1
|
Palaniyappan S, Sridhar A, Arumugam M, Ramasamy T. Bioactive Analysis of Antibacterial Efficacy and Antioxidant Potential of Aloe barbadensis Miller Leaf Extracts and Exploration of Secondary Metabolites Using GC-MS Profiling. Appl Biochem Biotechnol 2024; 196:729-773. [PMID: 37184725 DOI: 10.1007/s12010-023-04565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Aloe barbadensis Miller (ABM) is a traditional medicinal plant all over the world. Numerous studies were conducted to exhibit its medicinal properties and most of them were concentrated on its metabolites against human pathogens. The current research work evaluates the attributes of different polar-based extracts (ethanol, methanol, ethyl acetate, acetone, hexane, and petroleum ether) of dried Aloe barbadensis leaf (ABL) to investigate its phytochemical constituents, antioxidant potential (DPPH, ABTS), phenolic, tannin, flavonoid contents, identification of bioactive compounds, and functional groups by gas chromatography-mass spectrometry (GC-MS) and fourier transform infrared spectroscopy (FT-IR) respectively, and comparing antibacterial efficacy against human pathogens, aquatic bacterial pathogens, and zoonotic bacteria associated with fish and human. The present results showed that the methanolic extract of ABL showed higher antioxidant activity (DPPH-59.73 ± 2.01%; ABTS-74.1 ± 1.29%), total phenolic (10.660 ± 1.242 mg GAE/g), tannin (7.158 ± 0.668 mg TAE/g), and flavonoid content (49.545 ± 1.928 µg QE/g) than that of other solvent extracts. Non-polar solvents hexane and petroleum ether exhibited lesser activity among the extracts. In the case of antibacterial activity, higher inhibition zone was recorded in methanol extract of ABL (25.00 ± 0.70 mm) against Aeromonas salmonicida. Variations in antibacterial activity were observed depending on solvents and extracts. In the current study, polar solvents revealed higher antibacterial activity when compared to the non-polar and the mid-polar solvents. Diverse crucial bioactive compounds were detected in GC-MS analysis. The vital compounds were hexadecanoic acid (30.69%) and 2-pentanone, 4-hydroxy-4-methyl (23.77%) which are responsible for higher antioxidant and antibacterial activity. Similar functional groups were identified in all the solvent extracts of ABL with slight variations in the FT-IR analysis. Polar-based solvent extraction influenced the elution of phytocompounds more than that of the other solvents used in this study. The obtained results suggested that the ABM could be an excellent source for antioxidant and antibacterial activities and can also serve as a potential source of effective bioactive compounds to combat human as well as aquatic pathogens.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Pujol‐Giménez J, Poirier M, Bühlmann S, Schuppisser C, Bhardwaj R, Awale M, Visini R, Javor S, Hediger MA, Reymond J. Inhibitors of Human Divalent Metal Transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDB-17 Fragment Library. ChemMedChem 2021; 16:3306-3314. [PMID: 34309203 PMCID: PMC8596699 DOI: 10.1002/cmdc.202100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/06/2022]
Abstract
Solute carrier proteins (SLCs) are membrane proteins controlling fluxes across biological membranes and represent an emerging class of drug targets. Here we searched for inhibitors of divalent metal transporters in a library of 1,676 commercially available 3D-shaped fragment-like molecules from the generated database GDB-17, which lists all possible organic molecules up to 17 atoms of C, N, O, S and halogen following simple criteria for chemical stability and synthetic feasibility. While screening against DMT1 (SLC11A2), an iron transporter associated with hemochromatosis and for which only very few inhibitors are known, only yielded two weak inhibitors, our approach led to the discovery of the first inhibitor of ZIP8 (SLC39A8), a zinc transporter associated with manganese homeostasis and osteoarthritis but with no previously reported pharmacology, demonstrating that this target is druggable.
