1
|
Alım Z, Rawat R, Adem Ş, Eyüpoğlu V, Akkemik E. Inhibition Effects of Some Non-Proteinogenic Amino Acid Derivatives on Carbonic Anhydrase Isoenzymes and Acetylcholinesterase: An In Vitro Inhibition and Molecular Modeling Studies. Chem Biodivers 2024; 21:e202401225. [PMID: 39183452 DOI: 10.1002/cbdv.202401225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Amino acid derivatives are molecules of interest for medicinal chemistry and drug design studies due to their important chemical properties. In this study, the inhibition effects of some non-proteinogenic amino acid derivatives (hippuric acid (A), N-(9-Fluorenylmethoxycarbonyl)-D-valine (B), N-Z-(1-Benzotriazolylcarbonyl) methylamine (C), (S)-N-Z-1-Benzotriazolylcarbonyl-2-phenylethylamine (D)) on carbonic anhydrase I (hCA-I), II (hCA-II) isoenzymes and acetylcholinesterase (AChE) activity, whose inhibitors are of vital pharmacological importance, were examined. While carbonic anhydrase (CA) inhibitors are effective molecule candidates for the treatment of many diseases from glaucoma to cancer, acetylcholinesterase inhibitors are target molecules for the treatment of Alzheimer's disease. According to the results of this study, compound D had a strong inhibitory effect on hCA-I (IC50: 0.836 μM) and hCA-II (IC50: 0.661 μM), while compound B (IC50: 100 μM) showed a strong inhibitory effect on AChE activity. In addition, inhibition results were supported by molecular modeling studies. We hope that the obtained results will contribute to the synthesis of new and effective amino acid derivative inhibitors for CA and AChE.
Collapse
Affiliation(s)
- Zuhal Alım
- Department of Chemistry, Faculty of Arts and Sciences, Kırşehir Ahi Evran University, Kırşehir, Türkiye
| | - Ravi Rawat
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES University, Dehradun, India
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Türkiye
| | - Volkan Eyüpoğlu
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Türkiye
| | - Ebru Akkemik
- Faculty of Engineering, Department of Food Engineering, Siirt University, Siirt, Türkiye
| |
Collapse
|
2
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Çalışır Ü, Camadan Y, Çiçek B, Akkemik E, Eyüpoğlu V, Adem Ş. Synthesis, characterizations of aryl-substituted dithiodibenzothioate derivatives, and investigating their anti-Alzheimer's properties. J Biomol Struct Dyn 2023; 41:1828-1845. [PMID: 35021953 DOI: 10.1080/07391102.2021.2024884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The main objective of the present study was to synthesize potential inhibitor/activators of AChE and hCA I-II enzymes, which are thought to be directly related to Alzheimer's disease. Dithiodibenzothioate compounds were synthesized by thioesterification. Six different thiolate compounds produced were characterized by 1H-, 13C-NMR, FT-IR, LC-MS/MS methods. HOMO-LUMO calculations and electronic properties of all synthesized compounds were comprehensively illuminated with a semi-empirical molecular orbital (SEMO) package for organic and inorganic systems using Austin Model 1 (AM1)-Hamiltonian as implemented in the VAMP module of Materials Studio. In addition, the inhibition effects of these compounds for AChE and hCA I-II in vitro conditions were investigated. It was revealed that TE-1, TE-2, TE-3, TE-4, TE-5, and TE-6 compounds inhibited the AChE under in vitro conditions. TE-1 compound activated the enzyme hCA I while TE-2, TE-3 TE-4 compounds inhibited it. TE-5 and TE-6, on the other hand, did not exhibit a regular inhibition profile. Similarly, TE-1 activated the hCA II enzyme whereas TE-2, TE-3, TE-4, and TE-5 compounds inhibited it. TE-6 compound did not have a consistent inhibition profile for hCA II. Docking studies were performed with the compounds against AChE and hCA I-II receptors using induced-fit docking method. Molecular Dynamics (MD) simulations for best effective three protein-ligand couple were conducted to explore the binding affinity of the considered compounds in semi-real in-silico conditions. Along with the MD results, TE-1-based protein complexes were found more stable than TE-5. Based on these studies, TE-1 compound could be considered as a potential drug candidate for AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ümit Çalışır
- Science and Technology Application and Research Center (SIUBTAM), Siirt University, Siirt, Turkey
| | - Yasemin Camadan
- Vocational School of Health Services, Pharmacy Services, Artvin Coruh University, Artvin, Turkey
| | - Baki Çiçek
