: 11/10/2022] Open
Abstract
We report on the development of a cheminformatics enumeration technology and the analysis of a resulting large dataset of virtual macrolide scaffolds. Although macrolides have been shown to have valuable biological properties, there is no ready-to-screen virtual library of diverse macrolides in the public domain. Conducting molecular modeling (especially virtual screening) of these complex molecules is highly relevant as the organic synthesis of these compounds, when feasible, typically requires many synthetic steps, and thus dramatically slows the discovery of new bioactive macrolides. Herein, we introduce a cheminformatics approach and associated software that allows for designing and generating libraries of virtual macrocycle/macrolide scaffolds with user-defined constitutional and structural constraints (e.g., types and numbers of structural motifs to be included in the macrocycle, ring size, maximum number of compounds generated). To study the chemical diversity of such generated molecules, we enumerated V1M (Virtual 1 million Macrolide scaffolds) library, each containing twelve common structural motifs. For each macrolide scaffold, we calculated several key properties, such as molecular weight, hydrogen bond donors/acceptors, topological polar surface area. In this study, we discuss (1) the initial concept and current features of our PKS (polyketides) Enumerator software, (2) the chemical diversity and distribution of structural motifs in V1M library, and (3) the unique opportunities for future virtual screening of such enumerated ensembles of macrolides. Importantly, V1M is provided in the Supplementary Material of this paper allowing other researchers to conduct any type of molecular modeling and virtual screening studies. Therefore, this technology for enumerating extremely large libraries of macrolide scaffolds could hold a unique potential in the field of computational chemistry and drug discovery for rational designing of new antibiotics and anti-cancer agents.
Collapse
Affiliation(s)
- Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Gavin Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Yuan J, Zhao M, Li R, Huang Q, Rensing C, Raza W, Shen Q. Antibacterial Compounds-Macrolactin Alters the Soil Bacterial Community and Abundance of the Gene Encoding PKS. Front Microbiol 2016; 7:1904. [PMID: 27965639 PMCID: PMC5126139 DOI: 10.3389/fmicb.2016.01904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
Macrolactin produced by many soil microbes has been shown to be an efficient antibacterial agent against many bacterial pathogens. However, studies examining the effect of macrolactin on both the soil bacterial community and the intrinsic bacterial species that harbor genes responsible for the production of this antibiotic have not been conducted so far. In this study, a mixture of macrolactin was isolated from the liquid culture of Bacillus amyloliquefaciens NJN-6, and applied to the soil once a week for four weeks. 16S rRNA Illumina MiSeq sequencing showed that continuous application of macrolactin reduced the α-diversity of the soil bacterial community and thereby changed the relative abundance of microbes at both the phylum and genus level. The relative abundance of Proteobacteria and Firmicutes was significantly increased along with a significant decrease in the relative abundance of Acidobacteria. However, the application of macrolactins had an insignificant effect on the total numbers of bacteria. Further, the native gene responsible for the production of macrolactin, the gene encoding polyketide synthase was reduced in copy number after the application of macrolactin. The results of this study suggested that a bactericide from a microbial source could decrease the diversity of the soil bacterial community and change the bacterial community structure. Moreover, the populations of the intrinsic bacterial species which harbor genes responsible for macrolactin production were inhibited when the external source antibiotic was applied.
Collapse
Affiliation(s)
- Jun Yuan
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Mengli Zhao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Qiwei Huang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China; J. Craig Venter InstituteLa Jolla, CA, USA
| | - Waseem Raza
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
5
|
Silva-Mares D, Torres-López E, Rivas-Galindo VM. Antiherpetic Plants: A Review of Active Extracts, Isolated Compounds, and Bioassays. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex is a disease that is widely distributed throughout the world. It is caused by herpes simplex virus type 1 (HSV-1) and simplex virus type 2 (HSV-2). The drugs of choice for treatment are acyclovir (ACV), Penciclovir (PCV) and other guanine analogues, which have the same mechanism of action. However, due to the constant increase of ACV-resistant strains in immunocompromised patients, it is necessary to find new treatment alternatives. It has been shown that natural products are a good alternative for the treatment of these diseases as well as being an excellent source of compounds with anti-herpetic activity, which may be useful for the development of new drugs and act through a mechanism of action different from ACV and PCV. This paper compiles reports on extracts and compounds isolated from plants that have anti-herpetic activity. We present an analysis of the solvents most widely used for extraction from plants as well as cells and commonly used methods for evaluating cytotoxic and anti-herpetic activity. Families that have a higher number of plants with anti-herpetic activity are evaluated, and we also highlight the importance of studies of mechanisms of action of extracts and compounds with anti-herpetic activity.
