1
|
Rahman A, Anjum S, Bhatt JD, Dixit BC, Singh A, Khan S, Fatima S, Patel TS, Hoda N. Sulfonamide based pyrimidine derivatives combating Plasmodium parasite by inhibiting falcipains-2 and falcipains-3 as antimalarial agents. RSC Adv 2024; 14:24725-24740. [PMID: 39114436 PMCID: PMC11304049 DOI: 10.1039/d4ra04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
In this report, we present the design and synthesis of a novel series of pyrimidine-tethered spirochromane-based sulfonamide derivatives aimed at combating drug resistance in malaria. The antimalarial effectiveness of these compounds was assessed in vitro. Structural validation of the synthesized compounds was conducted using mass spectrometry and NMR spectroscopy. Strong antimalarial activity against CQ-sensitive (3D7) and CQ-resistant (W2) strains of Plasmodium falciparum was demonstrated by the majority of the compounds. Notably, compounds SZ14 and SZ9 demonstrated particularly potent effects, with compound SZ14 showing IC50 values of 2.84 μM and SZ9 3.22 μM, indicating single-digit micromolar activity. The compounds exhibiting strong antimalarial activity were assessed through enzymatic tests against the cysteine protease enzymes of P. falciparum, falcipain-2 and falcipain-3. The results indicated that SZ14 and SZ9 inhibited PfFP-2 (IC50 values: 4.1 and 5.4 μM, respectively), and PfFP-3 (IC50 values: 4.9 and 6.3 μM, respectively). To confirm the compounds' specificity towards the parasite, we investigated their cytotoxicity against Vero cell lines, revealing strong selectivity indices and no significant cytotoxic effects. Additionally, in vitro hemolysis testing showed these compounds to be non-toxic to normal human blood cells. Moreover, predicted in silico ADME parameters and physiochemical characteristics demonstrated the drug-likeness of the synthetic compounds. These collective findings suggest that sulfonamide derivatives based on pyrimidine-tethered oxospirochromane could serve as templates for the future development of potential antimalarial drugs.
Collapse
Affiliation(s)
- Abdur Rahman
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Shazia Anjum
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Jaimin D Bhatt
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388120 Gujarat India +91-2692-230011#31
| | - Bharat C Dixit
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388120 Gujarat India +91-2692-230011#31
| | - Anju Singh
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Sabiha Khan
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Sadaf Fatima
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Tarosh S Patel
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388120 Gujarat India +91-2692-230011#31
| | - Nasimul Hoda
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| |
Collapse
|
2
|
Troshkova N, Politanskaya L, Bagryanskaya I, Chuikov I, Wang J, Ilyina P, Mikhalski M, Esaulkova I, Volobueva A, Zarubaev V. Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity. Mol Divers 2023:10.1007/s11030-023-10769-6. [PMID: 38153637 DOI: 10.1007/s11030-023-10769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 μM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.
Collapse
Affiliation(s)
- Nadezhda Troshkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Larisa Politanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090.
| | - Irina Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Igor Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Jiaying Wang
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk, Russian Federation, 630090
| | - Polina Ilyina
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Mikhail Mikhalski
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Iana Esaulkova
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Alexandrina Volobueva
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Vladimir Zarubaev
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| |
Collapse
|
3
|
Rajai-Daryasarei S, Hosseini MS, Balalaie S. Chemoselective Reduction of α,β-Unsaturated Carbonyl Compounds via a CS 2/ t-BuOK System: Dimethyl Sulfoxide as a Hydrogen Source. J Org Chem 2023. [PMID: 37471258 DOI: 10.1021/acs.joc.3c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A novel and practical approach to access saturated ketones from unsaturated ketone derivatives via a CS2/t-BuOK system in dimethyl sulfoxide (DMSO) is reported. The in situ generation of xanthate salt through the reaction of carbon disulfide and potassium tert-butoxide is essential to this transformation. Deuterium-labeling experiments demonstrated that DMSO can act as a hydrogen donor.
