1
|
Wang SJ, Zhao MY, Zhao PC, Zhang W, Rao GW. Research Status, Synthesis and Clinical Application of Antiepileptic Drugs. Curr Med Chem 2024; 31:410-452. [PMID: 36650655 DOI: 10.2174/0929867330666230117160632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023]
Abstract
According to the 2017 ILAE's official definition, epilepsy is a slow brain disease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new antiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepileptic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity relationship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.
Collapse
Affiliation(s)
- Si-Jie Wang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Min-Yan Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
2
|
Jaiswal S, Gupta G, Ayyannan SR. Synthesis and evaluation of carbamate derivatives as fatty acid amide hydrolase and monoacylglycerol lipase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200081. [PMID: 35924298 DOI: 10.1002/ardp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are the primary catabolic enzymes for endocannabinoids, anandamide (AEA), and 2-arachidonoyl glycerol. Numerous studies have shown that FAAH and MAGL play an important role in modulating various central nervous system activities; hence, the development of small molecule FAAH/MAGL inhibitors is an active area of research. Several small molecules possessing the carbamate scaffold are documented as potential FAAH/MAGL inhibitors. Here, we designed and synthesized a series of open chain and cyclic carbamates and evaluated their dual FAAH-MAGL inhibition properties. Phenyl [4-(piperidin-1-ylmethyl)phenyl]carbamate (2e) emerged as the most potent MAGL inhibitor (IC50 = 19 nM), benzyl (1H-benzo[d]imidazol-2-yl)carbamate (3h) was the most potent FAAH inhibitor (IC50 = 55 nM), and phenyl (6-fluorobenzo[d]thiazol-2-yl)carbamate (2i) egressed as a nonselective dual FAAH-MAGL inhibitor (FAAH: 82 nM, MAGL: 72 nM). The enzyme kinetics experiments revealed that the compounds inhibit FAAH/MAGL in a covalent-reversible manner, with a mixed binding mode of action. Moreover, the lead compounds were found suitable for blood-brain permeation in the parallel artificial membrane permeation assay. Furthermore, docking simulation experiments suggested that the potency of the lead compounds was governed by hydrogen bonds and hydrophobic interactions with the enzyme active sites. In silico drug-likeness and ADMETox prediction studies provided useful information on the compounds' oral absorption, metabolism, and toxicity profiles. In summary, this study afforded potent multifunctional carbamates with appreciable pharmacokinetic profiles meriting further investigation.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Garima Gupta
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Al-Tannak NF, Phillips OA, Kamal HJ, Hemdan A. Development and Validation of Stability-Indicating Assay Method for a Novel Oxazolidinone (PH-192) with Anticonvulsant Activity by Using UHPLC-QToF-MS. Molecules 2022; 27:molecules27031090. [PMID: 35164353 PMCID: PMC8840153 DOI: 10.3390/molecules27031090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment of seizure disorders with currently available pharmacotherapeutic agents is not optimal due to the failure of some patients to respond, coupled with occurrences of side effects. There is therefore a need for research into the development of new chemical entities as potential anticonvulsant agents, which are different structurally from the existing class of drugs. We recently identified a novel triazolyl-oxazolidinone derivative, PH-192, as a potential anticonvulsant agent. PH-192 demonstrated protection comparable to phenytoin against both chemically- and electrically-induced seizures in rodents with little or no central nervous system side effects. However, PH-192 did not exhibit protection beyond 30 min; therefore, we decide to investigate a stability-indicating assay of PH-192 in plasma and other solutions. A reliable and validated analytical method was developed to investigate the stability of PH-192 for 90 min in human plasma, acidic, basic, and oxidative conditions, using a Waters Acquity ultra high-performance liquid chromatography (UHPLC) system with a quaternary Solvent Manager (H-Class). A simple extraction method indicated that PH-192 was stable in human plasma after 90 min at 37 °C, with more than 90% successfully recovered. Moreover, stress stability studies were performed, and degradants were identified using LC-QToF-MS under acidic, basic, and oxidative simulated conditions.