- Faculty of Arts and Sciences, Chemistry Department, Balıkesir University, Balikesir, Turkey
| | - Ebru Akkemik
- Science and Technology Application and Research Center (SIUBTAM), Siirt University, Siirt, Turkey.,Faculty of Engineering, Food Engineering Department, Siirt University, Siirt, Turkey
| | - Volkan Eyüpoğlu
- Faculty of Sciences, Chemistry Department, Çankırı Karatekin University, Çankırı, Turkey
| | - Şevki Adem
- Faculty of Sciences, Chemistry Department, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
4
|
Tokalı FS, Alım Z, Yırtıcı Ü. Carboxylate‐ and Sulfonate‐Containing Quinazolin‐4(3H)‐one Rings: Synthesis, Characterization, and Carbonic Anhydrase I–II and Acetylcholinesterase Inhibition Properties. ChemistrySelect 2023. [DOI: 10.1002/slct.202204191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies Kars Vocational School Kafkas University Kars Turkey
| | - Zuhal Alım
- Department of Chemistry Faculty of Arts and Sciences Kırşehir Ahi Evran University Kırşehir Turkey
| | - Ümit Yırtıcı
- Department of Medical Laboratory Kırıkkale University Kırıkkale Turkey
| |
Collapse
|
5
|
De Luca L, Angeli A, Ricci F, Supuran CT, Gitto R. Structure-guided identification of a selective sulfonamide-based inhibitor targeting the human carbonic anhydrase VA isoform. Arch Pharm (Weinheim) 2023; 356:e2200383. [PMID: 36250310 DOI: 10.1002/ardp.202200383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 01/04/2023]
Abstract
In recent years, multistep hybrid computational protocols have attracted attention for their application in the drug discovery of enzyme inhibitors. So far, there are large collections of human carbonic anhydrase (hCA) inhibitors, but only a few of them selectively inhibit the mitochondrial isoforms hCA VA and VB as potential therapeutics in obesity treatment. Most sulfonamide-based inhibitors show poor selectivity for inhibiting isoforms of therapeutic interest over ubiquitous hCA I and hCA II. Herein, we propose a combination of ligand- and structure-based approaches to generate pharmacophore models for hCA VA inhibitors. Then, we performed a virtual screening (VS) campaign on a database of commercially available sulfonamides. Finally, the in silico screening followed by docking studies suggested several "hit compounds" that demonstrated to inhibit hCA VA at a low nanomolar concentration in a stopped-flow CO2 hydrase assay. Notably, the best candidate, 2-(3,4-dihydro-2H-quinolin-1-yl)-N-(4-sulfamoylphenyl)acetamide (code name VAME-28) proved to be a potent hCA VA inhibitor (Ki value of 54.8 nM) and a more selective agent over hCA II when compared to the reference compound topiramate.
Collapse
Affiliation(s)
- Laura De Luca
- Chibiofaram Department, University of Messina, Messina, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Florence, Italy
| | - Federico Ricci
- Chibiofaram Department, University of Messina, Messina, Italy
| | | | - Rosaria Gitto
- Chibiofaram Department, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Mancuso F, De Luca L, Bucolo F, Vrabel M, Angeli A, Capasso C, Supuran CT, Gitto R. 4-Sulfamoylphenylalkylamides as Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. ChemMedChem 2021; 16:3787-3794. [PMID: 34592052 PMCID: PMC9298201 DOI: 10.1002/cmdc.202100510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/21/2022]
Abstract
A current issue of antimicrobial therapy is the resistance to treatment with worldwide consequences. Thus, the identification of innovative targets is an intriguing challenge in the drug and development process aimed at newer antimicrobial agents. The state-of-art of anticholera therapy might comprise the reduction of the expression of cholera toxin, which could be reached through the inhibition of carbonic anhydrases expressed in Vibrio cholerae (VchCAα, VchCAβ, and VchCAγ). Therefore, we focused our interest on the exploitation of sulfonamides as VchCA inhibitors. We planned to design and synthesize new benzenesulfonamides based on our knowledge of the VchCA catalytic site. The synthesized compounds were tested thus collecting useful SAR information. From our investigation, we identified new potent VchCA inhibitors, some of them displayed high affinity toward VchCAγ class, for which few inhibitors are currently reported in literature. The best interesting VchCAγ inhibitor (S)-N-(1-oxo-1-((4-sulfamoylbenzyl)amino)propan-2-yl)furan-2-carboxamide (40) resulted more active and selective inhibitor when compared with acetazolamide (AAZ) as well as previously reported VchCA inhibitors.