Collapse
Affiliation(s)
- Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Mir Sadra Hosseini
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|
4
|
Wei J, Li Y, Li R, Chen X, Yang T, Liao L, Xie Y, Zhu J, Mao F, Jia R, Xu X, Li J. Drug repurposing of propafenone to discover novel anti-tumor agents by impairing homologous recombination to delay DNA damage recovery of rare disease conjunctival melanoma. Eur J Med Chem 2023; 250:115238. [PMID: 36868105 DOI: 10.1016/j.ejmech.2023.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Conjunctival melanoma (CM), a rare and fatal malignant ocular tumor, lacks proper diagnostic biomarkers and therapy. Herein, we revealed the novel application of propafenone, an FDA-approved antiarrhythmic medication, which was identified effective in inhibiting CM cells viability and homologous recombination pathway. Detailed structure-activity relationships generated D34 as one of the most promising derivatives, which strongly suppressed the proliferation, viability, and migration of CM cells at submicromolar concentrations. Mechanically, D34 had the potential to increase γ-H2AX nuclear foci and aggravated DNA damage by suppressing homologous recombination pathway and its factors, particularly the complex of MRE11-RAD50-NBS1. D34 bound to human recombinant MRE11 protein and inhibited its endonuclease activity. Moreover, D34 dihydrochloride significantly suppressed tumor growth in the CRMM1 NCG xenograft model without obvious toxicity. Our finding shows that propafenone derivatives modulating the MRE11-RAD50-NBS1 complex will most likely provide an approach for CM targeted therapy, especially for improving chemo- and radio-sensitivity for CM patients.
Collapse
Affiliation(s)
- Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Tiannuo Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Liao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuqing Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
5
|
Pal K, Raza MK, Legac J, Rahman A, Manzoor S, Bhattacharjee S, Rosenthal PJ, Hoda N. Identification, in-vitro anti-plasmodial assessment and docking studies of series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide molecular hybrids as potential antimalarial agents. Eur J Med Chem 2023; 248:115055. [PMID: 36621136 DOI: 10.1016/j.ejmech.2022.115055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Malaria is the most lethal parasitic infections in the world. To address the emergence of drug resistance to current antimalarials, here we report the design and synthesis of new series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide hybrids by using multicomponent Petasis reaction as the key step and evaluated in vitro for their antimalarial effectiveness. The structure of all the compounds were confirmed by NMR Spectroscopy and mass spectrometry. Most of the compounds showed potent antimalarial activity against both CQ-sensitive (3D7) and CQ-resistant (W2) strains. A8, A5, and A4 are the most potent compounds that showed excellent anti-plasmodial activity against CQ-resistant strain in the nanomolar range with IC50 values 55.7 nM, 60.8 nM, and 68.0 nM respectively. To assess the parasite selectivity, the in vitro cytotoxicity of selected compounds (A3-A6, A8) was tested against HPL1D cells, demonstrating low cytotoxicity with high selectivity indices. Furthermore, these compounds were also evaluated on two additional human cancerous cell lines (A549 and MDA-MB-231), confirming their anticancer effectiveness. The in vitro hemolysis assay also showed the non-toxicity of these compounds on normal uninfected human RBCs. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The in silico ADMET profiling also revealed promising physicochemical and pharmacokinetic parameters for the most active hybrids, which provide strong vision for further development of potential antimalarials.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Chemoenzymatic synthesis of both enantiomers of propafenone hydrochloride through lipase-catalyzed process. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wang X, Wang X, Pan H, Ming X, Zhang Z, Wang T. Palladium-Catalyzed Oxidative Nonclassical Heck Reaction of Arylhydrazines with Allylic Alcohols via C-N Bond Cleavage: Access to β-Arylated Carbonyl Compounds. J Org Chem 2022; 87:10173-10184. [PMID: 35877650 DOI: 10.1021/acs.joc.2c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient palladium-catalyzed oxidative nonclassical Heck reaction of arylhydrazines with allylic alcohols via C-N bond cleavage has been successfully developed. This method provides a series of β-arylated carbonyl compounds with broad functional group tolerance under base-free, simple, and mild open air reaction conditions. In the reaction, arylhydrazines with the smaller molecular weight of the leaving group were employed as the "green" arylation reagent, which released N2 and water as the byproducts under air. Mechanistic studies suggested that an aryl radical process and Pd-H complex migration reinsertion were involved. Moreover, the synthesis of the antiarrhythmic drug propafenone was completed with this transformation as the key step.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Xiaojing Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Hongwu Pan
