1
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
2
|
Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications. J Colloid Interface Sci 2018; 514:733-739. [DOI: 10.1016/j.jcis.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
|
3
|
Gui Ning L, Wang S, Feng Hu X, Ming Li C, Qun Xu L. Vancomycin-conjugated polythiophene for the detection and imaging of Gram-positive bacteria. J Mater Chem B 2017; 5:8814-8820. [DOI: 10.1039/c7tb02061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vancomycin-conjugated polythiophene was synthesized for the discrimination and elimination of Gram-positive bacteria.
Collapse
Affiliation(s)
- Ling Gui Ning
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Shuai Wang
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Xue Feng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Li Qun Xu
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| |
Collapse
|
4
|
García-Gareta E, Davidson C, Levin A, Coathup MJ, Blunn GW. Biofilm formation in total hip arthroplasty: prevention and treatment. RSC Adv 2016. [DOI: 10.1039/c6ra09583f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review assesses the current knowledge on treatments, pathogenesis and the prevention of infections associated with orthopaedic implants, with a focus on total hip arthroplasty.
Collapse
Affiliation(s)
| | - Christopher Davidson
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| | - Alexandra Levin
- RAFT Institute of Plastic Surgery
- Mount Vernon Hospital
- Northwood HA6 2RN
- UK
| | - Melanie J. Coathup
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| | - Gordon W. Blunn
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| |
Collapse
|
5
|
Ariyasu S, Too PC, Mu J, Goh CC, Ding Y, Tnay YL, Yeow EKL, Yang L, Ng LG, Chiba S, Xing B. Glycopeptide antibiotic analogs for selective inactivation and two-photon imaging of vancomycin-resistant strains. Chem Commun (Camb) 2016; 52:4667-70. [DOI: 10.1039/c5cc10230h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic divalent vancomycin systems exhibit selective antibacterial activity against vancomycin-resistant strains and can be applied for two-photon fluorescence imaging.
Collapse
|
6
|
Artola-Recolons C, Lee M, Bernardo-García N, Blázquez B, Hesek D, Bartual SG, Mahasenan KV, Lastochkin E, Pi H, Boggess B, Meindl K, Usón I, Fisher JF, Mobashery S, Hermoso JA. Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli. ACS Chem Biol 2014; 9:2058-66. [PMID: 24988330 PMCID: PMC4168783 DOI: 10.1021/cb500439c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The lytic transglycosylases are essential
bacterial enzymes that
catalyze the nonhydrolytic cleavage of the glycan strands of the bacterial
cell wall. We describe here the structural and catalytic properties
of MltC, one of the seven lytic transglycosylases found in the genome
of the Gram-negative bacterium Escherichia coli.
The 2.3 Å resolution X-ray structure of a soluble construct of
MltC shows a unique, compared to known lytic transglycosylase structures,
two-domain structure characterized by an expansive active site of
53 Å length extending through an interface between the domains.
The structures of three complexes of MltC with cell wall analogues
suggest the positioning of the peptidoglycan in the active site both
as a substrate and as a product. One complex is suggested to correspond
to an intermediate in the course of sequential and exolytic cleavage
of the peptidoglycan. Moreover, MltC partitioned its reactive oxocarbenium-like
intermediate between trapping by the C6-hydroxyl of the muramyl moiety
(lytic transglycosylase activity, the major path) and by water (muramidase
activity). Genomic analysis identifies the presence of an MltC homologue
in no less than 791 bacterial genomes. While the role of MltC in cell
wall assembly and maturation remains uncertain, we propose a functional
role for this enzyme as befits the uniqueness of its two-domain structure.
Collapse
Affiliation(s)
- Cecilia Artola-Recolons
- Department
of Crystallography and Structural Biology, Inst. Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mijoon Lee
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Noelia Bernardo-García
- Department
of Crystallography and Structural Biology, Inst. Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Blas Blázquez
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Dusan Hesek
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Sergio G. Bartual
- Department
of Crystallography and Structural Biology, Inst. Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Kiran V. Mahasenan
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Elena Lastochkin
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Hualiang Pi
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Bill Boggess
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Kathrin Meindl
- Instituto de Biología Molecular de Barcelona, CSIC, Baldiri Reixach 13, 08028 Barcelona, Spain
- ICREA (Institucio
Catalana de Recerca y Estudis Avançats), Passeig lluís Companys 23, 08010 Barcelona, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona, CSIC, Baldiri Reixach 13, 08028 Barcelona, Spain
- ICREA (Institucio
Catalana de Recerca y Estudis Avançats), Passeig lluís Companys 23, 08010 Barcelona, Spain
| | - Jed F. Fisher
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department
of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Juan A. Hermoso
- Department
of Crystallography and Structural Biology, Inst. Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
7
|
|
8
|
Early insights into the interactions of different β-lactam antibiotics and β-lactamase inhibitors against soluble forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3. Antimicrob Agents Chemother 2012; 56:5687-92. [PMID: 22908165 DOI: 10.1128/aac.01027-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is an increasingly problematic pathogen in United States hospitals. Antibiotics that can treat A. baumannii are becoming more limited. Little is known about the contributions of penicillin binding proteins (PBPs), the target of β-lactam antibiotics, to β-lactam-sulbactam susceptibility and β-lactam resistance in A. baumannii. Decreased expression of PBPs as well as loss of binding of β-lactams to PBPs was previously shown to promote β-lactam resistance in A. baumannii. Using an in vitro assay with a reporter β-lactam, Bocillin, we determined that the 50% inhibitory concentrations (IC(50)s) for PBP1a from A. baumannii and PBP3 from Acinetobacter sp. ranged from 1 to 5 μM for a series of β-lactams. In contrast, PBP3 demonstrated a narrower range of IC(50)s against β-lactamase inhibitors than PBP1a (ranges, 4 to 5 versus 8 to 144 μM, respectively). A molecular model with ampicillin and sulbactam positioned in the active site of PBP3 reveals that both compounds interact similarly with residues Thr526, Thr528, and Ser390. Accepting that many interactions with cell wall targets are possible with the ampicillin-sulbactam combination, the low IC(50)s of ampicillin and sulbactam for PBP3 may contribute to understanding why this combination is effective against A. baumannii. Unraveling the contribution of PBPs to β-lactam susceptibility and resistance brings us one step closer to identifying which PBPs are the best targets for novel β-lactams.