Collapse
Affiliation(s)
- Jonai Pujol‐Giménez
- Department of Biomedical Research and Department of Nephrology and Hypertension Membrane Transport Discovery Lab Inselspital, Bern University HospitalUniversity of BernCH-3010BernSwitzerland
| | - Marion Poirier
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Sven Bühlmann
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Céline Schuppisser
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Rajesh Bhardwaj
- Department of Biomedical Research and Department of Nephrology and Hypertension Membrane Transport Discovery Lab Inselspital, Bern University HospitalUniversity of BernCH-3010BernSwitzerland
| | - Mahendra Awale
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Ricardo Visini
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Sacha Javor
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Matthias A. Hediger
- Department of Biomedical Research and Department of Nephrology and Hypertension Membrane Transport Discovery Lab Inselspital, Bern University HospitalUniversity of BernCH-3010BernSwitzerland
| | - Jean‐Louis Reymond
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
3
|
Tong X, Liu X, Tan X, Li X, Jiang J, Xiong Z, Xu T, Jiang H, Qiao N, Zheng M. Generative Models for De Novo Drug Design. J Med Chem 2021; 64:14011-14027. [PMID: 34533311 DOI: 10.1021/acs.jmedchem.1c00927] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Artificial intelligence (AI) is booming. Among various AI approaches, generative models have received much attention in recent years. Inspired by these successes, researchers are now applying generative model techniques to de novo drug design, which has been considered as the "holy grail" of drug discovery. In this Perspective, we first focus on describing models such as recurrent neural network, autoencoder, generative adversarial network, transformer, and hybrid models with reinforcement learning. Next, we summarize the applications of generative models to drug design, including generating various compounds to expand the compound library and designing compounds with specific properties, and we also list a few publicly available molecular design tools based on generative models which can be used directly to generate molecules. In addition, we also introduce current benchmarks and metrics frequently used for generative models. Finally, we discuss the challenges and prospects of using generative models to aid drug design.
Collapse
Affiliation(s)
- Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaohong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaoqin Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jiaxin Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhaoping Xiong
- Laboratory of Health Intelligence, Huawei Technologies Co., Ltd, Shenzhen 518100, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Nan Qiao
- Laboratory of Health Intelligence, Huawei Technologies Co., Ltd, Shenzhen 518100, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
T. Billones* L, B. Morales N, B. Billones J. Logistic regression and random forest unveil key molecular descriptors of druglikeness. CHEM-BIO INFORMATICS JOURNAL 2021. [DOI: 10.1273/cbij.21.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Liza T. Billones*
- Department of Physical Sciences and Mathematics, College of Arts and Sciences University of the Philippines Manila
| | - Nadia B. Morales
- Department of Physical Sciences and Mathematics, College of Arts and Sciences University of the Philippines Manila
| | - Junie B. Billones
- Department of Physical Sciences and Mathematics, College of Arts and Sciences University of the Philippines Manila
| |
Collapse
|
5
|
Meier K, Arús‐Pous J, Reymond J. A Potent and Selective Janus Kinase Inhibitor with a Chiral 3D‐Shaped Triquinazine Ring System from Chemical Space. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kris Meier
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Josep Arús‐Pous
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
6
|
Meier K, Arús‐Pous J, Reymond J. A Potent and Selective Janus Kinase Inhibitor with a Chiral 3D‐Shaped Triquinazine Ring System from Chemical Space. Angew Chem Int Ed Engl 2020; 60:2074-2077. [DOI: 10.1002/anie.202012049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Kris Meier
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Josep Arús‐Pous
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
7
|
Lee HJ, Arumugam N, Almansour AI, Kumar RS, Maruoka K. Practical synthesis of four different pseudoenantiomeric organocatalysts with both cis- and trans-substituted 1,2-cis-cyclohexanediamine structures from a common intermediate. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
9
|
Visini R, Arús-Pous J, Awale M, Reymond JL. Virtual Exploration of the Ring Systems Chemical Universe. J Chem Inf Model 2017; 57:2707-2718. [PMID: 29019686 DOI: 10.1021/acs.jcim.7b00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we explore the chemical space of all virtually possible organic molecules focusing on ring systems, which represent the cyclic cores of organic molecules obtained by removing all acyclic bonds and converting all remaining atoms to carbon. This approach circumvents the combinatorial explosion encountered when enumerating the molecules themselves. We report the chemical universe database GDB4c containing 916 130 ring systems up to four saturated or aromatic rings and maximum ring size of 14 atoms and GDB4c3D containing the corresponding 6 555 929 stereoisomers. Almost all (98.6%) of these ring systems are unknown and represent chiral 3D-shaped macrocycles containing small rings and quaternary centers reminiscent of polycyclic natural products. We envision that GDB4c can serve to select new ring systems from which to design analogs of such natural products. The database is available for download at www.gdb.unibe.ch together with interactive visualization and search tools as a resource for molecular design.