Collapse
Affiliation(s)
- Naser F. Al-Tannak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (O.A.P.); (H.J.K.)
- Correspondence:
| | - Oludotun A. Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (O.A.P.); (H.J.K.)
| | - Husein J. Kamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (O.A.P.); (H.J.K.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Ahmed Hemdan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt;
| |
Collapse
|
4
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
5
|
Pal R, Kumar B, Akhtar MJ, Chawla PA. Voltage gated sodium channel inhibitors as anticonvulsant drugs: A systematic review on recent developments and structure activity relationship studies. Bioorg Chem 2021; 115:105230. [PMID: 34416507 DOI: 10.1016/j.bioorg.2021.105230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022]
Abstract
Voltage-gated sodium channel blockers are one of the vital targets for the management of several central nervous system diseases, including epilepsy, chronic pain, psychiatric disorders, and spasticity. The voltage-gated sodium channels play a key role in controlling cellular excitability. This reduction in excitotoxicity is also applied to improve the symptoms of epileptic conditions. The effectiveness of antiepileptic drugs as sodium channel depends upon the reversible blocking of the spontaneous discharge without blocking its propagation. There are number of antiepileptic drug(s) which are in pipeline to flour the market to conquer abnormal neuronal excitability. They inhibit the seizures through the inhibition of complex voltage- and frequency-dependent ionic currents through sodium channels. Over the past decade, the sodium channel is one of the most explored targets to control or treat the seizure, but there has not been any game-changing discovery yet. Although there are large numbers of drugs approved for the treatment of epilepsy, however they are associated with several acute to chronic side effects. Many research groups have tirelessly worked for better therapeutic medication on this popular target to treat epileptic seizures. The review quotes briefly the developments of the approved examples of sodium channel blockers as anticonvulsant drugs. Medicinal chemists have tried the design and development of some more potent anticonvulsant drugs to minimize the toxicity that are discussed here, and an emphasis is given for their possible mechanism and the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO620, PC 130 Azaiba, Bousher, Muscat, Sultanate of Oman
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
6
|
Pinkhasova DV, Jameson LE, Conrow KD, Simeone MP, Davis AP, Wiegers TC, Mattingly CJ, Leung MCK. Regulatory Status of Pesticide Residues in Cannabis: Implications to Medical Use in Neurological Diseases. Curr Res Toxicol 2021; 2:140-148. [PMID: 34308371 PMCID: PMC8296824 DOI: 10.1016/j.crtox.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Movement disorders are the most common neurological category of qualifying conditions in the U.S. The number and action levels of regulated pesticides in cannabis differ vastly in 33 states and Washington, D.C. Network analysis reveals potential interactions of insecticides, cannabinoids, and seizure at a functional level.
Medical cannabis represents a potential route of pesticide exposure to susceptible populations. We compared the qualifying conditions for medical use and pesticide testing requirements of cannabis in 33 states and Washington, D.C. Movement disorders were the most common neurological category of qualifying conditions, including epilepsy, certain symptoms of multiple sclerosis, Parkinson’s Disease, and any cause of symptoms leading to seizures or spasticity. Different approaches of pesticide regulation were implemented in cannabis and cannabis-derived products. Six states imposed the strictest U.S. EPA tolerances (i.e. maximum residue levels) for food commodities on up to 400 pesticidal active ingredients in cannabis, while pesticide testing was optional in three states. Dimethomorph showed the largest variation in action levels, ranging from 0.1 to 60 ppm in 5 states. We evaluated the potential connections between insecticides, cannabinoids, and seizure using the Comparative Toxicogenomics Database. Twenty-two insecticides, two cannabinoids, and 63 genes were associated with 674 computationally generated chemical-gene-phenotype-disease (CGPD) tetramer constructs. Notable functional clusters included oxidation-reduction process (183 CGPD-tetramers), synaptic signaling pathways (151), and neuropeptide hormone activity (46). Cholinergic, dopaminergic, and retrograde endocannabinoid signaling pathways were linked to 10 genetic variants of epilepsy patients. Further research is needed to assess human health risk of cannabinoids and pesticides in support of a national standard for cannabis pesticide regulations.