Collapse
Affiliation(s)
- Francesca Mancuso
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Laura De Luca
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Federica Bucolo
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry (IOCB)Czech Academy of SciencesFlemingovo nám. 216000PragueCzech Republic
| | - Andrea Angeli
- NEUROFARBA DepartmentUniversity of FlorenceVia U. Schiff 650019FlorenceItaly
| | - Clemente Capasso
- Institute of Biosciences and BioresourcesCNRVia Castellino 11180131NapoliItaly
| | - Claudiu T. Supuran
- NEUROFARBA DepartmentUniversity of FlorenceVia U. Schiff 650019FlorenceItaly
| | - Rosaria Gitto
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| |
Collapse
|
7
|
Kugler M, Nekvinda J, Holub J, El Anwar S, Das V, Šícha V, Pospíšilová K, Fábry M, Král V, Brynda J, Kašička V, Hajdúch M, Řezáčová P, Grüner B. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. Chembiochem 2021; 22:2741-2761. [PMID: 33939874 DOI: 10.1002/cbic.202100121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Indexed: 11/12/2022]
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| |
Collapse
|
8
|
Kugler M, Holub J, Brynda J, Pospíšilová K, Anwar SE, Bavol D, Havránek M, Král V, Fábry M, Grüner B, Řezáčová P. The structural basis for the selectivity of sulfonamido dicarbaboranes toward cancer-associated carbonic anhydrase IX. J Enzyme Inhib Med Chem 2021; 35:1800-1810. [PMID: 32962427 PMCID: PMC7534198 DOI: 10.1080/14756366.2020.1816996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human carbonic anhydrase IX (CA IX), a protein specifically expressed on the surface of solid tumour cells, represents a validated target both for anticancer therapy and diagnostics. We recently identified sulfonamide dicarbaboranes as promising inhibitors of CA IX with favourable activities both in vitro and in vivo. To explain their selectivity and potency, we performed detailed X-ray structural analysis of their interactions within the active sites of CA IX and CA II. Series of compounds bearing various aliphatic linkers between the dicarbaborane cluster and sulfonamide group were examined. Preferential binding towards the hydrophobic part of the active site cavity was observed. Selectivity towards CA IX lies in the shape complementarity of the dicarbaborane cluster with a specific CA IX hydrophobic patch containing V131 residue. The bulky side chain of F131 residue in CA II alters the shape of the catalytic cavity, disrupting favourable interactions of the spherical dicarbaborane cluster.
Collapse
Affiliation(s)
- Michael Kugler
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Holub
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Jiří Brynda
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Pospíšilová
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Suzan El Anwar
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Dmytro Bavol
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | | | - Vlastimil Král
- Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fábry
- Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bohumír Grüner
- Department of Syntheses, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Pavlína Řezáčová
- Deparment of Structural Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Deparment of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Camadan Y, Çiçek B, Adem Ş, Çalişir Ü, Akkemik E. Investigation of in vitro and in silico effects of some novel carbazole Schiff bases on human carbonic anhydrase isoforms I and II. J Biomol Struct Dyn 2021; 40:6965-6973. [PMID: 33645441 DOI: 10.1080/07391102.2021.1892527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Carbonic anhydrases (CAs, EC4.2.1.1) are metalloenzymes that catalyse reversible hydration reaction of carbon dioxide to bicarbonate and protons. In recent years, there has been a great interest in inhibitors/activators of carbonic anhydrase isoenzymes. Therefore, we investigated the effects of four different carbazole Schiff base derivatives, which are believed to have a potential to be used as a drug, on human carbonic anhydrase (hCA) isoenzymes I and II under in vitro conditions. The IC50 values of carbazole Schiff base derivatives were found to be in the range of 32.09-151.2 μM for hCA isoenzyme I and 21.82-40.54 μM for hCA isoenzyme II. Among all compounds, (E)-3-(((9-Octyl-9H-carbazole-3-yl)imino)methyl)benzene-1,2-diol (C3) had the strongest inhibitory effect on hCA isoenzyme II. It was determined that 2,3,4-trimethoxy and 4-hydroxy phenyl containing carbazole compounds have selective inhibition against hCA II isoenzyme. Docking studies were performed against hCA I and II receptors using induced-fit docking method. The compounds had affinity scores varying from -7.74 ± 0.27 to -6.27 ± 0.07 kcal/mol for hCA I and from -8.04 ± 0.17 to -7.27 ± 0.18 kcal/mol for hCA II.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasemin Camadan
- Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Baki Çiçek
- Faculty Arts and Sciences, Chemistry Department, Balıkesir University, Balıkesir, Turkey
| | - Şevki Adem
