1
|
Zhu H, Xu L, Zhu B, Liao M, Li J, Han Z, Sun J, Huang H. Copper-Catalyzed Enantioselective Formal [4 + 1] and [3 + 3] Cycloaddition of Ethynylethylene Carbonates. Org Lett 2023; 25:9213-9218. [PMID: 38100085 DOI: 10.1021/acs.orglett.3c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Herein we employed ethynylethylene carbonates (EECs) to achieve formal [4 + 1] and [3 + 3] cycloaddition with cyclic 1,3-dicarbonyl compounds. On one hand, EECs with styryl substitution could undergo a remotely controlled enantioselective [4 + 1] cycloaddition reaction. This reaction exhibits good chemoselectivity, regioselectivity, and enantioselectivity. In addition, a [3 + 3] cycloaddition reaction of EECs with cyclic 1,3-dicarbonyl compounds was also achieved, leading to a series of 4H-pyrans with impressive chemoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Haihui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lixia Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Biao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (China)
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Ostadzadeh H, Kiyani H. Multicomponent Synthesis of Tetrahydrobenzo[ b]Pyrans, Pyrano[2,3- d]Pyrimidines, and Dihydropyrano[3,2- c]Chromenes Catalyzed by Sodium Benzoate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan, Iran
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Cysteine Donor-Based Brain-Targeting Prodrug: Opportunities and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4834117. [PMID: 35251474 PMCID: PMC8894025 DOI: 10.1155/2022/4834117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
Collapse
|
4
|
Naumczuk B, Górecki M, Wiktorska K, Urbanowicz M, Sitkowski J, Lubelska K, Milczarek M, Bednarek E, Bocian W, Kozerski L. New camptothecin derivatives for generalized oncological chemotherapy: Synthesis, stereochemistry and biology. Bioorg Med Chem Lett 2021; 46:128146. [PMID: 34048881 DOI: 10.1016/j.bmcl.2021.128146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Derivatives of SN38 were synthesized that were either monosubstituted at C-5 or C-9 or disubstituted at both C-5 and C-9. Substitution to C-5 led to the generation of pairs of diastereomers (2c-2 h) in a one-pot reaction and was readily separable by HPLC. The absolute configurations of C-5 were established by electronic circular dichroism experiments. Compounds were tested in vitro against human cancer cell lines as well as a normal cell line. The impact of compounds 2a-2j on cancer cells is significant and the IC50 values against the normal cell line are several times higher than that of SN38. Using the Mannich reaction we obtained a new innovative group of derivatives with unique biological properties that preserves the high cytotoxicity in cancer cells and eliminates the acute toxicity to non-neoplastic cells, which can be considered a breakthrough in chemotherapy with the use of topoisomerase I inhibitors from the camptothecin family.
Collapse
Affiliation(s)
- Beata Naumczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 42/52, 01-224 Warsaw, Poland.
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 42/52, 01-224 Warsaw, Poland
| | | | | | - Jerzy Sitkowski
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 42/52, 01-224 Warsaw, Poland
| | | | | | | | - Wojciech Bocian
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Lech Kozerski
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 42/52, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Xin Z, Jia L, Huang Y, Du CX, Li Y. Ru-Catalyzed Switchable N-Hydroxyethylation and N-Acetonylation with Crude Glycerol. CHEMSUSCHEM 2020; 13:2007-2011. [PMID: 32011109 DOI: 10.1002/cssc.201903151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Highly efficient Ru-catalyzed selective C-C or C-O bond cleavage of polyols (e.g., crude glycerol) for N-hydroxyethylation or N-acetonylation of amines was achieved through the hydrogen-borrowing approach. A variety of amines were transformed to the desired amino alcohols/ketones in moderate-to-excellent yields, opening up new avenues for generation of oxygenated pharmaceuticals and fine chemicals from renewable raw materials. The use of new redox-active catalysts containing bisphosphine/thienylmethylamine ligands allows this hydrogen-borrowing system to be operated selectively under both basic and acidic conditions.
