1
|
Xu Q, Deng H, Huang X, Liu JY, Chen GQ, Shen QK, Quan ZS, Guo HY, Yin XM. Design, synthesis, and in vivo and in vitro biological screening of pseudolaric acid B derivatives as potential anti-tumor agents. Bioorg Chem 2024; 151:107670. [PMID: 39096560 DOI: 10.1016/j.bioorg.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Pseudolaric Acid B (PAB), a natural product with remarkable anti-tumor activity, is a starting point for new anticancer therapeutics. We designed and synthesized 27 PAB derivatives and evaluated their anti-proliferative activities against four cancer cell lines: MCF-7, HCT-116, HepG2, and A549. Compared with unmodified PAB, the PAB derivatives showed stronger anti-proliferative activity. The ability of compound D3 (IC50 = 0.21 μM) to inhibit HCT-116 cells was approximately 5.3 times that of PAB (IC50 = 1.11 μM) and the antiproliferative action was unrelated to cytotoxicity (SI=20.38), indicating its superior safety profile (PAB; SI=0.95). Compound D3 effectively suppressed the EdU-positive rate and reduced colony formation, arrested HCT-116 cells in the S and G2/M phases and induced apoptosis. In vivo experiments further demonstrated low toxicity of compound D3 while suppressing tumor growth in mice. In summary, given its strong anti-proliferative effect and relative safety, further development of compound D3 is warranted.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
2
|
Wu SY, Li Y, Shen P, Yang XH, Ran GY. Palladium-catalysed fragmentary esterification-induced allylic alkylation of allyl carbonates and cyclic vinylogous anhydrides. Chem Commun (Camb) 2024; 60:1416-1419. [PMID: 38204402 DOI: 10.1039/d3cc05758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An unprecedented palladium-catalysed fragmentary esterification-induced allylic alkylation (FEAA) of cyclic vinylogous anhydrides (CVAs) and allyl carbonates has been disclosed. The protocol features broad sp3-rich scaffold tolerance, rendering highly functionalized 1,6 and 1,7-dicarbonyls in up to high yields and diastereoselectivities. Three-component FEAA is also well tolerant to generate 1,6-dicarbonyls through the addition of extra O/N-nucleophiles. Furthermore, cyclic allyl carbonate-involved FEAA provides an efficient approach for the synthesis of structurally complex medium-sized rings.
Collapse
Affiliation(s)
- Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xin-Han Yang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Discovery of pseudolaric acid A as a new Hsp90 inhibitor uncovers its potential anticancer mechanism. Bioorg Chem 2021; 112:104963. [PMID: 33991836 DOI: 10.1016/j.bioorg.2021.104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
Pseudolaric acid A (PAA), one of the main bioactive ingredients in traditional medicine Pseudolarix cortex, exhibits remarkable anticancer activities. Yet its mechanism of action and molecular target have not been investigated and remain unclear. In this work, mechanistic study showed that PAA induced cell cycle arrest at G2/M phase and promoted cell death through caspase-8/caspase-3 pathway, demonstrating potent antiproliferation and anticancer activities. PAA was discovered to be a new Hsp90 inhibitor and multiple biophysical experiments confirmed that PAA directly bind to Hsp90. Active PAA-probe was designed, synthesized and biological evaluated. It was subsequently employed to verify the cellular interaction with Hsp90 in HeLa cells through photoaffinity labeling approach. Furthermore, NMR experiments showed that N-terminal domain of Hsp90 and essential groups in PAA are important for the protein-inhibitor recognition. Structure-activity relationship studies revealed the correlation between its Hsp90 inhibitory activity with anticancer activity. This work proposed a potential mechanism involved with the anticancer activity of PAA and will improve the appreciation of PAA as a potential cancer therapy candidate.
Collapse
|
4
|
Zhao XT, Yu MH, Su SY, Shi XL, Lei C, Hou AJ. Cycloartane triterpenoids from Pseudolarix amabilis and their antiviral activity. PHYTOCHEMISTRY 2020; 171:112229. [PMID: 31901474 DOI: 10.1016/j.phytochem.2019.112229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 05/23/2023]
Abstract
Seven undescribed cycloartane triterpenoids, pseudolarnoids A-G, together with ten known ones, were isolated from the seeds of Pseudolarix amabilis (J. Nelson) Rehder. Their structures were elucidated on the basis of spectroscopic analysis, X-ray crystallography, and ECD data. Pseudolarnoids A-C are cycloartane triterpenoids with a unique 16S, 23R-spirolactone moiety. Pseudolarnoids F, G, and pseudolarolide C demonstrated potent antiviral effects on HSV-1 in vitro.