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Xiayi Ming
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Zhenming Zhang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| |
Collapse
|
8
|
Kang SM, Han SS, Zhu YY, Wu ZQ. Cobalt(III) Porphyrin-Decorated Stereoregular Polyisocyanides Enable Highly Effective Cooperative Catalysis for Hydration of Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shu-Ming Kang
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Shan-Shan Han
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zong-Quan Wu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
9
|
Pal K, Raza MK, Legac J, Ataur Rahman M, Manzoor S, Rosenthal PJ, Hoda N. Design, synthesis, crystal structure and anti-plasmodial evaluation of tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidine derivatives. RSC Med Chem 2021; 12:970-981. [PMID: 34223162 DOI: 10.1039/d1md00038a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Effective chemotherapy is essential for controlling malaria. However, resistance of Plasmodium falciparum to existing antimalarial drugs has undermined attempts to control and eventually eradicate the disease. In this study, a series of 2-((substituted)(4-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)piperazin-1-yl)methyl)-6-substitutedphenol derivatives were prepared using Petasis reaction with a view to evaluate their activities against P. falciparum. The development of synthesized compounds (F1-F16) was justified through the study of H1 NMR, C13 NMR, mass spectra. Compound F1 and F2 were also structurally validated by single crystal X-ray diffraction analysis. All the compounds were evaluated for their in vitro antiplasmodial assessment against the W2 strain (chloroquine-resistant) of P. falciparum IC50 values ranging from 0.74-6.4 μM. Two compounds, F4 and F16 exhibited significant activity against W2 strain of P. falciparum with 0.75 and 0.74 μM. The compounds (F3-F6 and F16) were also evaluated for in vitro cytotoxicity against two cancer cell lines, human lung (A549) and cervical (HeLa) cells, which demonstrated non-cytotoxicity with significant selectivity indices. In addition, in silico ADME profiling and physiochemical properties predicts drug-like properties with a very low toxic effect. Thus, all these results indicate that tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine scaffolds may serve as models for the development of antimalarial agents.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Jenny Legac
- Department of Medicine, University of California San Francisco CA USA
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| | | | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| |
Collapse
|
10
|
Pospisilova S, Marvanova P, Treml J, Moricz AM, Ott PG, Mokry P, Odehnalova K, Sedo O, Cizek A, Jampilek J. Activity of N-Phenylpiperazine Derivatives Against Bacterial and Fungal Pathogens. Curr Protein Pept Sci 2020; 20:1119-1129. [PMID: 31518219 DOI: 10.2174/1389203720666190913114041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND As the bacterial resistance to antibacterial chemotherapeutics is one of the greatest problems in modern medicine, efforts are made to develop new antimicrobial drugs. Compounds with a piperazine ring have proved to be promising agents against various pathogens. OBJECTIVE The aim of the study was to prepare a series of new N-phenylpiperazines and determine their activity against various pathogens. METHOD Target compounds were prepared by multi-step synthesis starting from an appropriate substituted acid to an oxirane intermediate reacting with 1-(4-nitrophenyl)piperazine. Lipophilicity and pKa values were experimentally determined. Other molecular parameters were calculated. The inhibitory activity of the target compounds against Staphylococcus aureus, four mycobacteria strains, Bipolaris sorokiniana, and Fusarium avenaceum was tested. In vitro antiproliferative activity was determined on a THP-1 cell line, and toxicity against plant was determined using Nicotiana tabacum. RESULTS In general, most compounds demonstrated only moderate effects. 1-(2-Hydroxy-3-{[4-(propan- 2-yloxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride and 1-{3-[(4-butoxybenzoyl)- oxy]-2-hydroxypropyl}-4-(4-nitrophenyl)piperazinediium dichloride showed the highest inhibition activity against M. kansasii (MIC = 15.4 and 15.0 µM, respectively) and the latter also against M. marinum (MIC = 15.0 µM). 1-(2-Hydroxy-3-{[4-(2-propoxyethoxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride had the highest activity against F. avenaceum (MIC = 14.2 µM). All the compounds showed only insignificant toxic effects on human and plant cells. CONCLUSION Ten new 1-(4-nitrophenyl)piperazine derivatives were prepared and analyzed, and their antistaphylococcal, antimycobacterial, and antifungal activities were determined. The activity against M. kansasii was positively influenced by higher lipophilicity, the electron-donor properties of substituent R and a lower dissociation constant. The exact mechanism of action will be investigated in follow-up studies.