Collapse
Affiliation(s)
- Zhuo Xin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- School of Material Science and Engineering and Institute for Advanced Study, Nanchang University, Nanchang, 330031, P. R. China
| | - Le Jia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuxing Huang
- School of Material Science and Engineering and Institute for Advanced Study, Nanchang University, Nanchang, 330031, P. R. China
| | - Chen-Xia Du
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
6
|
Merten C, Golub TP, Kreienborg NM. Absolute Configurations of Synthetic Molecular Scaffolds from Vibrational CD Spectroscopy. J Org Chem 2019; 84:8797-8814. [PMID: 31046276 DOI: 10.1021/acs.joc.9b00466] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vibrational circular dichroism (VCD) spectroscopy is one of the most powerful techniques for the determination of absolute configurations (AC), as it does not require any specific UV/vis chromophores, no chemical derivatization, and no growth of suitable crystals. In the past decade, it has become increasingly recognized by chemists from various fields of synthetic chemistry such as total synthesis and drug discovery as well as from developers of asymmetric catalysts. This perspective article gives an overview about the most important experimental aspects of a VCD-based AC determination and explains the theoretical analysis. The comparison of experimental and computational spectra that leads to the final conclusion about the AC of the target molecules is described. In addition, the review summarizes unique VCD studies carried out in the period 2008-2018 that focus on the determination of unknown ACs of new compounds, which were obtained in its enantiopure form either through direct asymmetric synthesis or chiral chromatography.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum , Organische Chemie II , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Tino P Golub
- Ruhr Universität Bochum , Organische Chemie II , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Nora M Kreienborg
- Ruhr Universität Bochum , Organische Chemie II , Universitätsstraße 150 , 44780 Bochum , Germany
| |
Collapse
|
7
|
Zhou J, Wang B, He XH, Liu L, Wu J, Lu J, Peng C, Rao CL, Han B. Asymmetric Construction of 4H-Pyrano[3,2-b]indoles via Cinchonine-Catalyzed 1,4-Addition of 2-Ylideneoxindole with Malononitrile. J Org Chem 2019; 84:5450-5459. [DOI: 10.1021/acs.joc.9b00430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Zhou
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Biao Wang
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xiang-Hong He
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Li Liu
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jun Wu
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jing Lu
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chao-Long Rao
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
8
|
Piao CS, Holloway AL, Hong-Routson S, Wainwright MS. Depression following traumatic brain injury in mice is associated with down-regulation of hippocampal astrocyte glutamate transporters by thrombin. J Cereb Blood Flow Metab 2019; 39:58-73. [PMID: 29135354 PMCID: PMC6311670 DOI: 10.1177/0271678x17742792] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Depression after traumatic brain injury (TBI) is common but the mechanisms by which TBI causes depression are unknown. TBI decreases glutamate transporters GLT-1 and GLAST and allows extravasation of thrombin. We examined the effects of thrombin on transporter expression in primary hippocampal astrocytes. Application of a PAR-1 agonist caused down-regulation of GLT-1, which was prevented by inhibition of Rho kinase (ROCK). To confirm these mechanisms in vivo, we subjected mice to closed-skull TBI. Thrombin activity in the hippocampus increased one day following TBI. Seven days following TBI, expression of GLT-1 and GLAST was reduced in the hippocampus, and this was prevented by administration of the PAR-1 antagonist SCH79797. Inhibition of ROCK attenuated the decrease in GLT-1, but not GLAST, after TBI. We measured changes in glutamate levels in the hippocampus seven days after TBI using an implanted biosensor. Stress-induced glutamate levels were significantly increased following TBI and this was attenuated by treatment with the ROCK inhibitor fasudil. We quantified depressive behavior following TBI and found that inhibition of PAR-1 or ROCK decreased these behaviors. These results identify a novel mechanism by which TBI results in down-regulation of astrocyte glutamate transporters and implicate astrocyte and glutamate transporter dysfunction in depression following TBI.
Collapse
Affiliation(s)
- Chun-Shu Piao
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ashley L Holloway
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sue Hong-Routson
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,3 Division of Critical Care, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mark S Wainwright
- 1 Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,3 Division of Critical Care, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Hansen SW, Erichsen MN, Fu B, Bjørn-Yoshimoto WE, Abrahamsen B, Hansen JC, Jensen AA, Bunch L. Identification of a New Class of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitors Followed by a Structure-Activity Relationship Study. J Med Chem 2016; 59:8757-8770. [PMID: 27626828 DOI: 10.1021/acs.jmedchem.6b01058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Screening of a small compound library at the three excitatory amino acid transporter subtypes 1-3 (EAAT1-3) resulted in the identification of compound (Z)-4-chloro-3-(5-((3-(2-ethoxy-2-oxoethyl)-2,4-dioxothiazolidin-5-ylidene)methyl)furan-2-yl)benzoic acid (1a) that exhibited a distinct preference as an inhibitor at EAAT1 (IC50 20 μM) compared to EAAT2 and EAAT3 (IC50 > 300 μM). This prompted us to subject 1a to an elaborate structure-activity relationship study through the purchase and synthesis and subsequent pharmacological characterization of a total of 36 analogues. Although this effort did not result in analogues with substantially improved inhibitory potencies at EAAT1 compared to that displayed by the hit, it provided a detailed insight into structural requirements for EAAT1 activity of this scaffold. The discovery of this new class of EAAT1-selective inhibitors not only supplements the currently available pharmacological tools in the EAAT field but also substantiates the notion that EAAT ligands not derived from α-amino acids hold considerable potential in terms of subtype-selective modulation of the transporters.