- Faculty Arts and Sciences, Chemistry Department, Cankiri Karatekin University, Cankiri, Turkey
| | - Ümit Çalişir
- Science and Technology Research and Application Center, Siirt University, Siirt, Turkey
| | - Ebru Akkemik
- Science and Technology Research and Application Center, Siirt University, Siirt, Turkey.,Faculty of Engineering, Food Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
10
|
Mancuso F, De Luca L, Angeli A, Berrino E, Del Prete S, Capasso C, Supuran CT, Gitto R. In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. ACS Med Chem Lett 2020; 11:2294-2299. [PMID: 33214843 DOI: 10.1021/acsmedchemlett.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023] Open
Abstract
Carbonic anhydrases from Vibrio cholerae (VchCAs) play a significant role in bacterial pathophysiological processes. Therefore, their inhibition leads to a reduction of gene expression virulence and bacterial growth impairment. Herein, we report the first ligand-based pharmacophore model as a computational tool to study selective inhibitors of the β-class of VchCA. By a virtual screening on a collection of sulfonamides, we retrieved 9 compounds that were synthesized and evaluated for their inhibitory effects against VchCAβ as well as α- and γ-classes of VchCAs and selectivity over human ubiquitous isoforms hCA I and II. Notably, all tested compounds were active inhibitors of VchCAs. The N-(4-sulfamoylbenzyl)-[1,1'-biphenyl]-4-carboxamide (20e) stood out as the most exciting inhibitor toward the β-class (K i = 95.6 nM), also showing a low affinity against the tested human isoforms. By applying docking procedures, we described the binding mode of the inhibitor 20e within the catalytic cavity of the modeled open conformation of VchCAβ.
Collapse
Affiliation(s)
- Francesca Mancuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Emanuela Berrino
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse - CNR, Via Pietro Castellino 111 - I-80131 Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse - CNR, Via Pietro Castellino 111 - I-80131 Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| |
Collapse
|
11
|
Mancuso F, Di Fiore A, De Luca L, Angeli A, Monti SM, De Simone G, Supuran CT, Gitto R. Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms. ACS Med Chem Lett 2020; 11:1000-1005. [PMID: 32435417 DOI: 10.1021/acsmedchemlett.0c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/04/2020] [Indexed: 11/28/2022] Open
Abstract
We report the synthesis and biochemical evaluation of a series of substituted 4-(4-aroylpiperazine-1-carbonyl)benzenesulfonamides (5a-s) developed as inhibitors of druggable carbonic anhydrase (CA) isoforms, as tools for the identification of new therapeutics. X-ray crystallography confirmed that this class of benzenesulfonamides binds CAs through the canonical anchoring of the benzenesulfonamide moiety to the metal ion and a tail-mediated recognition of the middle/top area of the active site cavity. Compound 5e (R = 2-Cl) demonstrated relevant selectivity toward brain-expressed hCA VII. The best balancing in binding affinity and selectivity toward tumor-expressed hCA IX/hCA XII over ubiquitous hCA I/hCA II was found for inhibitor 5o (R = 3-NO2). Notably 5b (R = 2-F) proved to be the most efficacious inhibitor of hCA XII for which computational studies elucidated the CA recognition process.
Collapse
Affiliation(s)
- Francesca Mancuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo Didattico SS. Annunziata, 98168 Messina, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini—CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo Didattico SS. Annunziata, 98168 Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Simona M. Monti
- Istituto di Biostrutture e Bioimmagini—CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini—CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo Didattico SS. Annunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
Gitto R, De Luca L, Mancuso F, Del Prete S, Vullo D, Supuran CT, Capasso C. Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. J Enzyme Inhib Med Chem 2019; 34:1186-1192. [PMID: 31282228 PMCID: PMC6691843 DOI: 10.1080/14756366.2019.1618292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
A series of sixteen benzenesulfonamide derivatives has been synthesised and tested as inhibitors of Vibrio cholerae carbonic anhydrase (CA) enzymes, belonging to α-CA, β-CA, and γ-CA classes (VchCAα, VchCAβ, and VchCAγ). The determined Ki values were compared to those of selected human CA isoforms (hCA I and hCA II). Structure-affinity relationship analysis highlighted that all tested compounds proved to be active inhibitors of VchCAα at nanomolar concentration. The VchCAβ activity was lower to respect inhibitory efficacy toward VchCAα, whereas, these benzenesulfonamide derivatives failed to inhibit VchCAγ. Interestingly, compound 7e combined the best activity toward VchCAα and VchCAβ. In order to obtain a model for binding mode of our inhibitors toward bacterial CAs, we carried out docking simulations by using the available crystal structures of VchCAβ.