Collapse
Affiliation(s)
- Sarka Pospisilova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Agnes M Moricz
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Ondrej Sedo
- Research Group of Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
11
|
Jafarpour F, Rajai-Daryasarei S, Gohari MH. Cascade cyclization versus chemoselective reduction: a solvent-controlled product divergence. Org Chem Front 2020. [DOI: 10.1039/d0qo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient controllable cascade cyclization and partial reduction of enones for the divergent construction of two types of valuable compounds including polysubstituted thiophenes and saturated ketones are developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | | | | |
Collapse
|
12
|
Quiliano M, Pabón A, Moles E, Bonilla-Ramirez L, Fabing I, Fong KY, Nieto-Aco DA, Wright DW, Pizarro JC, Vettorazzi A, López de Cerain A, Deharo E, Fernández-Busquets X, Garavito G, Aldana I, Galiano S. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. Eur J Med Chem 2018; 152:489-514. [PMID: 29754074 DOI: 10.1016/j.ejmech.2018.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC50s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC50s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds.
Collapse
Affiliation(s)
- Miguel Quiliano
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - Adriana Pabón
- Grupo Malaria, Universidad de Antioquía, Medellín, Colombia
| | - Ernest Moles
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | | | - Isabelle Fabing
- Laboratoire de Synthese et Physicochimie de Molécules d'Intéret Biologique SPCMIB-UMR5068, CNRS - Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Diego A Nieto-Aco
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University USA; Vector-Borne Infectious Diseases Research Center, Tulane University USA
| | - Ariane Vettorazzi
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, Campus Universitario, 31008 Pamplona, Spain
| | - Adela López de Cerain
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, Campus Universitario, 31008 Pamplona, Spain
| | - Eric Deharo
- UMR 152 PHARMA-DEV, Université Toulouse, IRD, UPS, 31062, Toulouse, France
| | - Xavier Fernández-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Giovanny Garavito
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia (DFUNC), Grupo de investigación FaMeTra (Farmacología de la Medicina tradicional y popular), Carrera 30 45-03, Bogotá D.C., Colombia
| | - Ignacio Aldana
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - Silvia Galiano
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain.
| |
Collapse
|
13
|
Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Quiliano M, Mendoza A, Fong KY, Pabón A, Goldfarb NE, Fabing I, Vettorazzi A, López de Cerain A, Dunn BM, Garavito G, Wright DW, Deharo E, Pérez-Silanes S, Aldana I, Galiano S. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:184-198. [PMID: 27718413 PMCID: PMC5061469 DOI: 10.1016/j.ijpddr.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023]
Abstract
Synthesis of new 1-aryl-3-substituted propanol derivatives followed by structure-activity relationship, in silico drug-likeness, cytotoxicity, genotoxicity, in silico metabolism, in silico pharmacophore modeling, and in vivo studies led to the identification of compounds 22 and 23 with significant in vitro antiplasmodial activity against drug sensitive (D6 IC50 ≤ 0.19 μM) and multidrug resistant (FCR-3 IC50 ≤ 0.40 μM and C235 IC50 ≤ 0.28 μM) strains of Plasmodium falciparum. Adequate selectivity index and absence of genotoxicity was also observed. Notably, compound 22 displays excellent parasitemia reduction (98 ± 1%), and complete cure with all treated mice surviving through the entire period with no signs of toxicity. One important factor is the agreement between in vitro potency and in vivo studies. Target exploration was performed; this chemotype series exhibits an alternative antimalarial mechanism. New aryl-substituted propanol derivatives (APD) show promising antimalarial activity. γ-amino alcohol moiety is significant antimalarial chemotype. Compound 22 displays excellent in vivo parasitemia reduction (98%) and complete cure. APD are active against drug sensitive and multidrug resistant strains.