Collapse
Affiliation(s)
- Xiao-Tong Zhao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mei-Hua Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shi-Yun Su
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xun-Long Shi
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ai-Jun Hou
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
5
|
Sun M, Qian Q, Shi L, Xu L, Liu Q, Zhou L, Zhu X, Yue JM, Yan D. Amphiphilic drug-drug conjugate for cancer therapy with combination of chemotherapeutic and antiangiogenesis drugs. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9602-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Zhang J, Han RY, Ye HC, Zhou Y, Zhang ZK, Yuan EL, Li Y, Yan C, Liu X, Feng G, Guo YX. Effect of pseudolaric acid B on biochemical and physiologic characteristics in Colletotrichum gloeosporioides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:75-82. [PMID: 29933996 DOI: 10.1016/j.pestbp.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 06/08/2023]
Abstract
In our previous study on natural products with fungicidal activity, pseudolaric acid B (PAB) isolated from Pseudolarix amabilis was examined to inhibit significantly mango anthracnose (Colletotrichum gloeosporioides) in vivo and in vitro. In the current study, sensitivity of 17 plant pathogenic fungi to PAB was determined. Mycelial growth rate results showed that PAB possessed strong antifungal activities to eleven fungi with median effective concentration (EC50) values ranging from 0.087 to 1.927μg/mL. EC50 of PAB against spore germination was greater than that of mycelium growth inhibition, which suggest that PAB could execute antifungal activity through mycelial growth inhibition. Further action mechanism of PAB against C. gloeosporioides was investigated, in which PAB treatment inhibited mycelia dry weight, decreased the mycelia reducing sugar and soluble protein. Furthermore, PAB induced an increase in membrane permeability, inhibited the biosynthesis of ergosterol, caused the extreme alteration in ultrastructure as indicated by the thickened cell wall and increased vesicles. These results will increase our understanding of action mechanism of PAB against plant pathogenic fungi.
Collapse
Affiliation(s)
- Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Ru-Yue Han
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Huo-Chun Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Ying Zhou
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Zheng-Ke Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - En-Lin Yuan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China; Guangxi Tianyuan Biochemistry Joint stock Corp, Nanning 530003, People's Republic of China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Chao Yan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Xia Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China.
| | - Yong-Xia Guo
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Natural products (NPs) have been used as traditional medicines since antiquity. With more than 1060 estimated compounds with molecular weights less than 500 Da representing chemical space, NPs occupy a very small percentage; however, they are significantly overrepresented in biologically relevant chemical space. The classical approach concentrates on identifying one or more NPs with biological activity from a source organism. There is much more to be learned from NPs than we can discover this narrow view. In this review, we discuss ways to harness the global properties of NPs.
Collapse
Affiliation(s)
- Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; ,
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; ,
| |
Collapse
|
8
|
Liu ML, Sun D, Li T, Chen H. A Systematic Review of the Immune-Regulating and Anticancer Activities of Pseudolaric Acid B. Front Pharmacol 2017; 8:394. [PMID: 28701952 PMCID: PMC5487521 DOI: 10.3389/fphar.2017.00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023] Open
Abstract
Cortex pseudolaricis, the root bark of Pseudolarix kaempferi Gord, has been used to treat tinea and other skin diseases for the antimicrobial activities in Traditional Chinese Medicine (TCM). Pseudolaric acid B (PAB) has been identified as the major component responsible for the action of C. pseudolaricis. Recently, PAB has been demonstrated to be used as novel treatments for cancer, immune disorders, inflammatory diseases, and immunosuppression. However, the mechanisms through which PAB exerts its properties are not understood well, and little attention in the literature has been given to review its pharmacological activities before. In this review, we performed a systematic summary of the literature with respect to the anticancer, immunosuppressive and anti-inflammatory properties of PAB and its derivatives. Currently available data suggest that PAB is a promising immunosuppressive and anti-inflammatory agent candidate and should be explored further in cancer treatment and prevention.
