1
|
Mammoliti O, Menet C, Cottereaux C, Blanc J, De Blieck A, Coti G, Geney R, Oste L, Ostyn K, Palisse A, Quinton E, Schmitt B, Borgonovi M, Parent I, Jagerschmidt C, De Vos S, Vayssiere B, López-Ramos M, Shoji K, Brys R, Amantini D, Galien R, Joannesse C. Design of a potent and selective dual JAK1/TYK2 inhibitor. Bioorg Med Chem 2024; 114:117932. [PMID: 39447537 DOI: 10.1016/j.bmc.2024.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Janus kinase (JAK) inhibitors have gathered interest as treatments for several inflammatory and autoimmune diseases. The four first marketed inhibitors target JAK1, with varying selectivity towards other JAK family members, but none inhibit tyrosine kinase-2 (TYK2) at clinically relevant doses. TYK2 is required for the signaling of the interleukin (IL)-12 and IL-23 cytokines, which are key to the polarization of TH1 and TH17 cells, respectively; two cell subtypes that play major roles in inflammatory diseases. Herein, we report our effort towards the optimization of a potent and selective dual JAK1/TYK2 inhibitor series starting from a HTS hit. Structural information revealed vectors required to improve both JAK1 and TYK2 potency as well as selectivity towards JAK2. The potent inhibition of both JAK1 (3.5 nM) and TYK2 (5.7 nM) in biochemical assays by our optimized lead compound, as well as its notable selectivity against JAK2, were confirmed in cellular and whole blood assays. Inhibition of TYK2 by the lead compound was demonstrated by dose-dependent efficacy in an IL-23-induced psoriasis-like inflammation mouse model.
Collapse
Affiliation(s)
- Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Christel Menet
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Céline Cottereaux
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Javier Blanc
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Ann De Blieck
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Ghjuvanni Coti
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Raphaël Geney
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Line Oste
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Koen Ostyn
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Adeline Palisse
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Evelyne Quinton
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Benoit Schmitt
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Monica Borgonovi
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Isabelle Parent
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Steve De Vos
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | | | | | - Kenji Shoji
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - David Amantini
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - René Galien
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | |
Collapse
|
2
|
Zhang X, Wang W, Dong G, Song Y, Zhai X, Sheng C. Discovery of a potent and selective JAK1-targeting PROTAC degrader with anti-tumor activities. Bioorg Med Chem Lett 2024; 109:129838. [PMID: 38838918 DOI: 10.1016/j.bmcl.2024.129838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China
| | - Yingqi Song
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, PR China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
3
|
Lv Y, Mi P, Babon JJ, Fan G, Qi J, Cao L, Lang J, Zhang J, Wang F, Kobe B. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacol Res 2024; 204:107217. [PMID: 38777110 DOI: 10.1016/j.phrs.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Faming Wang
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Chen L, Tang Y, Lang JJ, Lin Y, Yu Z, Li X, Zheng X, Mi P, Lv Y, Lin YW. Design, synthesis and evaluation of C-5 substituted pyrrolopyridine derivatives as potent Janus Kinase 1 inhibitors with excellent selectivity. Eur J Med Chem 2024; 267:116210. [PMID: 38359535 DOI: 10.1016/j.ejmech.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The development of highly selective Janus Kinase 1 (JAK1) inhibitors is crucial for improving efficacy and minimizing adverse effects in the clinical treatment of autoimmune diseases. In a prior study, we designed a series of C-5 4-pyrazol substituted pyrrolopyridine derivatives that demonstrated significant potency against JAK1, with a 10 ∼ 20-fold selectivity over Janus Kinase 2 (JAK2). Building on this foundation, we adopted orthogonal strategy by modifying the C-5 position with 3-pyrazol/4-pyrazol/3-pyrrol groups and tail with substituted benzyl groups on the pyrrolopyridine head to enhance both potency and selectivity. In this endeavor, we have identified several compounds that exhibit excellent potency and selectivity for JAK1. Notably, compounds 12b and 12e, which combined 4-pyrazol group at C-5 site and meta-substituted benzyl tails, displayed IC50 value with 2.4/2.2 nM and high 352-/253-fold selectivity for JAK1 over JAK2 in enzyme assays. Additionally, both compounds showed good JAK1-selective in Ba/F3-TEL-JAK1/2 cell-based assays. These findings mark a substantial improvement, as these compounds are 10-fold more potent and over 10-fold more selective than the best compound identified in our previous study. The noteworthy potency and selectivity properties of compounds 12b and 12e suggest their potential utility in furthering the development of drugs for autoimmune diseases.
Collapse
Affiliation(s)
- Limei Chen
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Yahua Tang
- The Affiliated Nanhua Hospital, Department of Pharmacy, Institute of Clinical Pharmacy, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Yuqing Lin
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhixin Yu
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinhao Li
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, 410004, China
| | - Pengbing Mi
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan, 421001, China.