Collapse
Affiliation(s)
- Dorina V Pinkhasova
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, AZ 85306.,Pharmacology and Toxicology Program, Arizona State University - West Campus, Glendale, AZ 85306
| | - Laura E Jameson
- Pharmacology and Toxicology Program, Arizona State University - West Campus, Glendale, AZ 85306
| | - Kendra D Conrow
- Pharmacology and Toxicology Program, Arizona State University - West Campus, Glendale, AZ 85306
| | - Michael P Simeone
- ASU Library Data Science and Analytics, Arizona State University, Tempe, AZ 85281
| | - Allan Peter Davis
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Thomas C Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, AZ 85306.,Pharmacology and Toxicology Program, Arizona State University - West Campus, Glendale, AZ 85306
| |
Collapse
|
7
|
Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021; 62:596-614. [PMID: 33580520 DOI: 10.1111/epi.16832] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Bai Y, He X, Bai Y, Sun Y, Zhao Z, Chen X, Li B, Xie J, Li Y, Jia P, Meng X, Zhao Y, Ding Y, Xiao C, Wang S, Yu J, Liao S, Zhang Y, Zhu Z, Zhang Q, Zhao Y, Qin F, Zhang Y, Wei X, Zeng M, Liang J, Cuan Y, Shan G, Fan TP, Wu B, Zheng X. Polygala tenuifolia-Acori tatarinowii herbal pair as an inspiration for substituted cinnamic α-asaronol esters: Design, synthesis, anticonvulsant activity, and inhibition of lactate dehydrogenase study. Eur J Med Chem 2019; 183:111650. [PMID: 31539780 DOI: 10.1016/j.ejmech.2019.111650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/11/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Inspired by the traditional Chinese herbal pair of Polygala tenuifolia-Acori Tatarinowii for treating epilepsy, 33 novel substituted cinnamic α-asaronol esters and analogues were designed by Combination of Traditional Chinese Medicine Molecular Chemistry (CTCMMC) strategy, synthesized and tested systematically not only for anticonvulsant activity in three mouse models but also for LDH inhibitory activity. Thereinto, 68-70 and 75 displayed excellent and broad spectra of anticonvulsant activities with modest ability in preventing neuropathic pain, as well as low neurotoxicity. The protective indices of these four compounds compared favorably with stiripentol, lacosamide, carbamazepine and valproic acid. 68-70 exhibited good LDH1 and LDH5 inhibitory activities with noncompetitive inhibition type, and were more potent than stiripentol. Notably, 70, as a representative agent, was also shown as a moderately positive allosteric modulator at human α1β2γ2 GABAA receptors (EC50 46.3 ± 7.3 μM). Thus, 68-70 were promising candidates for developing into anti-epileptic drugs, especially for treatment of refractory epilepsies such as Dravet syndrome.
