1
|
Zeng Y, Wang Z, Zeng L, Xiong H. Enhancing or Quenching of a Mitochondria-Targeted AIEgens-Floxuridine Sensor by the Regulation of pH-Dependent Self-assembly, Efficient Recognition of Hg 2+, and Stimulated Response of GSH. Anal Chem 2023; 95:18880-18888. [PMID: 38088834 DOI: 10.1021/acs.analchem.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biocompatible fluorescent probes have emerged as essential tools in life sciences for visualizing subcellular structures and detecting specific analytes. Herein, we report the synthesis and characterization of a novel fluorescent probe (TPE-FdU), incorporated with hydrophilic 2'-fluoro-substituted deoxyuridine and hydrophobic ethynyl tetraphenylethene moieties, which possessed typical aggregation-induced emission (AIE) behavior. In comparison to the TPE-FdU (pKa 7.68) treated in neutral conditions, it performed well at pH 4, exhibiting an enhanced 450 nm emission signal of approximately four times stronger. As the pH value was increased to 10, the fluorescence intensity was completely quenched. The TEM images of TPE-FdU in an acidic environment (nanospherical morphology, AIE enhance, pH = 4) and in a basic environment (microrods, fluorescence quenching, pH = 9) revealed that it was a pH-dependent self-assembled probe, which was also illustrated by the interpretation of the NMR spectrum. Furthermore, the TPE-FdU probe exhibited a specific response to trace Hg2+ ions. Interestingly, the quenched fluorescence of the TPE-FdU probe caused by Hg2+ can be recovered by the addition of GSH due to the formation of the Hg-S bond being released away. MTT assay and CLSM images demonstrated that TPE-FdU was nontoxic and selectively visualized in the intracellular mitochondria. These results contributed to the development of advanced fluorescent probes with diverse applications in cell imaging, environment protection, and biomedical research.
Collapse
Affiliation(s)
- Yating Zeng
- Institute of Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ziyan Wang
- Institute of Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Linyu Zeng
- Institute of Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hai Xiong
- Institute of Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
2
|
Khandazhinskaya A, Eletskaya B, Mironov A, Konstantinova I, Efremenkova O, Andreevskaya S, Smirnova T, Chernousova L, Kondrashova E, Chizhov A, Seley-Radtke K, Kochetkov S, Matyugina E. New Flexible Analogues of 8-Aza-7-deazapurine Nucleosides as Potential Antibacterial Agents. Int J Mol Sci 2023; 24:15421. [PMID: 37895100 PMCID: PMC10607158 DOI: 10.3390/ijms242015421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
A variety of ribo-, 2'-deoxyribo-, and 5'-norcarbocyclic derivatives of the 8-aza-7-deazahypoxanthine fleximer scaffolds were designed, synthesized, and screened for antibacterial activity. Both chemical and chemoenzymatic methods of synthesis for the 8-aza-7-deazainosine fleximers were compared. In the case of the 8-aza-7-deazahypoxanthine fleximer, the transglycosylation reaction proceeded with the formation of side products. In the case of the protected fleximer base, 1-(4-benzyloxypyrimidin-5-yl)pyrazole, the reaction proceeded selectively with formation of only one product. However, both synthetic routes to realize the fleximer ribonucleoside (3) worked with equal efficiency. The new compounds, as well as some 8-aza-7-deazapurine nucleosides synthesized previously, were studied against Gram-positive and Gram-negative bacteria and M. tuberculosis. It was shown that 1-(β-D-ribofuranosyl)-4-(2-aminopyridin-3-yl)pyrazole (19) and 1-(2',3',4'-trihydroxycyclopent-1'-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9) were able to inhibit the growth of M. smegmatis mc2 155 by 99% at concentrations (MIC99) of 50 and 13 µg/mL, respectively. Antimycobacterial activities were revealed for 4-(4-aminopyridin-3-yl)-1H-pyrazol (10) and 1-(4'-hydroxy-2'-cyclopenten-1'-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6). At concentrations (MIC99) of 40 and 20 µg/mL, respectively, the compounds resulted in 99% inhibition of M. tuberculosis growth.
