1
|
Roy N, Das R, Paira R, Paira P. Different routes for the construction of biologically active diversely functionalized bicyclo[3.3.1]nonanes: an exploration of new perspectives for anticancer chemotherapeutics. RSC Adv 2023; 13:22389-22480. [PMID: 37501776 PMCID: PMC10369265 DOI: 10.1039/d3ra02003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023] Open
Abstract
Cancer is the second most high-morbidity disease throughout the world. From ancient days, natural products have been known to possess several biological activities, and research on natural products is one of the most enticing areas where scientists are engrossed in the extraction of valuable compounds from various plants to isolate many life-saving medicines, along with their other applications. It has been noticed that the bicyclo[3.3.1]nonane moiety is predominant in most biologically active natural products owing to its exceptional characteristics compared to others. Many derivatives of bicyclo[3.3.1]nonane are attractive to researchers for use in asymmetric catalysis or as potent anticancer entities along with their successful applications as ion receptors, metallocycles, and molecular tweezers. Therefore, this review article discusses several miscellaneous synthetic routes for the construction of bicyclo[3.3.1]nonanes and their heteroanalogues in association with the delineation of their anticancer activities with few selective compounds.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rishav Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rupankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| |
Collapse
|
2
|
Al-Kassmy J, Sun C, Huot P. 5-HT 1A agonists for levodopa-induced dyskinesia in Parkinson's disease. Neurodegener Dis Manag 2023; 13:101-112. [PMID: 37140165 DOI: 10.2217/nmt-2022-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Levodopa is the most effective agent for treating the symptoms of Parkinson's disease (PD). However, levodopa-induced dyskinesia remains a significant complication that manifests after few years of treatment, for which therapeutic options remain limited. Several agonists of the serotonin type 1A (5-HT1A) receptor with varying levels of efficacy and interaction at other sites, have been tested in the clinic. Clinical trials testing 5-HT1A agonists have yielded inconsistent results in alleviating dyskinesia, especially that the antidyskinetic benefit observed was often accompanied by an adverse effect on motor function. In this article, we summarize and analyze the various clinical trials performed with 5-HT1A agonists in PD patients with dyskinesia and offer perspectives on the future of this class of agents in PD.
Collapse
Affiliation(s)
- Jawad Al-Kassmy
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland
| | - Christine Sun
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, H3A 2B4, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, H3A 2B4, Canada
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, H3A 2B4, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
3
|
Identification of Novel Dopamine D2 Receptor Ligands—A Combined In Silico/In Vitro Approach. Molecules 2022; 27:molecules27144435. [PMID: 35889317 PMCID: PMC9318694 DOI: 10.3390/molecules27144435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.
Collapse
|
4
|
Lévay K, Madarász J, Hegedűs L. Tuning the chemoselectivity of the Pd-catalysed hydrogenation of pyridinecarbonitriles: an efficient and simple method for preparing pyridyl- or piperidylmethylamines. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02295d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation between the products can be fine-tuned by simply adjusting the amount of acidic additive.
Collapse
Affiliation(s)
- Krisztina Lévay
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - János Madarász
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Hegedűs
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
5
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
6
|
Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. Molecules 2021; 26:molecules26061813. [PMID: 33807018 PMCID: PMC8004868 DOI: 10.3390/molecules26061813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/04/2022] Open
Abstract
The aminocarbonylation of various alkenyl and (hetero)aryl iodides was carried out using tropane-based amines of biological importance, such as 8-azabicyclo[3.2.1]octan-3-one (nortropinone) and 3α-hydroxy-8-azabicyclo[3.2.1]octane (nortropine) as N-nucleophile. Using iodoalkenes, the two nucleophiles were selectively converted to the corresponding amide in the presence of Pd(OAc)2/2 PPh3 catalysts. In the presence of several iodo(hetero)arenes, the application of the bidentate Xantphos was necessary to produce the target compounds selectively. The new carboxamides of varied structure, formed in palladium-catalyzed aminocarbonylation reactions, were isolated and fully characterized. In this way, a novel synthetic method has been developed for the producing of N-acylnortropane derivatives of biological importance.