Collapse
Affiliation(s)
- Yajun Bai
- Northwest University, Xi'an, 710069, China
| | - Xirui He
- Northwest University, Xi'an, 710069, China; Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yujun Bai
- Northwest University, Xi'an, 710069, China
| | - Ying Sun
- Northwest University, Xi'an, 710069, China
| | | | - Xufei Chen
- Northwest University, Xi'an, 710069, China
| | - Bin Li
- Northwest University, Xi'an, 710069, China
| | - Jing Xie
- Northwest University, Xi'an, 710069, China
| | - Yang Li
- Northwest University, Xi'an, 710069, China
| | - Pu Jia
- Northwest University, Xi'an, 710069, China
| | - Xue Meng
- Northwest University, Xi'an, 710069, China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, China
| | - Ye Zhao
- Northwest University, Xi'an, 710069, China
| | - Yanrui Ding
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | | | | | - Jie Yu
- Northwest University, Xi'an, 710069, China
| | - Sha Liao
- Northwest University, Xi'an, 710069, China
| | | | - Zhiling Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | | | - Yuhui Zhao
- Northwest University, Xi'an, 710069, China
| | | | - Yi Zhang
- Northwest University, Xi'an, 710069, China
| | | | - Min Zeng
- Northwest University, Xi'an, 710069, China
| | - Jing Liang
- Northwest University, Xi'an, 710069, China
| | - Ye Cuan
- Northwest University, Xi'an, 710069, China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Biao Wu
- Northwest University, Xi'an, 710069, China
| | | |
Collapse
|
9
|
Kaproń B, Łuszczki JJ, Płazińska A, Siwek A, Karcz T, Gryboś A, Nowak G, Makuch-Kocka A, Walczak K, Langner E, Szalast K, Marciniak S, Paczkowska M, Cielecka-Piontek J, Ciesla LM, Plech T. Development of the 1,2,4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies. Eur J Pharm Sci 2018; 129:42-57. [PMID: 30594731 DOI: 10.1016/j.ejps.2018.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/26/2018] [Accepted: 12/24/2018] [Indexed: 01/17/2023]
Abstract
The treatment of epilepsy remains difficult mostly since almost 30% of patients suffer from pharmacoresistant forms of the disease. Therefore, there is an urgent need to search for new antiepileptic drug candidates. Previously, it has been shown that 4-alkyl-5-substituted-1,2,4-triazole-3-thione derivativatives possessed strong anticonvulsant activity in a maximal electroshock-induced seizure model of epilepsy. In this work, we examined the effect of the chemical structure of the 1,2,4-triazole-3-thione-based molecules on the anticonvulsant activity and the binding to voltage-gated sodium channels (VGSCs) and GABAA receptors. Docking simulations allowed us to determine the mode of interactions between the investigated compounds and binding cavity of the human VGSC. Selected compounds were also investigated in a panel of ADME-Tox assays, including parallel artificial membrane permeability assay (PAMPA), single cell gel electrophoresis (SCGE) and cytotoxicity evaluation in HepG2 cells. The obtained results indicated that unbranched alkyl chains, from butyl to hexyl, attached to 1,2,4-triazole core are essential both for good anticonvulsant activity and strong interactions with VGSCs. The combined in-vivo, in-vitro and in-silico studies emphasize 4-alkyl-5-substituted-1,2,4-triazole-3-thiones as promising agents in the development of new anticonvulsants.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Ewa Langner
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | | | - Magdalena Paczkowska
- Department of Pharmacognosy, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, USA
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
10
|
Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenzensulfonamide. Neurochem Res 2017; 42:1972-1982. [PMID: 28275953 DOI: 10.1007/s11064-017-2216-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100+ years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED50 = 13 mg/kg and ED50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.
Collapse
|
11
|
Popović-Djordjević JB, Jevtić II, Grozdanić ND, Šegan SB, Zlatović MV, Ivanović MD, Stanojković TP. α-Glucosidase inhibitory activity and cytotoxic effects of some cyclic urea and carbamate derivatives. J Enzyme Inhib Med Chem 2017; 32:298-303. [PMID: 28100083 PMCID: PMC6010093 DOI: 10.1080/14756366.2016.1250754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The inhibitory activities of selected cyclic urea and carbamate derivatives (1-13) toward α-glucosidase (α-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC50) against α-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl)carbamate (12) with IC50 = 49.85 ± 0.10 µM. In vitro cytotoxicity of the investigated compounds was tested on three human cancer cell lines HeLa, A549 and MDA-MB-453 using MTT assay. The best antitumour activity was achieved with compound 2 (trans-5-phenethyl-1-phenylhexahydro-1H-imidazo[4,5-c]pyridin-2(3H)-one) against MDA-MB-453 human breast cancer cell line (IC50 = 83.41 ± 1.60 µM). Cyclic ureas and carbamates showed promising anti-α-glucosidase activity and should be further tested as potential antidiabetic drugs. The PLS model of preliminary QSAR study indicated that, in planing the future synthesis of more potent compounds, the newly designed should have the substituents capable of polar interactions with receptor sites in various positions, while avoiding the increase of their lipophilicity.