Collapse
Affiliation(s)
- Anastasia Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| | - Barbara Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (B.E.); (A.M.); (I.K.)
| | - Anton Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (B.E.); (A.M.); (I.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Irina Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (B.E.); (A.M.); (I.K.)
| | - Olga Efremenkova
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya St. 11, 119021 Moscow, Russia;
| | - Sofya Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia; (S.A.); (T.S.); (L.C.)
| | - Tatiana Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia; (S.A.); (T.S.); (L.C.)
| | - Larisa Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia; (S.A.); (T.S.); (L.C.)
| | - Evgenia Kondrashova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| | - Alexander Chizhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia;
| | - Katherine Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| | - Elena Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| |
Collapse
|
3
|
Yang F, Liu F, Min Y, Shi L, Liu M, Wang K, Ke S, Gong Y, Yang Z. Novel Steroidal[17,16-d]pyrimidines Derived from Epiandrosterone and Androsterone: Synthesis, Characterization and Configuration-Activity Relationships. Molecules 2023; 28:molecules28062691. [PMID: 36985662 PMCID: PMC10054084 DOI: 10.3390/molecules28062691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Two series of novel steroidal[17,16-d]pyrimidines derived from natural epiandrosterone and androsterone were designed and synthesized, and these compounds were screened for their potential anticancer activities. The preliminary bioassay indicated that some of these prepared compounds exhibited significantly good cytotoxic activities against human gastric cancer (SGC-7901), lung cancer (A549), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), epiandrosterone, and androsterone. Especially the respective pairs from epiandrosterone and androsterone showed significantly different inhibitory activities, and the possible configuration-activity relationships have also been summarized and discussed based on kinase assay and molecular docking, which indicated that the inhibition activities of these steroidal[17,16-d]pyrimidines might obviously be affected by the configuration of the hydroxyl group in the part of the steroidal scaffold.
Collapse
Affiliation(s)
- Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Yan Gong
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Ziwen Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| |
Collapse
|
4
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
5
|
Kezin VA, Matyugina ES, Novikov MS, Chizhov AO, Snoeck R, Andrei G, Kochetkov SN, Khandazhinskaya AL. New Derivatives of 5-Substituted Uracils: Potential Agents with a Wide Spectrum of Biological Activity. Molecules 2022; 27:2866. [PMID: 35566215 PMCID: PMC9102953 DOI: 10.3390/molecules27092866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrimidine nucleoside analogues are widely used to treat infections caused by the human immunodeficiency virus (HIV) and DNA viruses from the herpes family. It has been shown that 5-substituted uracil derivatives can inhibit HIV-1, herpes family viruses, mycobacteria and other pathogens through various mechanisms. Among the 5-substituted pyrimidine nucleosides, there are not only the classical nucleoside inhibitors of the herpes family viruses, 2'-deoxy-5-iodocytidine and 5-bromovinyl-2'-deoxyuridine, but also derivatives of 1-(benzyl)-5-(phenylamino)uracil, which proved to be non-nucleoside inhibitors of HIV-1 and EBV. It made this modification of nucleoside analogues very promising in connection with the emergence of new viruses and the crisis of drug resistance when the task of creating effective antiviral agents of new types that act on other targets or exhibit activity by other mechanisms is very urgent. In this paper, we present the design, synthesis and primary screening of the biological activity of new nucleoside analogues, namely, 5'-norcarbocyclic derivatives of substituted 5-arylamino- and 5-aryloxyuracils, against RNA viruses.
Collapse
Affiliation(s)
- Vasily A. Kezin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| | - Elena S. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| | - Mikhail S. Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400131 Volgograd, Russia;
| | - Alexander O. Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninski pr. 47, 119991 Moscow, Russia
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium; (R.S.); (G.A.)
