1
|
Yang D, Dang S, Wang Z, Xie M, Li X, Ding X. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol 2024; 14:1386772. [PMID: 38737903 PMCID: PMC11082301 DOI: 10.3389/fonc.2024.1386772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangming Ding
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Pan H, Lu X, Ye D, Feng Y, Wan J, Ye J. The molecular mechanism of thrombospondin family members in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1337586. [PMID: 38516004 PMCID: PMC10954798 DOI: 10.3389/fcvm.2024.1337586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.
Collapse
Affiliation(s)
- Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
3
|
Rinta-Jaskari MM, Naillat F, Ruotsalainen HJ, Koivunen JT, Sasaki T, Pietilä I, Elamaa HP, Kaur I, Manninen A, Vainio SJ, Pihlajaniemi TA. Temporally and spatially regulated collagen XVIII isoforms are involved in ureteric tree development via the TSP1-like domain. Matrix Biol 2023; 115:139-159. [PMID: 36623578 DOI: 10.1016/j.matbio.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Collagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development. The lack of ColXVIII or its specific isoforms lead to congenital defects in the 3D patterning of the ureteric tree where the short isoform plays a prominent role. Moreover, the ex vivo data suggests that ColXVIII is involved in the kidney epithelial tree patterning via its N-terminal domains, and especially the Thrombospondin-1-like domain common to all isoforms. This morphogenetic function likely involves integrins expressed in the ureteric epithelium. Altogether, the results point to an important role for ColXVIII in the matrix-integrin-mediated functions regulating renal development.
Collapse
Affiliation(s)
- Mia M Rinta-Jaskari
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Florence Naillat
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Heli J Ruotsalainen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jarkko T Koivunen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Japan
| | - Ilkka Pietilä
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Currently: Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Harri P Elamaa
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Inderjeet Kaur
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Aki Manninen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Infotech Oulu, Kvantum Institute; Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| |
Collapse
|
4
|
Plana E, Oto J, Medina P, Herranz R, Fernández-Pardo Á, Requejo L, Miralles M. Thrombospondins in human aortic aneurysms. IUBMB Life 2022; 74:982-994. [PMID: 35293116 DOI: 10.1002/iub.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Thrombospondins are a family of matricellular proteins with a multimeric structure that is known to be involved in several biological and pathological processes. Their relationship with vascular disorders has raised special interest recently. Aortic aneurysms are related to the impairment of vascular remodeling, in which extracellular matrix proteins seem to play an important role. Thus, research in thrombospondins, and their potential role in aneurysm development is progressively gaining importance. Nevertheless, studies showing thrombospondin dysregulation in human samples are still scarce. Although studies performed in vitro and in vivo models are essential to understand the molecular mechanisms and pathways underlying the disorder, descriptive studies in human samples are also necessary to ascertain their real value as biomarkers and/or novel therapeutic targets. The present article reviews the latest findings regarding the role of thrombospondins in aortic aneurysm development, paying particular attention to the studies performed in human samples.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Lucia Requejo
- Angiology and Vascular Surgery Service, La Ribera University Hospital, Alzira, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain.,Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
6
|
Janke U, Kulke M, Buchholz I, Geist N, Langel W, Delcea M. Drug-induced activation of integrin alpha IIb beta 3 leads to minor localized structural changes. PLoS One 2019; 14:e0214969. [PMID: 30978226 PMCID: PMC6461286 DOI: 10.1371/journal.pone.0214969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Integrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbβ3. Although the dramatic rearrangement of the overall structure of αIIbβ3 during the activation process is potentially related to changes in the protein secondary structure, this has not been investigated so far in a membrane environment. Here we examine the Mn2+- and drug-induced activation of αIIbβ3 and the impact on the structure of this protein reconstituted into liposomes. By quartz crystal microbalance with dissipation monitoring and activation assays we show that Mn2+ induces binding of the conformation-specific antibody PAC-1, which only recognizes the extended, active integrin. Circular dichroism spectroscopy reveals, however, that Mn2+-treatment does not induce major secondary structural changes of αIIbβ3. Similarly, we found that treatment with clinically relevant drugs (e.g. quinine) led to the activation of αIIbβ3 without significant changes in protein secondary structure. Molecular dynamics simulation studies revealed minor local changes in the beta-sheet probability of several extracellular domains of the integrin. Our experimental setup represents a new approach to study transmembrane proteins, especially integrins, in a membrane environment and opens a new way for testing drug binding to integrins under clinically relevant conditions.