Collapse
|
9
|
Boudreau MA, Fisher JF, Mobashery S. Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 2012; 51:2974-90. [PMID: 22409164 DOI: 10.1021/bi300174x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall and messengers in diverse cell signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria are discussed, followed by muropeptide sensing by eukaryotes as a crucial event in the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion.
Collapse
Affiliation(s)
- Marc A Boudreau
- Department of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
10
|
Xing B, Jiang T, Wu X, Liew R, Zhou J, Zhang D, Yeow EKL. Molecular Interactions between Glycopeptide Vancomycin and Bacterial Cell Wall Peptide Analogues. Chemistry 2011; 17:14170-7. [DOI: 10.1002/chem.201102195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/11/2022]
|
11
|
Frase H, Smith CA, Toth M, Champion MM, Mobashery S, Vakulenko SB. Identification of products of inhibition of GES-2 beta-lactamase by tazobactam by x-ray crystallography and spectrometry. J Biol Chem 2011; 286:14396-409. [PMID: 21345789 PMCID: PMC3077639 DOI: 10.1074/jbc.m110.208744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/19/2011] [Indexed: 01/28/2023] Open
Abstract
The GES-2 β-lactamase is a class A carbapenemase, the emergence of which in clinically important bacterial pathogens is a disconcerting development as the enzyme confers resistance to carbapenem antibiotics. Tazobactam is a clinically used inhibitor of class A β-lactamases, which inhibits the GES-2 enzyme effectively, restoring susceptibility to β-lactam antibiotics. We have investigated the details of the mechanism of inhibition of the GES-2 enzyme by tazobactam. By the use of UV spectrometry, mass spectroscopy, and x-ray crystallography, we have documented and identified the involvement of a total of seven distinct GES-2·tazobactam complexes and one product of the hydrolysis of tazobactam that contribute to the inhibition profile. The x-ray structures for the GES-2 enzyme are for both the native (1.45 Å) and the inhibited complex with tazobactam (1.65 Å). This is the first such structure of a carbapenemase in complex with a clinically important β-lactam inhibitor, shedding light on the structural implications for the inhibition process.
Collapse
Affiliation(s)
- Hilary Frase
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Clyde A. Smith
- the Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California 94025
| | - Marta Toth
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Matthew M. Champion
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Shahriar Mobashery
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Sergei B. Vakulenko
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| |
Collapse
|
12
|
Bromberg L, Chang EP, Hatton TA, Concheiro A, Magariños B, Alvarez-Lorenzo C. Bactericidal core-shell paramagnetic nanoparticles functionalized with poly(hexamethylene biguanide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:420-429. [PMID: 21138282 DOI: 10.1021/la1039909] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bactericidal paramagnetic particles were obtained either through the attachment of a conjugate of poly(ethyleneimine) (PEI) and poly(hexamethylene biguanide) (PHMBG) to the surface of magnetite (Fe(3)O(4)) particles, or via the sol-gel encapsulation of magnetite particles with a functional silane (3-glycidoxypropyl trimethoxysilane) and subsequent binding of the polysiloxane shell by the amine/imine groups of PHMBG. The encapsulated core-shell particles possess a high saturation magnetization, which is preserved for more than 10 months while in contact with air in aqueous suspensions. The minimum inhibitory concentration (MIC) of the encapsulated particles for eight types of bacteria was size-dependent, with polydisperse submillimeter particles possessing a several-fold higher MIC than analogous particles sized below 250 nm. The encapsulated particles are biocompatible and nontoxic to mammalian cells such as mouse fibroblasts. The particles efficiently bind both glycopeptide components mimicking the gram-positive bacteria membranes and whole bacteria, and possess broad-range bactericidal activity. The cell-particle complexes can be captured, manipulated, and removed by means of a magnet.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | |
Collapse
|