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium; (R.S.); (G.A.)
| | - Sergei N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| | - Anastasia L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| |
Collapse
|
6
|
Biteau NG, Roy V, Lambry JC, Becker HF, Myllykallio H, Agrofoglio LA. Synthesis of acyclic nucleoside phosphonates targeting flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. Bioorg Med Chem 2021; 46:116351. [PMID: 34391120 DOI: 10.1016/j.bmc.2021.116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Flavin-Dependent Thymidylate Synthase (FDTS) encoded by ThyX gene was discovered as a new class of thymidylate synthase involved in the de novo synthesis of dTMP named only in 30 % of human pathogenic bacteria. This target was pursed for the development of new antibacterial agents against multiresistant pathogens. We have developed a new class of ANPs based on the mimic of two natural's cofactors (dUMP and FAD) as inhibitors against Mycobacterium tuberculosis ThyX. Several synthetic efforts were performed to optimize regioselective N1-alkylation, cross-coupling metathesis and Sonogashira cross-coupling. Compound 19c showed a poor 31.8% inhibitory effect on ThyX at 200 μM.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA, Univ. Orléans, CNRS UMR 7311, F-45067 Orléans, France.
| | | | - Hubert F Becker
- LOB, INSERM U696-CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau, France; Sorbonne Université, Faculté des Sciences et Ingénierie, 75005 Paris, France
| | - Hannu Myllykallio
- LOB, INSERM U696-CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
7
|
Negrya SD, Jasko MV, Makarov DA, Solyev PN, Karpenko IL, Shevchenko OV, Chekhov OV, Glukhova AA, Vasilyeva BF, Efimenko TA, Sumarukova IG, Efremenkova OV, Kochetkov SN, Alexandrova LA. Glycol and Phosphate Depot Forms of 4- and/or 5-Modified Nucleosides Exhibiting Antibacterial Activity. Mol Biol 2021. [DOI: 10.1134/s002689332101012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhuang J, Ma S. Recent Development of Pyrimidine‐Containing Antimicrobial Agents. ChemMedChem 2020; 15:1875-1886. [PMID: 32797654 DOI: 10.1002/cmdc.202000378] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Jianxing Zhuang
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University West Wenhua Road, 44 Jinan 250012 P.R. China
| | - Shutao Ma
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University West Wenhua Road, 44 Jinan 250012 P.R. China
| |
Collapse
|
9
|
Negrya SD, Makarov DA, Solyev PN, Karpenko IL, Chekhov OV, Glukhova AA, Vasilyeva BF, Sumarukova IG, Efremenkova OV, Kochetkov SN, Alexandrova LA. 5-Alkylthiomethyl Derivatives of 2'-Deoxyuridine: Synthesis and Antibacterial Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Verbitskiy EV, Rusinov GL, Charushin VN, Chupakhin ON. Development of new antituberculosis drugs among of 1,3- and 1,4-diazines. Highlights and perspectives. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2686-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Khandazhinskaya AL, Alexandrova LA, Matyugina ES, Solyev PN, Efremenkova OV, Buckheit KW, Wilkinson M, Buckheit RW, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN, Seley-Radtke KL. Novel 5'-Norcarbocyclic Pyrimidine Derivatives as Antibacterial Agents. Molecules 2018; 23:E3069. [PMID: 30477147 PMCID: PMC6321083 DOI: 10.3390/molecules23123069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 μg/mL (mc²155) and a MIC99 of 6.7⁻67 μg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 μg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 μg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 μg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 μg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.
Collapse
Affiliation(s)
- Anastasia L Khandazhinskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Liudmila A Alexandrova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Elena S Matyugina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., Moscow 119021, Russia.
| | - Karen W Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Maggie Wilkinson
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Robert W Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Larisa N Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Tatiana G Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Sofya N Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
12
|
Abstract
Purine and pyrimidine nucleoside and nucleotide analogs have been extensively studied as anticancer and antiviral agents. In addition to this, they have recently shown great potential against Mycobacterium Tuberculosis, the causative agent of TB. TB ranks as the tenth most common cause of death in the world. The current treatment for TB infection is limited by side effects and cost of the drugs and most importantly by the development of resistance to the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of the existing treatments, has become the focus of many research programs. In parallel to that, a tremendous effort has been made to elucidate the unique metabolism of this pathogen with the aim to identify new possible targets. This review presents the state of the art in nucleoside and nucleotide analogs in the treatment of TB. In particular, we report on the inhibitory activity of this class of compounds, both in enzymatic and whole-cell assays, providing a brief insight to which reported target these novel compounds are hitting.