Collapse
Affiliation(s)
- Mei-Lun Liu
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| | - Dan Sun
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| | - Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| |
Collapse
|
9
|
Kärkäs M, Porco JA, Stephenson CRJ. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem Rev 2016; 116:9683-747. [PMID: 27120289 PMCID: PMC5025835 DOI: 10.1021/acs.chemrev.5b00760] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Indexed: 01/29/2023]
Abstract
The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.
Collapse
Affiliation(s)
- Markus
D. Kärkäs
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - John A. Porco
- Department
of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Corey R. J. Stephenson
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Dong Y, Du N, Li X, Zheng L, Liu G. Tandem Chloropalladation/Cyclization and Dearomative Cyclization toward Functionalized Tricyclic Bridged [3.2.1] Skeleton Compounds. Org Lett 2015; 17:4110-3. [DOI: 10.1021/acs.orglett.5b02076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Dong
- Tsinghua-Peking
Center for Life Sciences, Handian Dist., Beijing 100084, P. R. China
- Department
of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China
| | - Nana Du
- Tsinghua-Peking
Center for Life Sciences, Handian Dist., Beijing 100084, P. R. China
- Department
of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China
| | - Xueyuan Li
- Department
of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China
| | - Litao Zheng
- Department
of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China
| | - Gang Liu
- Tsinghua-Peking
Center for Life Sciences, Handian Dist., Beijing 100084, P. R. China
- Department
of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China
| |
Collapse
|
11
|
Chen SQ, Wang J, Zhao C, Sun QW, Wang YT, Ai T, Li T, Gao Y, Wang H, Chen H. Synthesis and biological evaluation of pseudolaric acid B derivatives as potential immunosuppressive agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:828-837. [PMID: 25895444 DOI: 10.1080/10286020.2015.1030400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudolaric acid B (PB) derivatives with immunosuppressive activity were found by our group. In order to find potential immunosuppressive agents with high efficacy and low toxicity, a series of novel PB derivatives were synthesized and evaluated on their immunosuppressive activities. Most of the synthesized compounds were tested in vitro on murine T and B proliferation. In particular, compound 11 exhibited excellent inhibitory activity toward murine T cells (up to 19-fold enhancement compared to that of mycophenolatemofetil) and little cytotoxicity toward normal murine spleen cells. These experimental data demonstrated that some of these PB derivatives have great potential for future immunosuppressive studies.
Collapse
Affiliation(s)
- Shou-Qiang Chen
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070 , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang J, Yan LT, Yuan EL, Ding HX, Ye HC, Zhang ZK, Yan C, Liu YQ, Feng G. Antifungal activity of compounds extracted from Cortex Pseudolaricis against Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4905-4910. [PMID: 24820992 DOI: 10.1021/jf500968b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cortex Pseudolaricis is the root bark of Pseudolarix amabilis Rehder, found only in China, and has been widely used in folk antifungal remedies in traditional Chinese medicine. In order to find the natural antifungal agents against mango anthracnose, eight compounds, namely pseudolaric acid A (1), ethyl pseudolaric acid B (2), pseudolaric acid B (3), pseudolaric acid B-O-β-d-glucoside (4), piperonylic acid (5), propionic acid (6), 3-hydroxy-4-methoxybenzoic acid (7), and 4-(3-formyl-5-methoxyphenyl) butanoic acid (8) were isolated from the ethanol extracts of Cortex Pseudolaricis by bioassay-guided fractionation and evaluated for in vitro antifungal activity against Colletotrichum gloeosporioides Penz. Results demonstrated that all of the eight compounds inhibited the mycelial growth of C. gloeosporioides at 5 μg/mL. Among them, pseudolaric acid B and pseudolaric acid A showed the strongest inhibition with the EC50 values of 1.07 and 1.62 μg/mL, respectively. Accordingly, both Pseudolaric acid B and Pseudolaric acid A highly inhibited spore germination and germ tube elongation of C. gloeosporioides. Dipping 100 μg/mL pseudolaric acid B treatment exhibited more effective suppression on postharvest anthracnose in mango fruit when compared to the same concentration of carbendazim. Scanning electron microscopy observations revealed that pseudolaric acid B caused alterations in the hyphal morphology of C. gloeosporioides, including distortion, swelling, and collapse. Pseudolaric acid B caused the mycelial apexes to show an abnormal growth in dimensions with multiple ramifications in subapical expanded areas with irregular shape. These findings warrant further investigation into optimization of pseudolaric acid B to explore a potential antifungal agent for crop protection.