Collapse
Affiliation(s)
- Ricardo Visini
- Department of Chemistry and Biochemistry, University of Berne , Freiestrasse 3, 3012 Berne, Switzerland
| | - Josep Arús-Pous
- Department of Chemistry and Biochemistry, University of Berne , Freiestrasse 3, 3012 Berne, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Berne , Freiestrasse 3, 3012 Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne , Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
10
|
Lee HJ, Moteki SA, Arumugam N, Almansour AI, Kumar RS, Liu Y, Maruoka K. Practical Synthesis of Two Different Pseudoenantiomeric Organocatalysts with cis
-Cyclohexanediamine Structure from a Common Chiral Source. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Shin A. Moteki
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Natarajan Arumugam
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yan Liu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; No.100 West Waihuan Road HEMC Panyu District Guangzhou 510006 China
| | - Keiji Maruoka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| |
Collapse
|
11
|
Abstract
To better understand chemical space we recently enumerated the database GDB-17 containing 166.4 billion possible molecules up to 17 atoms of C, N, O, S and halogen following the simple rules of chemical stability and synthetic feasibility. However, due to the combinatorial explosion caused by systematic enumeration GDB-17 is strongly biased toward the largest, functionally and stereochemically most complex molecules and far too large for most virtual screening tools. Herein we selected a much smaller subset of GDB-17, called the fragment database FDB-17, which contains 10 million fragmentlike molecules evenly covering a broad value range for molecular size, polarity, and stereochemical complexity. The database is available at www.gdb.unibe.ch for download and free use, together with an interactive visualization application and a Web-based nearest neighbor search tool to facilitate the selection of new fragment-sized molecules for chemical synthesis.
Collapse
Affiliation(s)
- Ricardo Visini
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, 3012 Berne, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, 3012 Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
12
|
Leuenberger M, Ritler A, Simonin A, Hediger MA, Lochner M. Concise Asymmetric Synthesis and Pharmacological Characterization of All Stereoisomers of Glutamate Transporter Inhibitor TFB-TBOA and Synthesis of EAAT Photoaffinity Probes. ACS Chem Neurosci 2016; 7:534-9. [PMID: 26918289 DOI: 10.1021/acschemneuro.5b00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian brain. Its rapid clearance after the release into the synaptic cleft is vital in order to avoid toxic effects and is ensured by several transmembrane transport proteins, so-called excitatory amino acid transporters (EAATs). Impairment of glutamate removal has been linked to several neurodegenerative diseases and EAATs have therefore received increased attention as therapeutic targets. O-Benzylated l-threo-β-hydroxyaspartate derivatives have been developed previously as highly potent inhibitors of EAATs with TFB-TBOA ((2S,3S)-2-amino-3-((3-(4-(trifluoromethyl)benzamido)benzyl)oxy)succinic acid) standing out as low-nanomolar inhibitor. We report the stereoselective synthesis of all four stereoisomers of TFB-TBOA in less than a fifth of synthetic steps than the published route. For the first time, the inhibitory activity and isoform selectivity of these TFB-TBOA enantio- and diastereomers were assessed on human glutamate transporters EAAT1-3. Furthermore, we synthesized potent photoaffinity probes based on TFB-TBOA using our novel synthetic strategy.
Collapse
Affiliation(s)
- Michele Leuenberger
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| | - Andreas Ritler
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Alexandre Simonin
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| | - Matthias A. Hediger
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| | - Martin Lochner
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| |
Collapse
|
13
|
|
14
|
Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32:779-810. [PMID: 25850681 DOI: 10.1039/c4np00134f] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
15
|
Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 2015; 14:543-60. [PMID: 26111766 DOI: 10.1038/nrd4626] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.