Collapse
|
13
|
Negria SD, Karpenko IL, Efremenkova OV, Chizhov AO, Kochetkov SN, Alexandrova LA. Synthesis and antimicrobial properties of 5,5′-modified 2′,5′-dideoxyuridines. HETEROCYCL COMMUN 2015. [DOI: 10.1515/hc-2015-0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAn effective method of synthesis of 5,5′-modified 2′,5′-dideoxyuridine derivatives is based on sequential 5′-iodination and azidation of 5-[4-(1-decyl)-1,2,3-triazol-1-yl]methyl-2′-deoxyuridine followed by 1,3-dipolar cycloaddition of the intermediate azide with an olefin under the catalysis of Cu(I) resulting in 75–85% yield of 5′-[4-substituted (1,2,3-triazol-1-yl]-5-[4-(1-decyl)-1,2,3-triazol-1-yl]methyl-2′,5′-dideoxyuridine. The compounds were shown to possess low cytotoxicity in Vero, A549 cells and Jurkat cell cultures and did not demonstrate noticeable antimicrobial activity.
Collapse
Affiliation(s)
- Sergey D. Negria
- 1Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow 119991, Russia
| | - Inna L. Karpenko
- 1Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow 119991, Russia
| | - Olga V. Efremenkova
- 2Gause Institute of New Antibiotics RAMS, Bol’shaya Pirogovskaya str. 11, Moscow 119867, Russia
| | - Alexander O. Chizhov
- 3Zelinsky Institute of Organic Chemistry RAS, Leninsky pr. 47, Moscow 119991, Russia
| | - Sergey N. Kochetkov
- 1Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow 119991, Russia
| | | |
Collapse
|
14
|
He S, Zhao H, Guo X, Xu X, Zhou X, Liu J, Xing Z, Ye L, Jiang L, Chen Q, He Y. The Readout of Base-Pair Information in Adenine-Thymine α-D-Arabinonucleosides. Chemistry 2014; 20:15473-81. [DOI: 10.1002/chem.201403998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 11/10/2022]
|
15
|
Sharma V, Chitranshi N, Agarwal AK. Significance and biological importance of pyrimidine in the microbial world. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2014; 2014:202784. [PMID: 25383216 PMCID: PMC4207407 DOI: 10.1155/2014/202784] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 11/20/2022]
Abstract
Microbes are unique creatures that adapt to varying lifestyles and environment resistance in extreme or adverse conditions. The genetic architecture of microbe may bear a significant signature not only in the sequences position, but also in the lifestyle to which it is adapted. It becomes a challenge for the society to find new chemical entities which can treat microbial infections. The present review aims to focus on account of important chemical moiety, that is, pyrimidine and its various derivatives as antimicrobial agents. In the current studies we represent more than 200 pyrimidines as antimicrobial agents with different mono-, di-, tri-, and tetrasubstituted classes along with in vitro antimicrobial activities of pyrimidines derivatives which can facilitate the development of more potent and effective antimicrobial agents.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Pharmacy, Lloyd Institute of Management & Technology, Plot. No. 11, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India
| | - Nitin Chitranshi
- Bioinformatics Centre, Biotech Park, Sector G, Jankipuram, Lucknow, Uttar Pradesh 226021, India
- Gautam Buddh Technical University, IET Campus, Sitapur Road, Lucknow, Uttar Pradesh 226021, India
| | - Ajay Kumar Agarwal
- Department of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119, India
| |
Collapse
|
16
|
Shmalenyuk ER, Kochetkov SN, Alexandrova LA. Novel inhibitors ofMycobacterium tuberculosisgrowth based on modified pyrimidine nucleosides and their analogues. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n09abeh004404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorg Med Chem 2013; 21:4874-84. [PMID: 23891229 DOI: 10.1016/j.bmc.2013.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 11/24/2022]
Abstract
Two sets of pyrimidine nucleoside derivatives bearing extended alkyloxymethyl or alkyltriazolidomethyl substituents at position 5 of the nucleobase were synthesized and evaluated as potential antituberculosis agents. The impact of modifications at 3'- and 5'-positions of the carbohydrate moiety on the antimycobacterial activity and cytotoxicity was studied. The highest effect was shown for 5-dodecyloxymethyl-2'-deoxyuridine, 5-decyltriazolidomethyl-2'-deoxyuridine, and 5-dodecyltriazolidomethyl-2'-deoxycytidine. They effectively inhibited the growth of two Mycobacterium tuberculosis strains in vitro, laboratory H37Rv (MIC99=20, 10, and 20μg/mL, respectively) and clinical MDR MS-115 resistant to five top antituberculosis drugs (МIC99=50, 10, and 10μg/mL, respectively).