Collapse
|
7
|
Pereira-Sousa J, Ferreira-Lomba B, Bellver-Sanchis A, Vilasboas-Campos D, Fernandes JH, Costa MD, Varney MA, Newman-Tancredi A, Maciel P, Teixeira-Castro A. Identification of the 5-HT 1A serotonin receptor as a novel therapeutic target in a C. elegans model of Machado-Joseph disease. Neurobiol Dis 2021; 152:105278. [PMID: 33516872 DOI: 10.1016/j.nbd.2021.105278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder that affects movement coordination leading to a premature death. Despite several efforts, no disease-modifying treatment is yet available for this disease. Previous studies pinpointed the modulation of serotonergic signaling, through pharmacological inhibition of the serotonin transporter SERT, as a promising therapeutic approach for MJD/SCA3. Here, we describe the 5-HT1A receptor as a novel therapeutic target in MJD, using a C. elegans model of ATXN3 proteotoxicity. Chronic and acute administration of befiradol (also known as NLX-112), a highly specific 5-HT1A agonist, rescued motor function and suppressed mutant ATXN3 aggregation. This action required the 5-HT1A receptor orthologue in the nematode, SER-4. Tandospirone, a clinically tested 5-HT1A receptor partial agonist, showed a limited impact on animals' motor dysfunction on acute administration and a broader receptor activation profile upon chronic treatment, its effect depending on 5-HT1A but also on the 5-HT6/SER-5 and 5-HT7/SER-7 receptors. Our results support high potency and specificity of befiradol for activation of 5-HT1A/SER-4 receptors and highlight the contribution of the auto- and hetero-receptor function to the therapeutic outcome in this MJD model. Our study deepens the understanding of serotonergic signaling modulation in the suppression of ATXN3 proteotoxicity and suggests that a potent and selective 5-HT1A receptor agonist such as befiradol could constitute a promising therapeutic agent for MJD.
Collapse
Affiliation(s)
- Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal; Behavioral & Molecular Lab (Bn'ML), University of Minho, Braga, Portugal
| | - Bruna Ferreira-Lomba
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Aina Bellver-Sanchis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Jorge H Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Marta D Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Sniecikowska J, Newman-Tancredi A, Kolaczkowski M. From Receptor Selectivity to Functional Selectivity: The Rise of Biased Agonism in 5-HT1A Receptor Drug Discovery. Curr Top Med Chem 2019; 19:2393-2420. [PMID: 31544717 DOI: 10.2174/1568026619666190911122040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
Despite extensive efforts to design serotonin 5-HT1A receptor compounds, there are currently no clinically available selective agonists to explore the therapeutic potential of activating this receptor. Commonly used drugs targeting 5-HT1A receptors, such as buspirone or other azapirone compounds, possess only limited selectivity over cross-reacting sites, act as partial agonists for 5-HT1A receptor activation, and are metabolically labile, generating active metabolites. In addition, drug discovery has been hampered by the multiplicity of 5-HT1A receptor subpopulations, expressed in different brain regions, that are coupled to distinct molecular signaling mechanisms and mediate a wide variety of physiological responses, both desired and undesired. In this context, advances in 5-HT1A receptor drug discovery have attracted attention of novel 'biased agonists' that are selective, efficacious and preferentially target the brain regions that mediate therapeutic activity without triggering side effects. The prototypical first-in-class compound NLX-101 (a.k.a. F15599; 3-chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin- 1-yl]methanone), preferentially activates 5-HT1A receptors in cortical regions and exhibits potent, rapidacting and sustained antidepressant-like and procognitive properties in animal models. Here the background has been reviewed that led to the discovery of the class of 1-(1-benzoylpiperidin-4- yl)methanamine derivatives, including NLX-101, as well as recent advances in discovery of novel 5-HT1A receptor biased agonists, notably aryloxyethyl derivatives of 1‑(1-benzoylpiperidin-4yl)methanamine which show promising pharmacological activity both in vitro and in vivo. Overall, the results suggest that opportunities exist for innovative drug discovery of selective 5-HT1A receptor biased agonists that may open new avenues for the treatment of CNS disorders involving dysfunction of serotonergic neurotransmission.