Collapse
Affiliation(s)
- Stinne W Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Mette N Erichsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Bingru Fu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Bjarke Abrahamsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Jacob C Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
10
|
Leuenberger M, Ritler A, Simonin A, Hediger MA, Lochner M. Concise Asymmetric Synthesis and Pharmacological Characterization of All Stereoisomers of Glutamate Transporter Inhibitor TFB-TBOA and Synthesis of EAAT Photoaffinity Probes. ACS Chem Neurosci 2016; 7:534-9. [PMID: 26918289 DOI: 10.1021/acschemneuro.5b00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian brain. Its rapid clearance after the release into the synaptic cleft is vital in order to avoid toxic effects and is ensured by several transmembrane transport proteins, so-called excitatory amino acid transporters (EAATs). Impairment of glutamate removal has been linked to several neurodegenerative diseases and EAATs have therefore received increased attention as therapeutic targets. O-Benzylated l-threo-β-hydroxyaspartate derivatives have been developed previously as highly potent inhibitors of EAATs with TFB-TBOA ((2S,3S)-2-amino-3-((3-(4-(trifluoromethyl)benzamido)benzyl)oxy)succinic acid) standing out as low-nanomolar inhibitor. We report the stereoselective synthesis of all four stereoisomers of TFB-TBOA in less than a fifth of synthetic steps than the published route. For the first time, the inhibitory activity and isoform selectivity of these TFB-TBOA enantio- and diastereomers were assessed on human glutamate transporters EAAT1-3. Furthermore, we synthesized potent photoaffinity probes based on TFB-TBOA using our novel synthetic strategy.
Collapse
Affiliation(s)
- Michele Leuenberger
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| | - Andreas Ritler
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Alexandre Simonin
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| | - Matthias A. Hediger
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| | - Martin Lochner
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Swiss National Centre
of Competence in Research, NCCR TransCure, 3008 Bern, Switzerland
| |
Collapse
|
11
|
Haym I, Huynh THV, Hansen SW, Pedersen MHF, Ruiz JA, Erichsen MN, Gynther M, Bjørn-Yoshimoto WE, Abrahamsen B, Bastlund JF, Bundgaard C, Eriksen AL, Jensen AA, Bunch L. Bioavailability Studies and in vitro Profiling of the Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor UCPH-102. ChemMedChem 2016; 11:403-19. [PMID: 26797816 DOI: 10.1002/cmdc.201500527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/14/2015] [Indexed: 02/03/2023]
Abstract
Although the selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor UCPH-101 has become a standard pharmacological tool compound for in vitro and ex vivo studies in the EAAT research field, its inability to penetrate the blood-brain barrier makes it unsuitable for in vivo studies. In the present study, per os (p.o.) administration (40 mg kg(-1) ) of the closely related analogue UCPH-102 in rats yielded respective plasma and brain concentrations of 10.5 and 6.67 μm after 1 h. Three analogue series were designed and synthesized to improve the bioavailability profile of UCPH-102, but none displayed substantially improved properties in this respect. In vitro profiling of UCPH-102 (10 μm) at 51 central nervous system targets in radioligand binding assays strongly suggests that the compound is completely selective for EAAT1. Finally, in a rodent locomotor model, p.o. administration of UCPH-102 (20 mg kg(-1) ) did not induce acute effects or any visible changes in behavior.