Collapse
Affiliation(s)
| | - Ivana I Jevtić
- b Faculty of Chemistry , University of Belgrade , Belgrade , Serbia
| | | | - Sandra B Šegan
- d Institute of Chemistry, Technology and Metallurgy, Department of Chemistry , University of Belgrade , Belgrade , Serbia
| | - Mario V Zlatović
- b Faculty of Chemistry , University of Belgrade , Belgrade , Serbia
| | | | | |
Collapse
|
12
|
Ab Initio Calculations on some Antiepileptic Drugs such as Phenytoin, Phenbarbital, Ethosuximide and Carbamazepine. Struct Chem 2016. [DOI: 10.1007/s11224-016-0898-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Mawasi H, Bibi D, Bialer M. Design and comparative anticonvulsant activity assessment of CNS-active alkyl-carbamoyl imidazole derivatives. Bioorg Med Chem 2016; 24:4246-4253. [PMID: 27469980 DOI: 10.1016/j.bmc.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 11/29/2022]
Abstract
A novel series of carbamoyl derivatives of alkylimidazole has been designed and their anticonvulsant activity was comparatively evaluated in the mice- and rats-maximal-electroshock (MES), subcutaneous-metrazol (scMet) seizure tests and the mice-6Hz psychomotor (6Hz) models. The ten new designed molecules contain in their chemical structure imidazole, alkyl side-chain and carbamate as three potential active moieties. In spite of the close structural features of the carbamoyl imidazole derivatives only compounds 7, 8, 13 and 16 were active at the MES test with ED50 values ranging from 12 to 20mg/kg coupled with high protective index (PI=TD50/ED50) values of 4.1-7.3 after ip administration to rats. A similar phenomenon was observed in mice where compounds 7, 8, 9, 12 had MES-ED50 values of 14-26mg/kg. Compounds 7 and 13 also demonstrated anticonvulsant activity in the 6Hz model with ED50 values of 32 and 44mg/kg, respectively. As the most active entities, compounds 7, 8 followed by 13 and 16, thus offer an optimal efficacy-safety profile and consequently, might be promising candidates for development as new antiepileptics.
Collapse
Affiliation(s)
- Hafiz Mawasi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, PO 12065, Jerusalem 91120, Israel
| | - David Bibi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, PO 12065, Jerusalem 91120, Israel
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, PO 12065, Jerusalem 91120, Israel; David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
14
|
Wei CX, Bian M, Gong GH. Current Research on Antiepileptic Compounds. Molecules 2015; 20:20741-76. [PMID: 26610448 PMCID: PMC6332177 DOI: 10.3390/molecules201119714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023] Open
Abstract
Epilepsy affects about 1% of the world’s population. Due to the fact all antiepileptic drugs (AEDs) have some undesirable side effects and about 30% of epileptic patients are not seizure-free with the existing AEDs, there is still an urgent need for the development of more effective and safer AEDs. Based on our research work on antiepileptic compounds and other references in recent years, this review covers the reported work on antiepileptic compounds which are classified according to their structures. This review summarized 244 significant anticonvulsant compounds which are classified by functional groups according to the animal model data, although there are some limitations in the data. This review highlights the properties of new compounds endowed with promising antiepileptic properties, which may be proven to be more effective and selective, and possibly free of unwanted side effects. The reviewed compounds represent an interesting possibility to overcome refractory seizures and to reduce the percentage of patients with a poor response to drug therapy.
Collapse
Affiliation(s)
- Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
| | - Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China.
| |
Collapse
|
15
|
|
16
|
Kulasegaram S, Shaheen U, Turney TW, Gates WP, Patti AF. Zinc monoglycerolate as a catalyst for the conversion of 1,3- and higher diols to diurethanes. RSC Adv 2015. [DOI: 10.1039/c5ra05032d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient approach to the synthesis of diurethanes from 1,3- and higher diols (n ≥ 3) is described.