Collapse
Affiliation(s)
- Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Science Centre, London, Ontario N6A 5A5, Canada
| | - Kathleen M Giacomini
- 1] Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA. [2] Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Abstract
One of the simplest questions that can be asked about molecular diversity is how many organic molecules are possible in total? To answer this question, my research group has computationally enumerated all possible organic molecules up to a certain size to gain an unbiased insight into the entire chemical space. Our latest database, GDB-17, contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens, by far the largest small molecule database reported to date. Molecules allowed by valency rules but unstable or nonsynthesizable due to strained topologies or reactive functional groups were not considered, which reduced the enumeration by at least 10 orders of magnitude and was essential to arrive at a manageable database size. Despite these restrictions, GDB-17 is highly relevant with respect to known molecules. Beyond enumeration, understanding and exploiting GDBs (generated databases) led us to develop methods for virtual screening and visualization of very large databases in the form of a "periodic system of molecules" comprising six different fingerprint spaces, with web-browsers for nearest neighbor searches, and the MQN- and SMIfp-Mapplet application for exploring color-coded principal component maps of GDB and other large databases. Proof-of-concept applications of GDB for drug discovery were realized by combining virtual screening with chemical synthesis and activity testing for neurotransmitter receptor and transporter ligands. One surprising lesson from using GDB for drug analog searches is the incredible depth of chemical space, that is, the fact that millions of very close analogs of any molecule can be readily identified by nearest-neighbor searches in the MQN-space of the various GDBs. The chemical space project has opened an unprecedented door on chemical diversity. Ongoing and yet unmet challenges concern enumerating molecules beyond 17 atoms and synthesizing GDB molecules with innovative scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and
Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
17
|
Awale M, Reymond JL. Atom Pair 2D-Fingerprints Perceive 3D-Molecular Shape and Pharmacophores for Very Fast Virtual Screening of ZINC and GDB-17. J Chem Inf Model 2014; 54:1892-907. [DOI: 10.1021/ci500232g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mahendra Awale
- Department of Chemistry and
Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and
Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne Switzerland
| |
Collapse
|
18
|
Cai C, Chen R, He J, Feng J, Zhang X. Special Chiral C2-Symmetric endo-Biarylnorbornane: Synthesis and Structure Illustration. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Klein J, Heal J, Hamilton WO, Boussemghoune T, Tange TØ, Delegrange F, Jaeschke G, Hatsch A, Heim J. Yeast synthetic biology platform generates novel chemical structures as scaffolds for drug discovery. ACS Synth Biol 2014; 3:314-23. [PMID: 24742115 PMCID: PMC4046787 DOI: 10.1021/sb400177x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Indexed: 01/08/2023]
Abstract
Synthetic biology has been heralded as a new bioengineering platform for the production of bulk and specialty chemicals, drugs, and fuels. Here, we report for the first time a series of 74 novel compounds produced using a combinatorial genetics approach in baker's yeast. Based on the concept of "coevolution" with target proteins in an intracellular primary survival assay, the identified, mostly scaffold-sized (200-350 MW) compounds, which displayed excellent biological activity, can be considered as prevalidated hits. Of the molecules found, >75% have not been described previously; 20% of the compounds exhibit novel scaffolds. Their structural and physicochemical properties comply with established rules of drug- and fragment-likeness and exhibit increased structural complexities compared to synthetically produced fragments. In summary, the synthetic biology approach described here represents a completely new, complementary strategy for hit and early lead identification that can be easily integrated into the existing drug discovery process.
Collapse
Affiliation(s)
- Jens Klein
- Evolva SA, Duggingerstrasse 23, CH-4153 Reinach, Switzerland
| | - Jonathan
R. Heal
- Prosarix
Ltd, Newton Hall, Town Street, Newton, Cambridge CB22 7ZE, U.K.
| | | | | | | | | | - Georg Jaeschke
- F. Hoffmann-La Roche
Ltd, Pharmaceutical Division, CH-4070 Basel, Switzerland
| | - Anaëlle Hatsch
- Evolva SA, Duggingerstrasse 23, CH-4153 Reinach, Switzerland
| | - Jutta Heim
- Evolva SA, Duggingerstrasse 23, CH-4153 Reinach, Switzerland
| |
Collapse
|
20
|
Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 2013; 34:108-20. [PMID: 23506861 DOI: 10.1016/j.mam.2013.01.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023]
Abstract
Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565 0871, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 2013; 45:613-89. [DOI: 10.1007/s00726-013-1521-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/21/2013] [Indexed: 12/19/2022]
|
22
|
Virshup AM, Contreras-García J, Wipf P, Yang W, Beratan DN. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. J Am Chem Soc 2013; 135:7296-303. [PMID: 23548177 PMCID: PMC3670418 DOI: 10.1021/ja401184g] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The "small molecule universe" (SMU), the set of all synthetically feasible organic molecules of 500 Da molecular weight or less, is estimated to contain over 10(60) structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a "representative universal library" spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds.