Collapse
Affiliation(s)
- Isabell Haym
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Tri H V Huynh
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Stinne W Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Martin H F Pedersen
- Technical University of Denmark, Center for Nuclear Technologies, DTU Nutech/Hevesy Laboratory, Frederiksborgvej 399, Building 202, 4000, Roskilde, Denmark
| | - Josep A Ruiz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Mette N Erichsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Bjarke Abrahamsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | | | | | - Anette L Eriksen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
12
|
Hansen SW, Erichsen MN, Huynh THV, Ruiz JA, Haym I, Bjørn-Yoshimoto WE, Abrahamsen B, Hansen J, Storgaard M, Eriksen AL, Jensen AA, Bunch L. New Insight into the Structure-Activity Relationships of the Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitors UCPH-101 and UCPH-102. ChemMedChem 2016; 11:382-402. [DOI: 10.1002/cmdc.201500525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Stinne W. Hansen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Mette N. Erichsen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Tri H. V. Huynh
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Josep A. Ruiz
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Isabell Haym
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Walden E. Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Bjarke Abrahamsen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Jeanette Hansen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Morten Storgaard
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Anette L. Eriksen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| |
Collapse
|
13
|
Li JL, Li Q, Yang KC, Li Y, Zhou L, Han B, Peng C, Gou XJ. A practical green chemistry approach to synthesize fused bicyclic 4H-pyranes via an amine catalysed 1,4-addition and cyclization cascade. RSC Adv 2016. [DOI: 10.1039/c6ra06441h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Kiyani H, Sadat Jalali M. Facile and Efficient Access to Tetrahydrobenzo[b]pyrans Catalyzed by N,N-Dimethylbenzylamine. HETEROCYCLES 2016. [DOI: 10.3987/com-15-13360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Thrombin decreases expression of the glutamate transporter GLAST and inhibits glutamate uptake in primary cortical astrocytes via the Rho kinase pathway. Exp Neurol 2015; 273:288-300. [PMID: 26391563 DOI: 10.1016/j.expneurol.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023]
Abstract
Astrocyte glutamate transporters GLAST and GLT1 play a key role in regulating neuronal excitation and their levels are altered in patients with epilepsy, and after traumatic brain injury. The mechanisms which regulate their expression are not well understood. We tested the hypothesis that exposure of astrocytes to high levels of thrombin, as may occur after a compromise of the blood-brain barrier, would reduce astrocyte glutamate transporter levels. In isolated rat cortical astrocytes we examined the effects of thrombin on the expression and function of glutamate transporters, and the signaling pathways involved in these responses by using Western blotting and selective inhibitors. Thrombin induced a selective decrease in the expression of GLAST but not GLT1, with a corresponding decrease in the capacity of astrocytes to take up glutamate. Activation of the thrombin receptor PAR-1 with an activating peptide induced a similar decrease in the expression of GLAST and compromise of glutamate uptake. The downregulation of GLAST induced by thrombin was mediated by the mitogen activated protein kinases p38 MAPK, ERK and JNK, but inhibition of these kinases did not prevent the decrease in glutamate uptake induced by thrombin. In contrast, inhibition of the Rho kinase pathway using the specific inhibitor, Y27632, suppressed both the decrease in the expression of GLAST and the decrease in glutamate uptake induced by thrombin. In hippocampal astrocyte cultures, thrombin caused a decrease in both GLAST and GLT1. In tissue resected from brains of children with intractable epilepsy, we found a decrease in the integrity of the blood-brain barrier along with a reduction in immunoreactivity for both transporters which was associated with an increase in cleaved thrombin and reactive astrogliosis. The in vitro results suggest a specific mechanism by which thrombin may lead to a compromise of astrocyte function and enhanced synaptic excitability after the blood-brain barrier is compromised. The human in vivo results provide indirect support evidence linking the compromise of the blood-brain barrier to thrombin-induced reduction in glutamate transporter expression and an increase in neuronal excitation.
Collapse
|
16
|
Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 2015; 14:543-60. [PMID: 26111766 DOI: 10.1038/nrd4626] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.
Collapse
Affiliation(s)
- Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Science Centre, London, Ontario N6A 5A5, Canada
| | - Kathleen M Giacomini
- 1] Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA. [2] Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
17
|
Zhao W, Lu Z, Wulff WD. β-amino esters from the reductive ring opening of aziridine-2-carboxylates. J Org Chem 2014; 79:10068-80. [PMID: 25329528 PMCID: PMC4227569 DOI: 10.1021/jo501694h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 11/30/2022]
Abstract
A general study is undertaken to examine the scope of the reductive ring opening of aziridine-2-carboxylates with samarium diiodide. The competition between C-C and C-N bond cleavage is examined as a function of the nature of the N-substituent of the aziridine, the nature of the substituent in the 3-position of the aziridine, and whether the substituent in the 3-position is in a cis or trans relationship with the carboxylate in the 2-position. The desired C-N bond cleavage leads to β-amino esters that are the predominant products for most aziridines with an N-activating group. However, C-C cleavage products are observed with an aryl group in the 3-position; this can be particularly pronounced with cis-aziridines where a nearly equal mixture of the two is observed. Exclusive formation of the C-N cleavage product is observed for all aziridines with the strongly N-activating p-toluene sulfonate group. Similarly high selectivity is observed for the 2-trimethylsilylethyl sulfonate group (SES), which is easier to remove. The utility of these methods is illustrated in the synthesis of protected forms of (R)-β(3)-DOPA and L-DOPA from the same aziridine, the former by SmI2-mediated reductive opening at C-2 and the latter by palladium-mediated reductive opening at C-3.