Collapse
|
18
|
Schitter G, Wrodnigg TM. Update on carbohydrate-containing antibacterial agents. Expert Opin Drug Discov 2013; 4:315-56. [PMID: 23489128 DOI: 10.1517/17460440902778725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Since the first known use of antibiotics > 2,500 years ago, a research field with immense importance for the welfare of mankind has been developed. After a decrease in interest in this topic by the end of the 20th century the occurrence of (poly-)resistant strains of bacteria induced a revival of antibiotics research. Health systems have been seeking viable and reliable solutions to this dangerous and expansive threat. OBJECTIVE This review will focus on carbohydrate-containing antibiotics and will give an outline of recently published novel isolated, semisynthetic as well as synthetic structures, their mechanism of action, if known, and the strategies for the design of compounds with potential by improved antibacterial properties. METHODS The literature between 2000 and 2008 was screened with main focus on recent examples of novel structures and strategies for the lead finding of exclusively antibacterial agents. RESULTS/CONCLUSION With the explanation of the role of the carbohydrate moieties in the respective antibacterial agents together with better synthetic strategies in carbohydrate chemistry as well as improvements in assay development for high throughput screening methods, carbohydrate-containing antibiotics can be used for the finding of potential drug leads that contribute to the fight against infections and diseases caused by (resistant) bacterial pathogens.
Collapse
Affiliation(s)
- Georg Schitter
- Technical University Graz, Institute of Organic Chemistry, Univ.-Doz. TMW, Dip.-Ing. GS, Glycogroup, A-8010 Graz, Austria +43 316 873 8744 ; +43 316 873 8740 ;
| | | |
Collapse
|
19
|
Matyugina E, Khandazhinskaya A, Chernousova L, Andreevskaya S, Smirnova T, Chizhov A, Karpenko I, Kochetkov S, Alexandrova L. The synthesis and antituberculosis activity of 5′-nor carbocyclic uracil derivatives. Bioorg Med Chem 2012; 20:6680-6. [DOI: 10.1016/j.bmc.2012.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
|
20
|
Shakya N, Garg G, Agrawal B, Kumar R. Chemotherapeutic interventions against tuberculosis. Pharmaceuticals (Basel) 2012; 5:690-718. [PMID: 24281707 PMCID: PMC3763665 DOI: 10.3390/ph5070690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/12/2012] [Accepted: 06/21/2012] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis is the second leading cause of infectious deaths globally. Many effective conventional antimycobacterial drugs have been available, however, emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) has overshadowed the effectiveness of the current first and second line drugs. Further, currently available agents are complicated by serious side effects, drug interactions and long-term administration. This has prompted urgent research efforts in the discovery and development of new anti-tuberculosis agent(s). Several families of compounds are currently being explored for the treatment of tuberculosis. This review article presents an account of the existing chemotherapeutics and highlights the therapeutic potential of emerging molecules that are at different stages of development for the management of tuberculosis disease.