Collapse
Affiliation(s)
- Aaron M. Virshup
- Center for Chemical Methodologies and Library Development, Department of Chemistry, Duke University, Durham, NC 27708
| | - Julia Contreras-García
- Center for Chemical Methodologies and Library Development, Department of Chemistry, Duke University, Durham, NC 27708
| | - Peter Wipf
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Weitao Yang
- Center for Chemical Methodologies and Library Development, Department of Chemistry, Duke University, Durham, NC 27708
| | - David N. Beratan
- Center for Chemical Methodologies and Library Development, Department of Chemistry, Duke University, Durham, NC 27708
| |
Collapse
|
23
|
Ruddigkeit L, Blum LC, Reymond JL. Visualization and virtual screening of the chemical universe database GDB-17. J Chem Inf Model 2013; 53:56-65. [PMID: 23259841 DOI: 10.1021/ci300535x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The chemical universe database GDB-17 contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens obeying rules for chemical stability, synthetic feasibility, and medicinal chemistry. GDB-17 was analyzed using 42 integer value descriptors of molecular structure which we term "Molecular Quantum Numbers" (MQN). Principal component analysis and representation of the (PC1, PC2)-plane provided a graphical overview of the GDB-17 chemical space. Rapid ligand-based virtual screening (LBVS) of GDB-17 using the city-block distance CBD(MQN) as a similarity search measure was enabled by a hashed MQN-fingerprint. LBVS of the entire GDB-17 and of selected subsets identified shape similar, scaffold hopping analogs (ROCS > 1.6 and T(SF) < 0.5) of 15 drugs. Over 97% of these analogs occurred within CBD(MQN) ≤ 12 from each drug, a constraint which might help focus advanced virtual screening. An MQN-searchable 50 million subset of GDB-17 is publicly available at www.gdb.unibe.ch .
Collapse
Affiliation(s)
- Lars Ruddigkeit
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | | | | |
Collapse
|
24
|
Ruddigkeit L, van Deursen R, Blum LC, Reymond JL. Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17. J Chem Inf Model 2012; 52:2864-75. [DOI: 10.1021/ci300415d] [Citation(s) in RCA: 629] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lars Ruddigkeit
- Department
of Chemistry and Biochemistry, NCCR TransCure, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Ruud van Deursen
- Biomolecular Screening Facility,
NCCR Chemical Biology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland
| | - Lorenz C. Blum
- Department
of Chemistry and Biochemistry, NCCR TransCure, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry and Biochemistry, NCCR TransCure, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
25
|
Reymond JL, Awale M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 2012; 3:649-57. [PMID: 23019491 DOI: 10.1021/cn3000422] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 01/20/2023] Open
Abstract
Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representation of chemical space using molecular quantum numbers (MQN), its exhaustive enumeration in form of the chemical universe generated databases (GDB), and examples of using these databases for prospective drug discovery. MQN-searchable GDB, PubChem, and DrugBank are freely accessible at www.gdb.unibe.ch.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
26
|
Callender R, Gameiro A, Pinto A, De Micheli C, Grewer C. Mechanism of inhibition of the glutamate transporter EAAC1 by the conformationally constrained glutamate analogue (+)-HIP-B. Biochemistry 2012; 51:5486-95. [PMID: 22703277 DOI: 10.1021/bi3006048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glutamate transporters play an important role in the regulation of extracellular glutamate concentrations in the mammalian brain and are, thus, promising targets for therapeutics. Despite this importance, the development of pharmacological tools has mainly focused on the synthesis of competitive inhibitors, which are amino acid analogues that bind to the substrate binding site. In this report, we describe the characterization of the mechanism of glutamate transporter inhibition by a constrained, cyclic glutamate analogue, (+)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid [(+)-(3aS,6S,6aS)-HIP-B]. Our results show that (+)-HIP-B is a nontransportable amino acid that inhibits glutamate transporter function in a mixed mechanism. Although (+)-HIP-B inhibits the glutamate-associated anion conductance, it has no effect on the leak anion conductance, in contrast to competitive inhibitors. Furthermore, (+)-HIP-B is unable to alleviate the effect of the competitive inhibitor dl-threo-β-benzyloxyaspartic acid (TBOA), which binds to the substrate binding site. (+)-HIP-B is more potent in inhibiting forward transport compared to reverse transport. In a mutant transporter, which is activated by glutamine, but not glutamate, (+)-HIP-B still acts as an inhibitor, although this mutant transporter is insensitive to TBOA. Finally, we analyzed the effect of (+)-HIP-B on the pre-steady-state kinetics of the glutamate transporter. The results can be explained with a mixed mechanism at a site that may be distinct from the substrate binding site, with a preference for the inward-facing configuration of the transporter and slow inhibitor binding. (+)-HIP-B may represent a new paradigm of glutamate transporter inhibition that is based on targeting of a regulatory site.