Collapse
Affiliation(s)
- David Silva-Mares
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, México. C.P. 64460
| | - Ernesto Torres-López
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, México. C.P. 64460
| | - Verónica M. Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, México. C.P. 64460
| |
Collapse
|
6
|
Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 2014; 31:1585-611. [DOI: 10.1039/c4np00068d] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An overview of databases andin silicotools for discovery of the hidden therapeutic potential of medicinal plants.
Collapse
Affiliation(s)
- Alexey A. Lagunin
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| | - Rajesh K. Goel
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | - Dinesh Y. Gawande
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | - Priynka Pahwa
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | | | | | - Sergey M. Ivanov
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Anastassia V. Rudik
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Varvara I. Konova
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Pavel V. Pogodin
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| | | | - Vladimir V. Poroikov
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| |
Collapse
|
7
|
Databases of the thiotemplate modular systems (CSDB) and their in silico recombinants (r-CSDB). J Ind Microbiol Biotechnol 2013; 40:653-9. [PMID: 23504028 DOI: 10.1007/s10295-013-1252-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/22/2013] [Indexed: 01/31/2023]
Abstract
Modular biosynthetic clusters are responsible for the synthesis of many important pharmaceutical products. They include polyketide synthases (PKS clusters), non-ribosomal synthetases (NRPS clusters), and mixed clusters (containing both PKS and NRPS modules). The ClustScan database (CSDB) contains highly annotated descriptions of 170 clusters. The database has a hierarchical organization, which allows easy extraction of DNA and protein sequences of polypeptides, modules, and domains as well as an organization of the annotation so as to be able to predict the product chemistry to view it or export it in a standard SMILES format. The recombinant ClustScan database contains information about predicted recombinants between PKS clusters. The recombinants are generated by modeling homologous recombination and are associated with annotation and prediction of product chemistry automatically generated by the model. The database contains over 20,000 recombinants and is a resource for in silico approaches to detecting promising new compounds. Methods are available to construct the corresponding recombinants in the laboratory.
Collapse
|
8
|
Reymond JL, Ruddigkeit L, Blum L, van Deursen R. The enumeration of chemical space. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1104] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Integrative Systems Biology II—Molecular Biology: Phase 2 Lead Discovery and In Silico Screening. SYSTEMS BIOLOGY IN BIOTECH & PHARMA 2012. [DOI: 10.1007/978-94-007-2849-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Abstract
The unfolded protein response (UPR) is a coordinated program that promotes cell survival under conditions of endoplasmic reticulum stress and is required in tumor progression as well. To date, no specific small molecule inhibitor targeting this pathway has been identified. Pancreatic endoplasmic reticulum kinase (PERK), one of the UPR transducers, is an eIF2α kinase. Compromising PERK function inhibits tumor growth in mice, suggesting that PERK may be a cancer drug target, but identifying a specific inhibitor of any kinase is challenging. The goal of this study was to identify some pair-wise receptor-ligand atomic contacts that confer selective PERK inhibition. Compounds selectively inhibiting PERK-mediated phosphorylation in vitro were identified using an initial virtual library screen, followed by structure-activity hypothesis testing. The most potent PERK selective inhibitors utilize three specific kinase active site contacts that, when absent from chemically similar compounds, abrogates the inhibition: (i) a strong van der Waals contact with PERK residue Met7, (ii) interactions with the N-terminal portion of the activation loop, and (iii) groups providing electrostatic complementarity to Asp144. Interestingly, the activation loop contact is required for PERK selectivity to emerge. Understanding these structure-activity relationships may accelerate rational PERK inhibitor design.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Kutchukian PS, Shakhnovich EI. De novo design: balancing novelty and confined chemical space. Expert Opin Drug Discov 2010; 5:789-812. [PMID: 22827800 DOI: 10.1517/17460441.2010.497534] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD De novo drug design serves as a tool for the discovery of new ligands for macromolecular targets as well as optimization of known ligands. Recently developed tools aim to address the multi-objective nature of drug design in an unprecedented manner. AREAS COVERED IN THIS REVIEW This article discusses recent advances in de novo drug design programs and accessory programs used to evaluate compounds post-generation. WHAT THE READER WILL GAIN The reader is introduced to the challenges inherent in de novo drug design and will become familiar with current trends in de novo design. Furthermore, the reader will be better prepared to assess the value of a tool, and be equipped to design more elegant tools in the future. TAKE HOME MESSAGE De novo drug design can assist in the efficient discovery of new compounds with a high affinity for a given target. The inclusion of existing chemoinformatic methods with current structure-based de novo design tools provides a means of enhancing the therapeutic value of these generated compounds.