Collapse
Affiliation(s)
- Wenjun Zhao
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Zhenjie Lu
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| | - William D. Wulff
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
18
|
Probing for Improved Potency and In Vivo Bioavailability of Excitatory Amino Acid Transporter Subtype 1 Inhibitors UCPH-101 and UCPH-102: Design, Synthesis and Pharmacological Evaluation of Substituted 7-Biphenyl Analogs. Neurochem Res 2014; 39:1964-79. [DOI: 10.1007/s11064-014-1264-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 02/02/2023]
|
19
|
Rauen T, Tanui R, Grewer C. Structural and functional dynamics of Excitatory Amino Acid Transporters (EAAT). AIMS MOLECULAR SCIENCE 2014. [DOI: 10.3934/molsci.2014.3.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
20
|
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.
Collapse
|
21
|
Huynh THV, Demmer CS, Abrahamsen B, Marcher E, Frykman M, Jensen AA, Bunch L. Structure-activity-relationship study of N-acyl-N-phenylpiperazines as potential inhibitors of the Excitatory Amino Acid Transporters (EAATs): improving the potency of a micromolar screening Hit is not truism. SPRINGERPLUS 2013; 2:112. [PMID: 25530930 PMCID: PMC4225009 DOI: 10.1186/2193-1801-2-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
Abstract
Abstract
The excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate from the synaptic cleft. To date, five subtypes EAAT1-5 have been identified for which selective inhibitors have been discovered for EAAT1 and EAAT2. By screening of a commercially available compound library consisting of 4,000 compounds, N-acyl-N-phenylpiperazine analog (±)-
exo
-1 was identified to be a non-selective inhibitor at EAAT1-3 displaying IC50 values in the mid-micromolar range (10 μ M, 40 μ M and 30 μ M at EAAT1, 2 and 3, respectively). Subsequently, we designed and synthesized a series of analogs to explore the structure-activity-relationship of this scaffold in the search for analogs characterized by increased inhibitory potency and/or EAAT subtype selectivity. Despite extensive efforts, all analogs of (±)-
exo
-1 proved to be either inactive or to have least 3-fold lower inhibitory potency than the lead, and furthermore none of the active analogs displayed selectivity for a particular subtype amongst the EAAT1-3. On the basis of our findings, we speculate that (±)-
exo
-1 binds to a recess (deepening) on the EAAT proteins than a well-defined pocket.
Collapse
|
22
|
Grewer C, Gameiro A, Rauen T. SLC1 glutamate transporters. Pflugers Arch 2013; 466:3-24. [PMID: 24240778 DOI: 10.1007/s00424-013-1397-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na(+) ions and the countertransport of one K(+) in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions.
Collapse
Affiliation(s)
- Christof Grewer
- Department of Chemistry, Binghamton University, PO Box 6000, Binghamton, 13902-6000, NY, USA,
| | | | | |
Collapse
|
23
|
Gordillo-Román B, Camacho-Ruiz J, Bucio MA, Joseph-Nathan P. Vibrational Circular Dichroism Discrimination of Diastereomeric Cedranol Acetates. Chirality 2013; 25:939-51. [DOI: 10.1002/chir.22238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Bárbara Gordillo-Román
- Departamento de Química; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México D. F. México
| | - Jorge Camacho-Ruiz
- Departamento de Química; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México D. F. México
| | - María A. Bucio
- Departamento de Química; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México D. F. México
| | - Pedro Joseph-Nathan
- Departamento de Química; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México D. F. México
| |
Collapse
|
24
|
Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 2013; 34:108-20. [PMID: 23506861 DOI: 10.1016/j.mam.2013.01.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023]
Abstract
Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565 0871, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 2013; 33:1068-87. [PMID: 23325245 DOI: 10.1523/jneurosci.3396-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."
Collapse
|