Collapse
Affiliation(s)
- Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources- CNR, Napoli, Italy
| | - Daniela Vullo
- NUROFARBA Department, University of Florence, Sesto Fiorentino, Italy
| | | | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources- CNR, Napoli, Italy
| |
Collapse
|
13
|
Grüner B, Brynda J, Das V, Šícha V, Štěpánková J, Nekvinda J, Holub J, Pospíšilová K, Fábry M, Pachl P, Král V, Kugler M, Mašek V, Medvedíková M, Matějková S, Nová A, Lišková B, Gurská S, Džubák P, Hajdúch M, Řezáčová P. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J Med Chem 2019; 62:9560-9575. [PMID: 31568723 DOI: 10.1021/acs.jmedchem.9b00945] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.
Collapse
Affiliation(s)
- Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Jana Štěpánková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic.,Department of Organic Chemistry, Faculty of Natural Science , Charles University , Hlavova 2030 , 12800 Prague 2, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Vlastimil Mašek
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Stanislava Matějková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Alice Nová
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| |
Collapse
|
14
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
15
|
Buemi MR, Di Fiore A, De Luca L, Angeli A, Mancuso F, Ferro S, Monti SM, Buonanno M, Russo E, De Sarro G, De Simone G, Supuran CT, Gitto R. Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. Eur J Med Chem 2019; 163:443-452. [PMID: 30530195 DOI: 10.1016/j.ejmech.2018.11.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
Guided by the crystal structure of 4-(3,4-dihydroquinolin-1(2H)-ylcarbonyl)benzenesulfonamide 3 in complex with hCA II (PDB code 4Z0Q), a novel series of cycloalkylamino-1-carbonylbenzenesulfonamides was designed and synthesized. Thus, we replaced the quinoline ring with an azepine/piperidine/piperazine nucleus and introduced further modifications on cycloalkylamine nucleus by means the installation of hydrophobic/hydrophilic functionalities able to establish additional contacts in the middle area of the enzyme cavity. Among the synthesized compounds, the derivatives 7a, 7b, 8b exhibited a remarkable inhibition for hCA II and the brain-expressed hCA VII in subnanomolar range. The binding of these molecules to the target enzymes was characterized by means of a crystallographic analysis, providing a clear snapshot of the most important interactions established by this class of inhibitors into the hCA II and hCA VII catalytic site. Notably, our results showed that the benzylpiperazine tail of compound 8b is oriented both in hCA II and in hCA VII toward a poorly explored region of the active site. These features should be further investigated for the design of new isoform selective CA inhibitors.
Collapse
Affiliation(s)
- Maria Rosa Buemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo didattico SS, Annunziata, 98168, Messina, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo didattico SS, Annunziata, 98168, Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Francesca Mancuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo didattico SS, Annunziata, 98168, Messina, Italy
| | - Stefania Ferro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo didattico SS, Annunziata, 98168, Messina, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Emilio Russo
- Pharmacology Chair, Dept. of Science of Health School of Medicine, University of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy
| | - Giovanbattista De Sarro
- Pharmacology Chair, Dept. of Science of Health School of Medicine, University of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci, Polo didattico SS, Annunziata, 98168, Messina, Italy.
| |
Collapse
|
16
|
Goszczyński TM, Fink K, Boratyński J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin Biol Ther 2019; 18:205-213. [PMID: 30063861 DOI: 10.1080/14712598.2018.1473369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Icosahedral boron clusters have unique properties useful in medicinal chemistry: rigidity, chemical stability, and three-dimensional aromaticity. Furthermore, these abiotic compounds have low toxicity and are stable in the biological environment. All these features ultimately give them the ability to interact with biological molecules in a different mode than organic compounds. AREAS COVERED In the present article, we aim to introduce boron clusters as a class of entities suitable for modifications of biomolecules to obtain a specific biological effect. We will focus on icosahedral boron clusters, as well as metallacarboranes, and their biological activity and interaction with the biological environment. EXPERT OPINION Boron clusters are suitable for altering structural and functional features of biomolecules and can be used in the development of new drugs and drug delivery systems. The high affinity of boron clusters, especially metallacarboranes, to albumin creates a new possibility to use them to optimize the pharmacokinetics of biologically active peptides. Boron clusters have high potential in biological and medicinal applications. Due to their peculiar properties, they can be used to optimize parameters critical for the biological activity of therapeutic substances and their affinity toward biological targets.