Collapse
Affiliation(s)
- Joanna Sniecikowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Chair of Pharmaceutical Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | | | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Chair of Pharmaceutical Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
9
|
Synthesis of dispiro[1-benzothiophene-2,3'-pyrrolidine-2',3”-indoline]-2”,3-diones in cycloaddition reaction. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02575-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Abstract
The ventilatory control system is highly vulnerable to exogenous administered opioid analgesics. Particularly respiratory depression is a potentially lethal complication that may occur when opioids are overdosed or consumed in combination with other depressants such as sleep medication or alcohol. Fatalities occur in acute and chronic pain patients on opioid therapy and individuals that abuse prescription or illicit opioids for their hedonistic pleasure. One important strategy to mitigate opioid-induced respiratory depression is cotreatment with nonopioid respiratory stimulants. Effective stimulants prevent respiratory depression without affecting the analgesic opioid response. Several pharmaceutical classes of nonopioid respiratory stimulants are currently under investigation. The majority acts at sites within the brainstem respiratory network including drugs that act at α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (ampakines), 5-hydroxytryptamine receptor agonists, phospodiesterase-4 inhibitors, D1-dopamine receptor agonists, the endogenous peptide glycyl-glutamine, and thyrotropin-releasing hormone. Others act peripherally at potassium channels expressed on oxygen-sensing cells of the carotid bodies, such as doxapram and GAL021 (Galleon Pharmaceuticals Corp., USA). In this review we critically appraise the efficacy of these agents. We conclude that none of the experimental drugs are adequate for therapeutic use in opioid-induced respiratory depression and all need further study of efficacy and toxicity. All discussed drugs, however, do highlight potential mechanisms of action and possible templates for further study and development.
Collapse
|
12
|
Onomura O, Kuriyama M, Kamogawa S, Yamamoto K. β-Trichloroacetylation of Cyclic Amines: Application to Synthesis of Chiral Azabicyclo-N-oxyls. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Mandzhulo A, Vashchenko I, Gerasov A, Vovk M, Rusanov E, Fetyukhin V, Lukin O, Shivanyuk A. Selective synthesis of N-protected exo-spiro[oxirane-3,2′-tropanes]. Org Chem Front 2019. [DOI: 10.1039/c9qo00377k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Cbz- and N-Boc-protected exo-spiro[oxirane-3,2′-tropanes] were selectively synthesized via either epoxidation or hydroxybromination/dehydrobromination of the corresponding alkenes.
Collapse
Affiliation(s)
- Aleksandr Mandzhulo
- Life Chemicals Inc
- Kyiv
- Ukraine
- Institute of Organic Chemistry
- National Academy of Sciences of Ukraine
| | | | | | - Mykhaylo Vovk
- Institute of Organic Chemistry
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - Eduard Rusanov
- Institute of Organic Chemistry
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | | | | | - Alexander Shivanyuk
- Life Chemicals Inc
- Kyiv
- Ukraine
- The Institute of High Technologies
- Taras Shevchenko National University of Kyiv
| |
Collapse
|
14
|
Staroń J, Bugno R, Hogendorf AS, Bojarski AJ. 5-HT1A receptor ligands and their therapeutic applications: review of new patents. Expert Opin Ther Pat 2018; 28:679-689. [DOI: 10.1080/13543776.2018.1514011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jakub Staroń
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Adam S. Hogendorf
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|
15
|
Zheng G, Xue W, Yang F, Zhang Y, Chen Y, Yao X, Zhu F. Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT 1A receptor in the treatment of major depressive disorder. Phys Chem Chem Phys 2018; 19:28885-28896. [PMID: 29057413 DOI: 10.1039/c7cp05688e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It has been estimated that major depressive disorder (MDD) will become the second largest global burden among all diseases by 2030. Various types of drugs, including selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and serotonin receptor partial agonist/reuptake inhibitors (SPARIs), have been approved and become the primary or first-line medications prescribed for MDD. SPARI was expected to demonstrate more enhanced drug efficacy and a rapid onset of action as compared to SSRI and SNRI. As one of the most famous SPARIs, vilazodone was approved by the FDA for the treatment of MDD. Because of the great clinical importance of vilazodone, its binding mechanism underlying its partial agonism to the 5-HT1A receptor (5-HT1AR) could provide valuable information to SPARIs' drug-like properties. However, this mechanism has not been reported to date; consequently, the rational design of new efficacious SPARI-based MDD drugs is severely hampered. To explore the molecular mechanism of vilazodone, an integrated computational strategy was adopted in this study to reveal its binding mechanism and prospective structural feature at the agonist binding site of 5-HT1AR. As a result, 22 residues of this receptor were identified as hotspots, consistently favoring the binding of vilazodone and its analogues, and a common binding mechanism underlying their partial agonism to 5-HT1AR was, therefore, discovered. Moreover, three main interaction features between vilazodone and 5-HT1AR have been revealed and schematically summarized. In summary, this newly identified binding mechanism will provide valuable information for medicinal chemists working in the field of rational design of novel SPARIs for MDD treatment.