Collapse
Affiliation(s)
- Peter S Kutchukian
- Harvard University, Chemistry and Chemical Biology Department, 12 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
13
|
Combinatorial and Synthetic Biosynthesis in Actinomycetes. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE / PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS, VOL. 93 2010; 93:211-37. [DOI: 10.1007/978-3-7091-0140-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Abstract
The increasing demands for new lead compounds in pharmaceutical and agrochemical industries have driven scientists to search for new bioactive natural products. Marine microorganisms are rich sources of novel, bioactive secondary metabolites, and have attracted much attention of chemists, pharmacologists, and molecular biologists. This mini-review mainly focuses on macrolactins, a group of 24-membered lactone marine natural products, aiming at giving an overview on their sources, structures, biological activities, as well as their potential medical applications.
Collapse
Affiliation(s)
- Xiao-Ling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, P. R. China
| | | | | | | | | | | |
Collapse
|
15
|
Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 2008; 36:6882-92. [PMID: 18978015 PMCID: PMC2588505 DOI: 10.1093/nar/gkn685] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The program package ‘ClustScan’ (Cluster Scanner) is designed for rapid, semi-automatic, annotation of DNA sequences encoding modular biosynthetic enzymes including polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS) and hybrid (PKS/NRPS) enzymes. The program displays the predicted chemical structures of products as well as allowing export of the structures in a standard format for analyses with other programs. Recent advances in understanding of enzyme function are incorporated to make knowledge-based predictions about the stereochemistry of products. The program structure allows easy incorporation of additional knowledge about domain specificities and function. The results of analyses are presented to the user in a graphical interface, which also allows easy editing of the predictions to incorporate user experience. The versatility of this program package has been demonstrated by annotating biochemical pathways in microbial, invertebrate animal and metagenomic datasets. The speed and convenience of the package allows the annotation of all PKS and NRPS clusters in a complete Actinobacteria genome in 2–3 man hours. The open architecture of ClustScan allows easy integration with other programs, facilitating further analyses of results, which is useful for a broad range of researchers in the chemical and biological sciences.
Collapse
Affiliation(s)
- Antonio Starcevic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
16
|
Bull AT, Stach JE. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15:491-9. [DOI: 10.1016/j.tim.2007.10.004] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/09/2007] [Accepted: 10/25/2007] [Indexed: 11/15/2022]
|
17
|
Abstract
A combination of approaches and compounds-many of which failed to yield immediate results in the past-will ultimately prove invaluable to the drug industry in the ongoing battle against infectious disease.
Collapse
Affiliation(s)
- Prabhavathi Fernandes
- Cempra Pharmaceuticals Inc., 170 Southport Drive, Suite 500, Morrisville, North Carolina 27560, USA.
| |
Collapse
|
18
|
Abstract
DNA synthesis has become one of the technological bases of a new concept in biology: synthetic biology. The vision of synthetic biology is a systematic, hierarchical design of artificial, biology-inspired systems using robust, standardized, and well-characterized building blocks. The design concept and examples from four fields of application (genetic circuits, protein design, platform technologies, and pathway engineering) are discussed, which demonstrate the usefulness and the promises of synthetic biology. The vision of synthetic biology is to develop complex systems by simplified solutions using available material and knowledge. Synthetic biology also opens a door toward new biomaterials that do not occur in nature.
Collapse
Affiliation(s)
- Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
19
|
Khartulyari AS, Kapur M, Maier ME. Concise Strategy to the Core Structure of the Macrolide Queenslandon. Org Lett 2006; 8:5833-6. [PMID: 17134284 DOI: 10.1021/ol062479r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fully functionalized core structure of the macrolactone queenslandon was prepared using a novel strategy consisting of a glycolate aldol reaction and hydroboration of the derived enol ether 17 followed by Suzuki cross-coupling with an iodostyrene. After conversion of the cross-coupling product to the seco acid 22, Mitsunobu macrolactonization and protecting group manipulations led to the queenslandon model 5. [structure: see text]
Collapse
Affiliation(s)
- Anton S Khartulyari
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | |
Collapse
|