Collapse
Affiliation(s)
- Neeraj Shakya
- Department of Laboratory Medicine and Pathology, 728-Heritage Medical Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | | | | | | |
Collapse
|
21
|
Discovery of novel 5-(ethyl or hydroxymethyl) analogs of 2'-'up' fluoro (or hydroxyl) pyrimidine nucleosides as a new class of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium avium inhibitors. Bioorg Med Chem 2012; 20:4088-97. [PMID: 22664188 DOI: 10.1016/j.bmc.2012.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 11/21/2022]
Abstract
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity. Among 2'-fluorinated compounds, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-d-arabinofuranosyl)-5-ethyluracil (13) exhibited promising activity against M. bovis and Mtb alone, and showed synergism when combined with isoniazid. The most active compound emerging from these studies, 1-(β-d-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (21) inhibited Mtb (H37Ra) (MIC(50)=0.5 μg/mL) and M. bovis (MIC(50)=0.5 μg/mL) at low concentrations, and was ten times more potent against Mtb (H37Ra) than cycloserine (MIC(50)=5.0 μg/mL), a second line drug. It also showed an additive effect when combined with isoniazid. Compound 21 retained sensitivity against a rifampicin-resistant (H37Rv) strain of Mtb (MIC(50)=1 μg/mL) at concentrations similar to that for a rifampicin-sensitive (H37Rv) strain, suggesting that it has no cross-resistance to a first-line anti-TB drug. In addition, the replication of M. avium was also inhibited by 21 (MIC(50)=10 μg/mL). No cellular toxicity of 13 or 21 was observed up to the highest concentration tested (CC(50)>100 μg/mL). These observations offer promise for a new drug treatment regimen to augment and complement the current chemotherapy of TB.
Collapse
|
22
|
Kögler M, Vanderhoydonck B, De Jonghe S, Rozenski J, Van Belle K, Herman J, Louat T, Parchina A, Sibley C, Lescrinier E, Herdewijn P. Synthesis and evaluation of 5-substituted 2'-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. J Med Chem 2011; 54:4847-62. [PMID: 21657202 DOI: 10.1021/jm2004688] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 5-substituted 2'-deoxyuridine monophosphate analogues has been synthesized and evaluated as potential inhibitors of mycobacterial ThyX, a novel flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. A systematic SAR study led to the identification of compound 5a, displaying an IC(50) value against mycobacterial ThyX of 0.91 μM. This derivative lacks activity against the classical mycobacterial thymidylate synthase ThyA (IC(50) > 50 μM) and represents the first example of a selective mycobacterial FDTS inhibitor.
Collapse
Affiliation(s)
- Martin Kögler
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brulikova L, Hlavac J. Synthesis, reactivity and biological activity of 5-alkoxymethyluracil analogues. Beilstein J Org Chem 2011; 7:678-98. [PMID: 21804865 PMCID: PMC3135055 DOI: 10.3762/bjoc.7.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022] Open
Abstract
This review article summarizes the results of a long-term investigation of 5-alkoxymethyluracil analogues and is aimed, in particular, at methods of syntheses. Most of the presented compounds were synthesized in order to evaluate their biological activity, therefore, a brief survey of biological activity, especially antiviral, cytotoxic and antibacterial, is also reported.
Collapse
Affiliation(s)
- Lucie Brulikova
- Department of Organic Chemistry, Faculty of Science, Institute of Molecular and Translational Medicine, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic. Tel.: +420 585 634 405
| | | |
Collapse
|
24
|
Wube AA, Hüfner A, Thomaschitz C, Blunder M, Kollroser M, Bauer R, Bucar F. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones. Bioorg Med Chem 2011; 19:567-79. [PMID: 21106378 PMCID: PMC3268452 DOI: 10.1016/j.bmc.2010.10.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/30/2010] [Accepted: 10/29/2010] [Indexed: 12/02/2022]
Abstract
A series of 23 new 1-methyl-2-alkenyl-4(1H)quinolones have been synthesized and evaluated in vitro for their antimycobacterial activities against fast growing species of mycobacteria, such as Mycobacterium fortuitum, M. smegmatis and M. phlei. The compounds displayed good to excellent inhibition of the growth of the mycobacterial test strains with improved antimycobacterial activity compared to the hit compound, evocarpine. The most active compounds, which possessed chain length of 11-13 carbons at position-2 displayed potent inhibitory effects with an MIC value of 1.0mg/L. In a human diploid embryonic lung cell line, MRC-5 cytotoxicity assay, the alkaloids showed weak to moderate cytotoxic activity. Biological evaluation of these evocarpine analogues on the less pathogenic fast growing strains of mycobacteria showed an interesting antimycobacterial profile and provided significant insight into the structure-activity relationships.