Collapse
Affiliation(s)
- Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bucki A, Marcinkowska M, Śniecikowska J, Więckowski K, Pawłowski M, Głuch-Lutwin M, Gryboś A, Siwek A, Pytka K, Jastrzębska-Więsek M, Partyka A, Wesołowska A, Mierzejewski P, Kołaczkowski M. Novel 3-(1,2,3,6-Tetrahydropyridin-4-yl)-1H-indole-Based Multifunctional Ligands with Antipsychotic-Like, Mood-Modulating, and Procognitive Activity. J Med Chem 2017; 60:7483-7501. [PMID: 28763213 DOI: 10.1021/acs.jmedchem.7b00839] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The most troublesome aspects of behavioral and psychological symptoms of dementia (BPSD) are nowadays addressed by antidepressant, anxiolytic, and antipsychotic drugs, often administered off-label. Considering their modest effectiveness in dementia patients, the increased risk of adverse events and cognitive decline, there is an unmet need for well-tolerated and effective therapy of BPSD. We designed and synthesized multifunctional ligands characterized in vitro as high-affinity partial agonists of D2R, antagonists of 5-HT6R, and blockers of SERT. Moreover, the molecules activated 5-HT1AR and blocked 5-HT7R while having no relevant affinity for off-target M1R and hERG channel. Compound 16 (N-{2-[4-(5-chloro-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]ethyl}-3-methylbenzene-1-sulfonamide) exhibited a broad antipsychotic-, antidepressant-, and anxiolytic-like activity, not eliciting motor impairments in mice. Most importantly, 16 showed memory-enhancing properties and it ameliorated memory deficits induced by scopolamine. The molecule outperformed most important comparators in selected tests, indicating its potential in the treatment of both cognitive and noncognitive (behavioral and psychological) symptoms of dementia.
Collapse
Affiliation(s)
- Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Gryboś
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Karolina Pytka
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paweł Mierzejewski
- Institute of Psychiatry and Neurology , 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland.,Adamed Ltd. , Pieńków 149, 05-152 Czosnów, Poland
| |
Collapse
|
17
|
Dash SP, Panda AK, Pasayat S, Dinda R, Biswas A, Tiekink ERT, Mukhopadhyay S, Bhutia SK, Kaminsky W, Sinn E. Oxidovanadium(v) complexes of aroylhydrazones incorporating heterocycles: synthesis, characterization and study of DNA binding, photo-induced DNA cleavage and cytotoxic activities. RSC Adv 2015. [DOI: 10.1039/c4ra14369h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interaction of four neutral oxidovanadium(v) complexes with DNA and their cytotoxic activities have been reported.
Collapse
Affiliation(s)
- Subhashree P. Dash
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Alok K. Panda
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | - Sagarika Pasayat
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Ashis Biswas
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | | | | | - Sujit K. Bhutia
- Department of Life Science
- National Institute of Technology
- Rourkela 769008
- India
| | | | - Ekkehard Sinn
- Department of Chemistry
- Western Michigan University
- Kalamazoo
- USA
| |
Collapse
|
18
|
Paulke A, Kremer C, Wunder C, Achenbach J, Djahanschiri B, Elias A, Schwed JS, Hübner H, Gmeiner P, Proschak E, Toennes SW, Stark H. Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:492-497. [PMID: 23665164 DOI: 10.1016/j.jep.2013.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The convolvulacea Argyreia nervosa (Burm. f.) is well known as an important medical plant in the traditional Ayurvedic system of medicine and it is used in numerous diseases (e.g. nervousness, bronchitis, tuberculosis, arthritis, and diabetes). Additionally, in the Indian state of Assam and in other regions Argyreia nervosa is part of the traditional tribal medicine (e.g. the Santali people, the Lodhas, and others). In the western hemisphere, Argyreia nervosa has been brought in attention as so called "legal high". In this context, the seeds are used as source of the psychoactive ergotalkaloid lysergic acid amide (LSA), which is considered as the main active ingredient. AIM OF THE STUDY As the chemical structure of LSA is very similar to that of lysergic acid diethylamide (LSD), the seeds of Argyreia nervosa (Burm. f.) are often considered as natural substitute of LSD. In the present study, LSA and LSD have been compared concerning their potential pharmacological profiles based on the receptor binding affinities since our recent human study with four volunteers on p.o. application of Argyreia nervosa seeds has led to some ambiguous effects. MATERIAL AND METHODS In an initial step computer-aided in silico prediction models on receptor binding were employed to screen for serotonin, norepinephrine, dopamine, muscarine, and histamine receptor subtypes as potential targets for LSA. In addition, this screening was extended to