Collapse
Affiliation(s)
- Randolph Callender
- Department of Chemistry, Binghamton University, New York 13902, United States
| | | | | | | | | |
Collapse
|
27
|
Bréthous L, Garcia-Delgado N, Schwartz J, Bertrand S, Bertrand D, Reymond JL. Synthesis and Nicotinic Receptor Activity of Chemical Space Analogues of N-(3R)-1-Azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU-282,987) and 1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic Acid 4-Bromophenyl Ester (SSR180711). J Med Chem 2012; 55:4605-18. [DOI: 10.1021/jm300030r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lise Bréthous
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Noemi Garcia-Delgado
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Julian Schwartz
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Sonia Bertrand
- HiQScreen, 15 rue de l'Athénée, 1206 Geneva, Switzerland
| | | | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
28
|
Reymond JL, Ruddigkeit L, Blum L, van Deursen R. The enumeration of chemical space. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1104] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Reymond JL, van Deursen R, Bertrand D. What we have learned from crystal structures of proteins to receptor function. Biochem Pharmacol 2011; 82:1521-7. [DOI: 10.1016/j.bcp.2011.07.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 12/13/2022]
|
30
|
Albers T, Marsiglia W, Thomas T, Gameiro A, Grewer C. Defining substrate and blocker activity of alanine-serine-cysteine transporter 2 (ASCT2) Ligands with Novel Serine Analogs. Mol Pharmacol 2011; 81:356-65. [PMID: 22113081 DOI: 10.1124/mol.111.075648] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neutral amino acid transporter alanine-serine-cysteine transporter 2 (ASCT2) belongs to the solute carrier 1 (SLC1) family of solute transporters and transports small, neutral amino acids across the membrane, including the physiologically important and ubiquitous amino acid glutamine. Our understanding of the involvement of ASCT2 in the physiological processes involving glutamine is hampered by a lack of understanding of its pharmacology and the absence of high-affinity inhibitors. In this study, we combined an in silico docking approach with experimental investigation of binding parameters to develop new ASCT2 inhibitors and substrates, a series of serine esters, and to determine structural parameters that govern their functional effects. The series of compounds was synthesized using standard methods and exhibited a range of properties, from inhibitors to partial substrates and full substrates. Our results suggest that amino acid derivatives with small side-chain volume and low side-chain hydrophobicity interact strongly with the closed-loop form of the binding site, in which re-entrant loop 2, the presumed extracellular gate for the substrate binding site, is closed off. However, these derivatives bind weakly to the open-loop form (external gate open to the extracellular side), acting as transported substrates. In contrast, inhibitors bind preferentially to the open-loop form. An aromatic residue in the side chain is required for high-affinity interaction. One of the compounds, the l-serine ester serine biphenyl-4-carboxylate reversibly inhibits ASCT2 function with an apparent affinity of 30 μM.
Collapse
Affiliation(s)
- Thomas Albers
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| | | | | | | | | |
Collapse
|
31
|
Blum LC, van Deursen R, Bertrand S, Mayer M, Bürgi JJ, Bertrand D, Reymond JL. Discovery of α7-Nicotinic Receptor Ligands by Virtual Screening of the Chemical Universe Database GDB-13. J Chem Inf Model 2011; 51:3105-12. [DOI: 10.1021/ci200410u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lorenz C. Blum
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Ruud van Deursen
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Sonia Bertrand
- HiQScreen, 15 rue de l’Athénée, 1206 Geneva, Switzerland
| | - Milena Mayer
- HiQScreen, 15 rue de l’Athénée, 1206 Geneva, Switzerland
| | - Justus J. Bürgi
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | | | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
32
|
Blum LC, van Deursen R, Reymond JL. Visualisation and subsets of the chemical universe database GDB-13 for virtual screening. J Comput Aided Mol Des 2011; 25:637-47. [DOI: 10.1007/s10822-011-9436-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
|
33
|
Affiliation(s)
- Ruud van Deursen
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| | - Lorenz C. Blum
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| |
Collapse
|