Collapse
Affiliation(s)
| | | | - Terence W. Turney
- School of Chemistry Monash University
- Australia
- Department of Materials Engineering
- Monash University
- Australia
| | - Will P. Gates
- Department of Civil Engineering
- Monash University
- Australia
| | | |
Collapse
|
17
|
Sharma RK, Dutta S, Sharma S. Quinoline-2-carboimine copper complex immobilized on amine functionalized silica coated magnetite nanoparticles: a novel and magnetically retrievable catalyst for the synthesis of carbamates via C–H activation of formamides. Dalton Trans 2015; 44:1303-16. [DOI: 10.1039/c4dt03236e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and magnetically recoverable nanocatalytic system consisting of a magnetic silica based copper complex has been fabricated and applied in the synthesis of carbamates via C–H activation of formamides.
Collapse
Affiliation(s)
- R. K. Sharma
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- New Delhi-110007
- India
| | - Sriparna Dutta
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- New Delhi-110007
- India
| | - Shivani Sharma
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- New Delhi-110007
- India
| |
Collapse
|
18
|
Shekh-Ahmad T, Mawasi H, McDonough JH, Finnell RH, Wlodarczyk BJ, Yavin E, Bialer M. Enantioselective pharmacodynamic and pharmacokinetic analysis of two chiral CNS-active carbamate derivatives of valproic acid. Epilepsia 2014; 55:1944-52. [DOI: 10.1111/epi.12857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Tawfeeq Shekh-Ahmad
- Faculty of Medicine; Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Hafiz Mawasi
- Faculty of Medicine; Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| | - John H. McDonough
- Pharmacology Branch; Research Division; US Army Medical Research Institute of Chemical Defense; Aberdeen Proving Ground; Maryland U.S.A
| | - Richard H. Finnell
- Department of Nutritional Sciences; Dell Pediatric Research Institute; The University of Texas at Austin; Austin Texas U.S.A
| | - Bogdan J. Wlodarczyk
- Department of Nutritional Sciences; Dell Pediatric Research Institute; The University of Texas at Austin; Austin Texas U.S.A
| | - Eylon Yavin
- Faculty of Medicine; Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Meir Bialer
- Faculty of Medicine; Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
- David R. Bloom Center for Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
19
|
Synthesis, neuronal activity and mechanisms of action of halogenated enaminones. Eur J Med Chem 2014; 76:20-30. [DOI: 10.1016/j.ejmech.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
|
20
|
Barve BD, Wu YC, El-Shazly M, Chuang DW, Cheng YB, Wang JJ, Chang FR. Copper-Catalyzed Oxidative Coupling of Formamides with Salicylaldehydes: Synthesis of Carbamates in the Presence of a Sensitive Aldehyde Group. J Org Chem 2014; 79:3206-14. [DOI: 10.1021/jo402798k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Balaji D. Barve
- Graduate Institute of Natural
Products, College
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medicinal
and Applied Chemistry,
College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural
Products, College
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Mohamed El-Shazly
- Graduate Institute of Natural
Products, College
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacognosy and Natural Products
Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization
of African Unity Street, 11566 Abassia, Cairo, Egypt
| | - Da-Wei Chuang
- Graduate Institute of Natural
Products, College
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural
Products, College
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal
and Applied Chemistry,
College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural
Products, College
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| |
Collapse
|
21
|
Ulloora S, Shabaraya R, Adhikari AV. Facile synthesis of new imidazo[1,2-a]pyridines carrying 1,2,3-triazoles via click chemistry and their antiepileptic studies. Bioorg Med Chem Lett 2013; 23:3368-72. [DOI: 10.1016/j.bmcl.2013.03.086] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 01/03/2023]
|
22
|
Bansal M, Goel B, Shukla S, Srivastava RS. Synthesis, characterization & anticonvulsant activity of amide derivatives of 4-amino-1,2-naphthoquinone. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|