Collapse
Affiliation(s)
- Tomasz M Goszczyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Krzysztof Fink
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Janusz Boratyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| |
Collapse
|
17
|
Identification of influenza PA-Nter endonuclease inhibitors using pharmacophore- and docking-based virtual screening. Bioorg Med Chem 2018; 26:4544-4550. [DOI: 10.1016/j.bmc.2018.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/15/2023]
|
18
|
Pecina A, Brynda J, Vrzal L, Gnanasekaran R, Hořejší M, Eyrilmez SM, Řezáč J, Lepšík M, Řezáčová P, Hobza P, Majer P, Veverka V, Fanfrlík J. Ranking Power of the SQM/COSMO Scoring Function on Carbonic Anhydrase II-Inhibitor Complexes. Chemphyschem 2018; 19:873-879. [PMID: 29316128 DOI: 10.1002/cphc.201701104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 11/11/2022]
Abstract
Accurate prediction of protein-ligand binding affinities is essential for hit-to-lead optimization and virtual screening. The reliability of scoring functions can be improved by including quantum effects. Here, we demonstrate the ranking power of the semiempirical quantum mechanics (SQM)/implicit solvent (COSMO) scoring function by using a challenging set of 10 inhibitors binding to carbonic anhydrase II through Zn2+ in the active site. This new dataset consists of the high-resolution (1.1-1.4 Å) crystal structures and experimentally determined inhibitory constant (Ki ) values. It allows for evaluation of the common approximations, such as representing the solvent implicitly or by using a single target conformation combined with a set of ligand docking poses. SQM/COSMO attained a good correlation of R2 of 0.56-0.77 with the experimental inhibitory activities, benefiting from careful handling of both noncovalent interactions (e.g. charge transfer) and solvation. This proof-of-concept study of SQM/COSMO ranking for metalloprotein-ligand systems demonstrates its potential for hit-to-lead applications.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Institute of Molecular Genetics of, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Ramachandran Gnanasekaran
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Current address: Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Magdalena Hořejší
- Institute of Molecular Genetics of, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Palacký University, 77146, Olomouc, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Institute of Molecular Genetics of, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Palacký University, 77146, Olomouc, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
19
|
De Luca L, Mancuso F, Ferro S, Buemi MR, Angeli A, Del Prete S, Capasso C, Supuran CT, Gitto R. Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. Eur J Med Chem 2018; 143:276-282. [DOI: 10.1016/j.ejmech.2017.11.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
|
20
|
Bruno E, Buemi MR, Di Fiore A, De Luca L, Ferro S, Angeli A, Cirilli R, Sadutto D, Alterio V, Monti SM, Supuran CT, De Simone G, Gitto R. Probing Molecular Interactions between Human Carbonic Anhydrases (hCAs) and a Novel Class of Benzenesulfonamides. J Med Chem 2017; 60:4316-4326. [PMID: 28453941 DOI: 10.1021/acs.jmedchem.7b00264] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
On the basis of X-ray crystallographic studies of the complex of hCA II with 4-(3,4-dihydro-1H-isoquinoline-2-carbonyl)benzenesulfonamide (3) (PDB code 4Z1J ), a novel series of 4-(1-aryl-3,4-dihydro-1H-isoquinolin-2-carbonyl)benzenesulfonamides (23-33) was designed. Specifically, our idea was to improve the selectivity toward druggable isoforms through the introduction of additional hydrophobic/hydrophilic functionalities. Among the synthesized and tested compounds, the (R,S)-4-(6,7-dihydroxy-1-phenyl-3,4-tetrahydroisoquinoline-1H-2-carbonyl)benzenesulfonamide (30) exhibited a remarkable inhibition for the brain-expressed hCA VII (Ki = 0.20 nM) and selectivity over wider distributed hCA I and hCA II isoforms. By enantioselective HPLC, we solved the racemic mixture and ascertained that the two enantiomers (30a and 30b) are equiactive inhibitors for hCA VII. Crystallographic and docking studies revealed the main interactions of these inhibitors into the carbonic anhydrase (CA) catalytic site, thus highlighting the relevant role of nonpolar contacts for this class of hCA inhibitors.