Collapse
Affiliation(s)
- Miguel Quiliano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain
| | - Adela Mendoza
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Adriana Pabón
- Grupo Malaria, Universidad de Antioquía, Medellín, Colombia
| | - Nathan E Goldfarb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Isabelle Fabing
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique SPCMIB - UMR5068, CNRS - Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain
| | - Ben M Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Giovanny Garavito
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia (DFUNC), Grupo de investigación FaMeTra (Farmacología de la Medicina tradicional y popular), Carrera 30 45-03, Bogotá D.C., Colombia
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Eric Deharo
- UMR 152 PHARMA-DEV, Université Toulouse, IRD, UPS, 31062, Toulouse, France
| | - Silvia Pérez-Silanes
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain
| | - Ignacio Aldana
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain
| | - Silvia Galiano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain.
| |
Collapse
|
15
|
Lee JA, Shinn P, Jaken S, Oliver S, Willard FS, Heidler S, Peery RB, Oler J, Chu S, Southall N, Dexheimer TS, Smallwood J, Huang R, Guha R, Jadhav A, Cox K, Austin CP, Simeonov A, Sittampalam GS, Husain S, Franklin N, Wild DJ, Yang JJ, Sutherland JJ, Thomas CJ. Novel Phenotypic Outcomes Identified for a Public Collection of Approved Drugs from a Publicly Accessible Panel of Assays. PLoS One 2015; 10:e0130796. [PMID: 26177200 PMCID: PMC4503722 DOI: 10.1371/journal.pone.0130796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection (NPC) is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD) phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) (AID 1117321). Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben.
Collapse
Affiliation(s)
- Jonathan A. Lee
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susan Jaken
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Sarah Oliver
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Francis S. Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Steven Heidler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Robert B. Peery
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Jennifer Oler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Shaoyou Chu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas S. Dexheimer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey Smallwood
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karen Cox
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Christopher P. Austin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Sitta Sittampalam
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Saba Husain
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Natalie Franklin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - David J. Wild
- Indiana University School of Informatics and Computing, Bloomington, Indiana, United States of America
| | - Jeremy J. Yang
- Indiana University School of Informatics and Computing, Bloomington, Indiana, United States of America
| | - Jeffrey J. Sutherland
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail: (JJS); (CJT)
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JJS); (CJT)
| |
Collapse
|
16
|
Li W, Wu XF. Ruthenium-Catalyzed Conjugate Hydrogenation of α,β-Enones by in situ Generated Dihydrogen from Paraformaldehyde and Water. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Yao J, Feng R, Wu Z, Liu Z, Zhang Y. Palladium-Catalyzed Decarboxylative Coupling of α- Oxocarboxylic Acids with C(sp2)H of 2-Aryloxypyridines. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300078] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Phenylpropiophenone derivatives as potential anticancer agents: Synthesis, biological evaluation and quantitative structure–activity relationship study. Eur J Med Chem 2013; 63:239-55. [DOI: 10.1016/j.ejmech.2013.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/23/2022]
|
19
|
Ruthenium(II)-Catalyzed sp3 C–H Bond Arylation of Benzylic Amines Using Aryl Halides. Org Lett 2012; 14:3792-5. [DOI: 10.1021/ol301680v] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Lowes D, Pradhan A, Iyer LV, Parman T, Gow J, Zhu F, Furimsky A, Lemoff A, Guiguemde WA, Sigal M, Clark JA, Wilson E, Tang L, Connelly MC, Derisi JL, Kyle DE, Mirsalis J, Guy RK. Lead optimization of antimalarial propafenone analogues. J Med Chem 2012; 55:6087-93. [PMID: 22708838 DOI: 10.1021/jm300286a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.
Collapse
Affiliation(s)
- David Lowes
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|