Collapse
Affiliation(s)
- Una Janke
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
| | - Martin Kulke
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Ina Buchholz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
| | - Norman Geist
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Walter Langel
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| |
Collapse
|
7
|
Negative regulators of angiogenesis: important targets for treatment of exudative AMD. Clin Sci (Lond) 2017; 131:1763-1780. [PMID: 28679845 DOI: 10.1042/cs20170066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Angiogenesis contributes to the pathogenesis of many diseases including exudative age-related macular degeneration (AMD). It is normally kept in check by a tightly balanced production of pro- and anti-angiogenic factors. The up-regulation of the pro-angiogenic factor, vascular endothelial growth factor (VEGF), is intimately linked to the pathogenesis of exudative AMD, and its antagonism has been effectively targeted for treatment. However, very little is known about potential changes in expression of anti-angiogenic factors and the role they play in choroidal vascular homeostasis and neovascularization associated with AMD. Here, we will discuss the important role of thrombospondins and pigment epithelium-derived factor, two major endogenous inhibitors of angiogenesis, in retinal and choroidal vascular homeostasis and their potential alterations during AMD and choroidal neovascularization (CNV). We will review the cell autonomous function of these proteins in retinal and choroidal vascular cells. We will also discuss the potential targeting of these molecules and use of their mimetic peptides for therapeutic development for exudative AMD.
Collapse
|
8
|
Matricellular proteins: a sticky affair with cancers. JOURNAL OF ONCOLOGY 2012; 2012:351089. [PMID: 22481923 PMCID: PMC3306981 DOI: 10.1155/2012/351089] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022]
Abstract
The multistep process of metastasis is a major hallmark of cancer progression involving the cointeraction and coevolution of the tumor and its microenvironment. In the tumor microenvironment, tumor cells and the surrounding stromal cells aberrantly secrete matricellular proteins, which are a family of nonstructural proteins in the extracellular matrix (ECM) that exert regulatory roles via a variety of molecular mechanisms. Matricellular proteins provide signals that support tumorigenic activities characteristic of the metastastic cascade such as epithelial-to-mesenchymal (EMT) transition, angiogenesis, tumor cell motility, proliferation, invasion, evasion from immune surveillance, and survival of anoikis. Herein, we review the current understanding of the following matricellular proteins and highlight their pivotal and multifacted roles in metastatic progression: angiopoietin-like protein 4 (ANGPTL4), CCN family members cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) and CCN6, osteopontin (OPN), secreted protein acidic and rich in cysteine (SPARC), tenascin C (TNC), and thrombospondin-1 and -2 (TSP1, TSP2). Insights into the signaling mechanisms resulting from the interaction of these matricellular proteins and their respective molecular partner(s), as well as their subsequent contribution to tumor metastasis, are discussed. In addition, emerging evidences of their promising potential as therapeutic options and/or targets in the treatment of cancer are also highlighted.
Collapse
|
9
|
da Silva RG, Tavora B, Robinson SD, Reynolds LE, Szekeres C, Lamar J, Batista S, Kostourou V, Germain MA, Reynolds AR, Jones DT, Watson AR, Jones JL, Harris A, Hart IR, Iruela-Arispe ML, Dipersio CM, Kreidberg JA, Hodivala-Dilke KM. Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1534-48. [PMID: 20639457 DOI: 10.2353/ajpath.2010.100043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrin alpha3beta1 is a major receptor for laminin. The expression levels of laminins-8 and -10 in the basement membrane surrounding blood vessels are known to change during tumor angiogenesis. Although some studies have suggested that certain ligands of alpha3beta1 can affect angiogenesis either positively or negatively, either a direct in vivo role for alpha3beta1 in this process or its mechanism of action in endothelial cells during angiogenesis is still unknown. Because the global genetic ablation of alpha3-integrin results in an early lethal phenotype, we have generated conditional-knockout mice where alpha3 is deleted specifically in endothelial cells (ec-alpha3-/-). Here we show that ec-alpha3-/- mice are viable, fertile, and display enhanced tumor growth, elevated tumor angiogenesis, augmented hypoxia-induced retinal angiogenesis, and increased vascular endothelial growth factor (VEGF)-mediated neovascularization ex vivo and in vivo. Furthermore, our data provide a novel method by which an integrin may regulate angiogenesis. We show that alpha3beta1 is a positive regulator of endothelial-VEGF and that, surprisingly, the VEGF produced by endothelial cells can actually repress VEGF-receptor 2 (Flk-1) expression. These data, therefore, identify directly that endothelial alpha3beta1 negatively regulates pathological angiogenesis and implicate an unexpected role for low levels of endothelial-VEGF as an activator of neovascularization.
Collapse
Affiliation(s)
- Rita Graça da Silva
- Adhesion and Angiogenesis Laboratory, Barts Institute of Cancer, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals (Basel) 2010; 3:1241-1278. [PMID: 27713299 PMCID: PMC4034032 DOI: 10.3390/ph3041241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents.
Collapse
|
11
|
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vasculature, contributes to the pathogenesis of many disorders, including ischemic diseases and cancer. Integrins are cell adhesion molecules that are expressed on the surface of endothelial cells and pericytes, making them potential targets for antiangiogenic therapy. Here we review the contribution of endothelial and mural cell integrins to angiogenesis and highlight their potential as antiangiogenesis targets.
Collapse
Affiliation(s)
- Rita Silva
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| | - Gabriela D'Amico
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| | - Kairbaan M. Hodivala-Dilke
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| | - Louise E. Reynolds
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| |
Collapse
|