Collapse
Affiliation(s)
- Elvira Bruno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina , Viale Annunziata, I-98168 Messina, Italy
| | - Maria Rosa Buemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina , Viale Annunziata, I-98168 Messina, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini- CNR , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina , Viale Annunziata, I-98168 Messina, Italy
| | - Stefania Ferro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina , Viale Annunziata, I-98168 Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze , Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy
| | - Roberto Cirilli
- Centro Nazionale Per il Controllo e la Valutazione Dei Farmaci, Istituto Superiore di Sanità , V.le Regina Elena 299, I-00161 Roma, Italy
| | - Daniele Sadutto
- Centro Nazionale Per il Controllo e la Valutazione Dei Farmaci, Istituto Superiore di Sanità , V.le Regina Elena 299, I-00161 Roma, Italy
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini- CNR , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini- CNR , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Università di Firenze , Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini- CNR , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina , Viale Annunziata, I-98168 Messina, Italy
| |
Collapse
|
21
|
Jin S, Sun J, Wunder T, Tang D, Cousins AB, Sze SK, Mueller-Cajar O, Gao YG. Structural insights into the LCIB protein family reveals a new group of β-carbonic anhydrases. Proc Natl Acad Sci U S A 2016; 113:14716-14721. [PMID: 27911826 PMCID: PMC5187666 DOI: 10.1073/pnas.1616294113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquatic microalgae have evolved diverse CO2-concentrating mechanisms (CCMs) to saturate the carboxylase with its substrate, to compensate for the slow kinetics and competing oxygenation reaction of the key photosynthetic CO2-fixing enzyme rubisco. The limiting CO2-inducible B protein (LCIB) is known to be essential for CCM function in Chlamydomonas reinhardtii To assign a function to this previously uncharacterized protein family, we purified and characterized a phylogenetically diverse set of LCIB homologs. Three of the six homologs are functional carbonic anhydrases (CAs). We determined the crystal structures of LCIB and limiting CO2-inducible C protein (LCIC) from C. reinhardtii and a CA-functional homolog from Phaeodactylum tricornutum, all of which harbor motifs bearing close resemblance to the active site of canonical β-CAs. Our results identify the LCIB family as a previously unidentified group of β-CAs, and provide a biochemical foundation for their function in the microalgal CCMs.
Collapse
Affiliation(s)
- Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jian Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Desong Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99163
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| |
Collapse
|
22
|
Bruno E, Buemi MR, De Luca L, Ferro S, Monforte AM, Supuran CT, Vullo D, De Sarro G, Russo E, Gitto R. In Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents. ChemMedChem 2016; 11:1812-8. [DOI: 10.1002/cmdc.201500596] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/05/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Elvira Bruno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Maria R. Buemi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Stefania Ferro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Anna-Maria Monforte
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Claudiu T. Supuran
- Neurofarba: Department of Neuroscience, Psychology, Pharmaceuticals and Child Health; Section of Pharmaceutical and Nutraceutical Sciences; University of Florence; 50019 Sesto Fiorentino Florence Italy
| | - Daniela Vullo
- Neurofarba: Department of Neuroscience, Psychology, Pharmaceuticals and Child Health; Section of Pharmaceutical and Nutraceutical Sciences; University of Florence; 50019 Sesto Fiorentino Florence Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine; University of Catanzaro; Viale Europa Località Germaneto 88100 Catanzaro Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine; University of Catanzaro; Viale Europa Località Germaneto 88100 Catanzaro Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| |
Collapse
|
23
|
Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. Eur J Med Chem 2015; 102:223-32. [DOI: 10.1016/j.ejmech.2015.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023]
|
24
|
Le Darz A, Mingot A, Bouazza F, Castelli U, Karam O, Tanc M, Supuran CT, Thibaudeau S. Fluorinated pyrrolidines and piperidines incorporating tertiary benzenesulfonamide moieties are selective carbonic anhydrase II inhibitors. J Enzyme Inhib Med Chem 2014; 30:737-45. [PMID: 25431145 DOI: 10.3109/14756366.2014.963072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
A series of substituted pyrrolidines and piperidines were synthesized using superacid HF/SbF5 chemistry. Investigated as inhibitors of several human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, i.e. the cytosolic hCA I and II as well as the tumor-associated transmembrane isoforms hCA IX and XII, these compounds showed a never yet reported selectivity toward the human carbonic anhydrase hCA II. In the tertiary benzenesulfonamide family, this class of inhibitors points out a new mechanism of action for human carbonic anhydrase II inhibition.
Collapse
|
25
|
Mader P, Pecina A, Cígler P, Lepšík M, Šícha V, Hobza P, Grüner B, Fanfrlík J, Brynda J, Řezáčová P. Carborane-based carbonic anhydrase inhibitors: insight into CAII/CAIX specificity from a high-resolution crystal structure, modeling, and quantum chemical calculations. BIOMED RESEARCH INTERNATIONAL 2014; 2014:389869. [PMID: 25309911 PMCID: PMC4189773 DOI: 10.1155/2014/389869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/08/2014] [Indexed: 12/03/2022]
Abstract
Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.