Collapse
Affiliation(s)
- Abraham A. Wube
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Antje Hüfner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical
Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz,
Austria
| | - Christina Thomaschitz
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Manfred Kollroser
- Institute of Forensic Medicine, Medical University of Graz,
Universitätsplatz 4/2, 8010 Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| |
Collapse
|
25
|
Virsdoia V, Shaikh MS, Manvar A, Desai B, Parecha A, Loriya R, Dholariya K, Patel G, Vora V, Upadhyay K, Denish K, Shah A, Coutinho EC. Screening for In Vitro Antimycobacterial Activity and Three-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) Study of 4-(arylamino)coumarin Derivatives. Chem Biol Drug Des 2010; 76:412-24. [DOI: 10.1111/j.1747-0285.2010.00997.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Srivastav NC, Rai D, Tse C, Agrawal B, Kunimoto DY, Kumar R. Inhibition of Mycobacterial Replication by Pyrimidines Possessing Various C-5 Functionalities and Related 2′-Deoxynucleoside Analogues Using in Vitro and in Vivo Models. J Med Chem 2010; 53:6180-7. [DOI: 10.1021/jm100568q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naveen C. Srivastav
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| | - Dinesh Rai
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| | - Christopher Tse
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| | | | | | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| |
Collapse
|
27
|
Januszczyk P, Fogt J, Boryski J, Izawa K, Onishi T, Neyts J, De Clercq E. Synthesis and antiviral evaluation of 2'-C-methyl analogues of 5-alkynyl- and 6-alkylfurano- and pyrrolo[2,3-d]pyrimidine ribonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:713-23. [PMID: 20183611 DOI: 10.1080/15257770903128870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A series of novel 2'-C-methylribonucleosides, involving 5-iodo and 5-alkynyl uridine analogues as well as related bicyclic furano- and pyrrolo[2,3-d]pyrimidinone compounds, has been synthesized and evaluated for their inhibitory effect on replication of the hepatitis C virus (HCV). The new nucleoside analogues did not show meaningful anti-HCV activity.
Collapse
Affiliation(s)
- Piotr Januszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Maity J, Shakya G, Singh SK, Ravikumar VT, Parmar VS, Prasad AK. Efficient and Selective Enzymatic Acylation Reaction: Separation of Furanosyl and Pyranosyl Nucleosides. J Org Chem 2008; 73:5629-32. [DOI: 10.1021/jo800731u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jyotirmoy Maity
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India, and Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Gaurav Shakya
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India, and Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Sunil K. Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India, and Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Vasulinga T. Ravikumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India, and Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Virinder S. Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India, and Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India, and Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| |
Collapse
|
29
|
Synthesis of methyl 5-S-alkyl-5-thio-D-arabinofuranosides and evaluation of their antimycobacterial activity. Bioorg Med Chem 2008; 16:5672-82. [PMID: 18450455 DOI: 10.1016/j.bmc.2008.03.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 11/22/2022]
Abstract
The emergence of drug resistant tuberculosis necessitates a search for new antimycobacterial compounds. The antigen 85 (ag85) complex is a family of mycolyl transferases involved in the synthesis of trehalose-6,6'-dimycolate and the mycolated hexasaccharide motif found at the terminus of the arabinogalactan in mycobacterium. Enzymes involved in the synthesis of cell wall structures like these are potential targets for the development of new antiinfectives. To potentially inhibit the ag85 complex, methyl 5-S-alkyl-5-thio-arabinofuranoside analogues were designed based on docking studies with ag85C derived from Mycobacterium tuberculosis. The target arabinofuranosides were then synthesized and the antibacterial activity evaluated against Mycobacterium smegmatis ATCC 14468. Two of the compounds, 5-S-octyl-5-thio-alpha-d-arabinofuranoside (8) and 5-S-octyl-5-thio-beta-d-arabinofuranoside (11), showed MICs of 256 and 512microg/mL, respectively. Attempts to directly evaluate acyltransferase inhibitory activity of the arabinofuranosides against ag85C are also described. In conclusion, a new class of antimycobacterial arabinofuranosides has been discovered.
Collapse
|