Collapse
Affiliation(s)
- Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science , Haikou 571010, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bennett NB, Stoltz BM. A unified approach to the daucane and sphenolobane bicyclo[5.3.0]decane core: enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-para-anisoyloxydauc-4,8-diene. Chemistry 2013; 19:17745-50. [PMID: 24302464 PMCID: PMC3927641 DOI: 10.1002/chem.201302353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Indexed: 11/07/2022]
Abstract
Access to the bicyclo[5.3.0]decane core found in the daucane and sphenolobane terpenoids via a key enone intermediate enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-para-anisoyloxydauc-4,8-diene. Central aspects include a catalytic asymmetric alkylation followed by a ring contraction and ring-closing metathesis to generate the five- and seven-membered rings, respectively.
Collapse
Affiliation(s)
- Nathan B. Bennett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA), Fax: (+1) 626-395-8436
| | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA), Fax: (+1) 626-395-8436
| |
Collapse
|
14
|
Discovery of structurally diverse and bioactive compounds from plant resources in China. Acta Pharmacol Sin 2012; 33:1147-58. [PMID: 22941284 DOI: 10.1038/aps.2012.105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review describes the major discoveries of structurally diverse and/or biologically significant compounds from plant resources in China, mainly from the traditional Chinese medicines (TCMs) since the establishment of our research group in 1999. In the past decade, a large array of biologically significant and novel structures has been identified from plant resources (or TCM) in our laboratory. The structural modification of several biologically important compounds led to more than 400 derivatives, some of which exhibited significantly improved activities and provided opportunities to elucidate the structure-activity relationship of the related compound class. These findings are important for drug discovery and help us understand the biological basis for the traditional applications of these plants in TCM.
Collapse
|
15
|
Miao ZH, Feng JM, Ding J. Newly discovered angiogenesis inhibitors and their mechanisms of action. Acta Pharmacol Sin 2012; 33:1103-11. [PMID: 22922347 DOI: 10.1038/aps.2012.97] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the past decade, the success of angiogenesis inhibitors in clinical contexts has established the antiangiogenic strategy as an important part of cancer therapy. During that time period, we have discovered and reported 17 compounds that exert potent inhibition on angiogenesis. These compounds exhibit tremendous diversity in their sources, structures, targets and mechanisms. These studies have generated new models for further modification and optimization of inhibitory compounds, new information for mechanistic studies and a new drug candidate for clinical development. In particular, through studies on the antiangiogenic mechanism of pseudolaric acid B, we discovered a novel mechanism by which the stability of hypoxia-inducible factor 1α is regulated by the transcription factor c-Jun. We also completed a preclinical study of AL3810, a compound with the potential to circumvent tumor drug resistance to a certain extent. All of these findings will be briefly reviewed in this article.
Collapse
|
16
|
Design, synthesis, and anti-proliferative evaluation of [1,1'-biphenyl]-4-ols as inhibitor of HUVEC migration and tube formation. Molecules 2012; 17:8091-104. [PMID: 22766801 PMCID: PMC6268124 DOI: 10.3390/molecules17078091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 11/19/2022] Open
Abstract
Allylated biphenol neolignans contain a variety of chemopreventive entities that have been used as anti-tumor drug leads. Herein, 37 allylated biphenols were evaluated for anti-proliferative activity by the MTT assay and inhibitory effect on the migration and tube formation of HUVECs featuring anti-angiogenic properties. 3-(2-Methylbut-3-en-2-yl)-3′,5′-bis(trifluoromethyl)-[1,1′-biphenyl]-4-ol (5c) exerted an inhibitory effect on HUVECs compared to honokiol (IC50 = 47.0 vs. 52.6 μM) and showed significant blocking effects on the proliferation of C26, Hela, K562, A549, and HepG2 (IC50 = 15.0, 25.0, 21.2, 29.5, and 13.0 μM, respectively), superior to those of honokiol (IC50 = 65.1, 62.0, 42.0, 75.0, and 55.4 μM, respectively). Importantly, compound 5c inhibited the migration and capillary-like tube formation of HUVECs in vitro.