Collapse
Affiliation(s)
- Pavel Mader
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 140 00 Prague 4, Czech Republic
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cígler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, 250 68 Řež near Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 77146 Olomouc, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, 250 68 Řež near Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 140 00 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 140 00 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
26
|
De Luca L, Ferro S, Damiano FM, Supuran CT, Vullo D, Chimirri A, Gitto R. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur J Med Chem 2013; 71:105-11. [PMID: 24287559 DOI: 10.1016/j.ejmech.2013.10.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/31/2022]
Abstract
Among the different mammalian isoforms of Carbonic Anhydrase, the hCA VII is mainly expressed in the brain where it is involved in several neurological diseases. Thereby hCA VII has been validated as an attractive target for the discovery of selective inhibitors for the treatment of epilepsy and neurological pain. To identify new chemical entities as carbonic anhydrase inhibitors (CAIs) targeting hCA VII, we used a structure-based approach. By means of LigandScout software we built pharmacophore models from crystal structures of two well-known CAIs in complex with hCA VII. A merged pharmacophore hypothesis has been obtained. Subsequently, a focused library of compounds was screened against pharmacophore model and the most interesting hits were docked into the crystal structure of hCA VII. As a result, we identified new compounds displaying significant CA inhibitory effects in the nanomolar range.
Collapse
Affiliation(s)
- Laura De Luca
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Stefania Ferro
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Francesca M Damiano
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alba Chimirri
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| |
Collapse
|
27
|
Brynda J, Mader P, Šícha V, Fábry M, Poncová K, Bakardiev M, Grüner B, Cígler P, Řezáčová P. Carborane-Based Carbonic Anhydrase Inhibitors. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Carborane-Based Carbonic Anhydrase Inhibitors. Angew Chem Int Ed Engl 2013; 52:13760-3. [DOI: 10.1002/anie.201307583] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Indexed: 11/07/2022]
|
29
|
Compain G, Martin-Mingot A, Maresca A, Thibaudeau S, Supuran CT. Superacid synthesis of halogen containing N-substituted-4-aminobenzene sulfonamides: New selective tumor-associated carbonic anhydrase inhibitors. Bioorg Med Chem 2013; 21:1555-63. [DOI: 10.1016/j.bmc.2012.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 01/07/2023]
|
30
|
Gitto R, Damiano FM, Mader P, De Luca L, Ferro S, Supuran CT, Vullo D, Brynda J, Řezáčová P, Chimirri A. Synthesis, Structure–Activity Relationship Studies, and X-ray Crystallographic Analysis of Arylsulfonamides as Potent Carbonic Anhydrase Inhibitors. J Med Chem 2012; 55:3891-9. [DOI: 10.1021/jm300112w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rosaria Gitto
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Francesca M. Damiano
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Pavel Mader
- Department
of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Laura De Luca
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Stefania Ferro
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Claudiu T. Supuran
- Università degli Studi
di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università di Firenze, Italy
| | - Daniela Vullo
- Università degli Studi
di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università di Firenze, Italy
| | - Jiří Brynda
- Department
of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Structural Biology Team, Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavlína Řezáčová
- Department
of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Structural Biology Team, Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alba Chimirri
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| |
Collapse
|
31
|
Liu F, Martin-Mingot A, Lecornué F, Jouannetaud MP, Maresca A, Thibaudeau S, Supuran CT. Carbonic Anhydrases inhibitory effects of new benzenesulfonamides synthesized by using superacid chemistry. J Enzyme Inhib Med Chem 2011; 27:886-91. [DOI: 10.3109/14756366.2011.638921] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Fei Liu
- Laboratoire “Synthèse et Réactivité des Substances Naturelles”,
Poitiers Cedex, France
| | - Agnès Martin-Mingot
- Laboratoire “Synthèse et Réactivité des Substances Naturelles”,
Poitiers Cedex, France
| | - F. Lecornué
- Laboratoire “Synthèse et Réactivité des Substances Naturelles”,
Poitiers Cedex, France
| | | | - Alfonso Maresca
- Università degli Studi di Firenze,
Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Sebastien Thibaudeau
- Laboratoire “Synthèse et Réactivité des Substances Naturelles”,
Poitiers Cedex, France
| | - Claudiu T. Supuran
- Università degli Studi di Firenze,
Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
32
|
Synthesis and biological profile of new 1,2,3,4-tetrahydroisoquinolines as selective carbonic anhydrase inhibitors. Bioorg Med Chem 2011; 19:7003-7. [DOI: 10.1016/j.bmc.2011.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022]
|