accompany ergotalkaloids of Argyreia nervosa (Burm. f.). In a verification step, selected LSA screening results were confirmed by in vitro binding assays with some extensions to LSD. RESULTS In the in silico model LSA exhibited the highest affinity with a pKi of about 8.0 at α1A, and α1B. Clear affinity with pKi>7 was predicted for 5-HT1A, 5-HT1B, 5-HT1D, 5-HT6, 5-HT7, and D2. From these receptors the 5-HT1D subtype exhibited the highest pKi with 7.98 in the prediction model. From the other ergotalkaloids, agroclavine and festuclavine also seemed to be highly affine to the 5-HT1D-receptor with pKi>8. In general, the ergotalkaloids of Argyreia nervosa seem to prefer serotonin and dopamine receptors (pKi>7). However, with exception of ergometrine/ergometrinine only for 5-HT3A, and histamine H2 and H4 no affinities were predicted. Compared to LSD, LSA exhibited lower binding affinities in the in vitro binding assays for all tested receptor subtypes. However, with a pKi of 7.99, 7.56, and 7.21 a clear affinity for 5-HT1A, 5-HT2, and α2 could be demonstrated. For DA receptor subtypes and the α1-receptor the pKi ranged from 6.05 to 6.85. CONCLUSION Since the psychedelic activity of LSA in the recent human study was weak and although LSA from Argyreia nervosa is often considered as natural exchange for LSD, LSA should not be regarded as LSD-like psychedelic drug. However, vegetative side effects and psychotropic effects may be triggered by serotonin or dopamine receptor subtypes.
Collapse
Affiliation(s)
- Alexander Paulke
- Institute of Legal Medicine, Goethe University of Frankfurt/Main, Kennedyallee 104, D-60596 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li Y, Ma L, Jia F, Li Z. Amide Bond Formation through Iron-Catalyzed Oxidative Amidation of Tertiary Amines with Anhydrides. J Org Chem 2013; 78:5638-46. [DOI: 10.1021/jo400804p] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuanming Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lina Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Fan Jia
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
20
|
Lemoine L, Becker G, Vacher B, Billard T, Lancelot S, Newman-Tancredi A, Zimmer L. Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging. J Nucl Med 2012; 53:969-76. [DOI: 10.2967/jnumed.111.101212] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Siddiqui N, Andalip, Bawa S, Ali R, Afzal O, Akhtar MJ, Azad B, Kumar R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:194-212. [PMID: 21687347 PMCID: PMC3103913 DOI: 10.4103/0975-7406.80765] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 11/18/2022] Open
Abstract
Depression is currently the fourth leading cause of disease or disability worldwide. Antidepressant is approved for the treatment of major depression (including paediatric depression), obsessive-compulsive disorder (in both adult and paediatric populations), bulimia nervosa, panic disorder and premenstrual dysphoric disorder. Antidepressant is a psychiatric medication used to alleviate mood disorders, such as major depression and dysthymia and anxiety disorders such as social anxiety disorder. Many drugs produce an antidepressant effect, but restrictions on their use have caused controversy and off-label prescription a risk, despite claims of superior efficacy. Our current understanding of its pathogenesis is limited and existing treatments are inadequate, providing relief to only a subset of people suffering from depression. Reviews of literature suggest that heterocyclic moieties and their derivatives has proven success in treating depression.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard University, Hamdard Nagar, New Delhi - 110 062, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Newman-Tancredi A. Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.12] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
McClure KF, Darout E, Guimarães CRW, DeNinno MP, Mascitti V, Munchhof MJ, Robinson RP, Kohrt J, Harris AR, Moore DE, Li B, Samp L, Lefker BA, Futatsugi K, Kung D, Bonin PD, Cornelius P, Wang R, Salter E, Hornby S, Kalgutkar AS, Chen Y. Activation of the G-protein-coupled receptor 119: a conformation-based hypothesis for understanding agonist response. J Med Chem 2011; 54:1948-52. [PMID: 21361292 DOI: 10.1021/jm200003p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and properties of the bridged piperidine (oxaazabicyclo) compounds 8, 9, and 11 are described. A conformational analysis of these structures is compared with the representative GPR119 ligand 1. These results and the differences in agonist pharmacology are used to formulate a conformation-based hypothesis to understand activation of the GPR119 receptor. We also show for these structures that the agonist pharmacology in rat masks the important differences in human pharmacology.
Collapse
Affiliation(s)
- Kim F McClure
- Department of Medicinal Chemistry, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|