Collapse
|
17
|
Synthesis and antiangiogenic activity of novel gambogic acid derivatives. Molecules 2012; 17:6249-68. [PMID: 22634837 PMCID: PMC6268492 DOI: 10.3390/molecules17066249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023] Open
Abstract
Gambogic acid (GA) is in a phase II clinical trial as an antitumor and antiangiogenesis agent. In this study, 36 GA derivatives were synthesized and screened in a zebrafish model to evaluate their antiangiogenic activity and toxicity. Derivatives 4, 32, 35,36 effectively suppressed the formation of newly grown blood vessels and showed lower toxicities than GA as evaluated by zebrafish heart rates and mortalities. They also exhibited more potent migration and HUVEC tube formation inhibiting activities than GA. Among them, 36 was the most potent one, suggesting that it may serve as a potential new antiangiogenesis candidate with low toxicity. Additionally, 36 showed comparable antiproliferative activity to HUVECs and five tumor cell lines but low cytotoxicity to LO2 cells.
Collapse
|
18
|
Application of step-wise gradient high-performance counter-current chromatography for rapid preparative separation and purification of diterpene components from Pseudolarix kaempferi Gordon. J Chromatogr A 2012; 1235:34-8. [DOI: 10.1016/j.chroma.2012.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/07/2012] [Accepted: 01/15/2012] [Indexed: 11/19/2022]
|
19
|
Pseudolaric acid B-driven phosphorylation of c-Jun impairs its role in stabilizing HIF-1alpha: a novel function-converter model. J Mol Med (Berl) 2012; 90:971-81. [PMID: 22406864 DOI: 10.1007/s00109-012-0865-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/06/2012] [Accepted: 01/12/2012] [Indexed: 12/19/2022]
Abstract
We have recently discovered that c-Jun executes a non-transcriptional function to stabilize hypoxia inducible factor 1α (HIF-1α) and that pseudolaric acid B (PAB) accelerates HIF-1α degradation and phosphorylates c-Jun at Ser63/73. In this study, PAB was used as a probe to investigate whether and how the Ser63/73 phosphorylation of c-Jun regulates its functions. The PAB-induced reduction of HIF-1α protein was rescued through supplying additional non-phosphorylated c-Jun. However, c-Jun siRNA, which reduced both the PAB-driven phosphorylated c-Jun and the total c-Jun protein, did not prevent the PAB-induced decrease in HIF-1α. HIF-1α was revealed to be co-immunoprecipitated only with the non-phosphorylated c-Jun. PAB increased the phosphorylated c-Jun while reducing the non-phosphorylated c-Jun at Ser63/73, which impaired its function in stabilizing HIF-1α. Consequently, PAB led to the degradation of HIF-1α, thus resulting in the decreased HIF-1α-dependent expression of mdr-1 and VEGF. We accordingly propose a function-converter model of c-Jun: the Ser63/73 phosphorylation serves as a function converter to convert c-Jun from its non-transcriptional function to its transcriptional function.
Collapse
|
20
|
Wu XD, He J, Shen Y, Dong LB, Pan ZH, Xu G, Gong X, Song LD, Leng Y, Li Y, Peng LY, Zhao QS. Pseudoferic acids A–C, three novel triterpenoids from the root bark of Pseudolarix kaempferi. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Xu B, Ding J, Chen KX, Miao ZH, Huang H, Liu H, Luo XM. Advances in Cancer Chemotherapeutic Drug Research in China. RECENT ADVANCES IN CANCER RESEARCH AND THERAPY 2012. [PMCID: PMC7158183 DOI: 10.1016/b978-0-12-397833-2.00012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Xu
- Corresponding author: Bin Xu, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zi Road, Shanghai 201203, People’s Republic of China. Tel: O21-54920515 (o), 13501793936 (mobile), Fax: 021-54920568, e-mail:
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Ye M, Gong YJ, Feng LM, Tao SJ, Yin J, Guo DA. Biotransformation of pseudolaric acid B by Chaetomium globosum. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Chen SM, Meng LH, Ding J. New microtubule-inhibiting anticancer agents. Expert Opin Investig Drugs 2010; 19:329-43. [DOI: 10.1517/13543780903571631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Chiu P, Leung LT, Ko BCB. Pseudolaric acids: isolation, bioactivity and synthetic studies. Nat Prod Rep 2010; 27:1066-83. [DOI: 10.1039/b906520m] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|