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Li R, Liang Q, Yang Q, Dai W, Xiao Y, Pan H, Zhang Z, Liu L, Li X. Hexahydrocurcumin from Zingiberis rhizoma attenuates lipopolysaccharide-induced acute pneumonia through JAK1/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155141. [PMID: 37837898 DOI: 10.1016/j.phymed.2023.155141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Pneumonia is one of the major causes of death after pathogens infection. Zingiberis rhizoma (GAN JIANG) is a herb that used in combination with other Chinese medicines to treat pathogen such as virus induced pneumonia. However, the affect of hexahydrocurcumin (HHC), a component from Zingiberis rhizoma, on pneumonia remains unknown. PURPOSE This study aims to explore the effects of HHC on lipopolysaccharide (LPS)-induced acute pneumonia, and to clarify the underlying mechanism. METHODS The pneumonia model of C57BL/6 mice was established by intratracheal injection of LPS to evaluate the therapeutic effect of HHC on lung injury and inflammation in vivo. RAW264.7 macrophages were utilized to illustrate the cellular mechanism of HHC in vitro. RESULTS HHC alleviated lung injury, ROS and inflammatory cytokine IL-6 production in pneumonia mice in vivo. Molecular docking results disclosed the binding of HHC to JAK1 protein. The study further showed that HHC suppressed the inflammatory cytokines such as IL-6, TNF-α, IL-1β gene expression, inhibited the phosphorylation of JAK1 but not JAK3, and the subsequent STAT3 phosphorylation in LPS-activated macrophages. HHC exhibited no effects on the protein levels of JAK1 and STAT3 in vitro. Consistently, HHC also attenuated the JAK1, STAT3 phosphorylation in pneumonia mice in vivo. CONCLUSION The results reveal that HHC attenuates pneumonia by targeted inhibition of JAK1/STAT3 signaling pathway. It indicates the novel role of HHC to treat pneumonia, and its potential applications for JAK inhibitor-treated diseases.
Collapse
Affiliation(s)
- Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenqi Dai
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Le TTH, Tran LH, Nguyen MT, Pham MQ, Phung HTT. Calculation of binding affinity of JAK1 inhibitors via accurately computational estimation. J Biomol Struct Dyn 2023; 41:7224-7234. [PMID: 36069111 DOI: 10.1080/07391102.2022.2118830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Janus kinase 1 (JAK1) is a tyrosine kinase that is involved in the initiation of responses to a number of different cytokine receptor families. The JAK1-dependent pathway is a therapeutic target, and several JAK inhibitors have been developed thanks to intensive research. However, since the ATP binding sites of JAK family members are quite alike, JAK1 inhibitors can thus be less selective, resulting in unanticipated adverse effects. Despite this, minor variations in the ATP-binding site have been extensively used to find a variety of small compounds with different inhibitory properties. Stronger binding affinity of JAK1 inhibitors is believed to be able to reduce the negative effects, leading to better treatment results. Therefore, a thorough computational search that can effectively identify ligands with extremely high binding affinity for JAK1 to serve as promising inhibitors is required. Here, a method combining steered-molecular dynamic (SMD) simulations with a modified linear interaction energy (LIE) model has been developed to evaluate the binding affinities of known JAK1 inhibitors. The correlation coefficient between the estimated and experimental values was 0.72 and a root-mean-square error was 0.97 kcal•mol-1, revealing that the SMD/LIE method can precisely and quickly predict the binding free energies of JAK1 inhibitors. Furthermore, three marine fungus-derived compounds, namely hansforesters E, hansforesters G and tetroazolemycins B, were identified to be particularly promising JAK1 inhibitors, accordingly. These findings show that the SMD/LIE method has a lot of promise for in silico screening of possible JAK1 inhibitors from a vast number of compounds that are now accessible.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thi-Thuy-Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Hoang Tran
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
| | - Minh Tam Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Henry SP, Liosi ME, Ippolito JA, Menges F, Newton AS, Schlessinger J, Jorgensen WL. Covalent Modification of the JH2 Domain of Janus Kinase 2. ACS Med Chem Lett 2022; 13:1819-1826. [PMID: 36385940 PMCID: PMC9661697 DOI: 10.1021/acsmedchemlett.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Probe molecules that covalently modify the JAK2 pseudokinase domain (JH2) are reported. Selective targeting of JH2 domains over the kinase (JH1) domains is a necessary feature for ligands intended to evaluate JH2 domains as therapeutic targets. The JH2 domains of three Janus kinases (JAK1, JAK2, and TYK2) possess a cysteine residue in the catalytic loop that does not occur in their JH1 domains. Starting from a non-selective kinase binding molecule, computer-aided design directed attachment of substituents terminating in acrylamide warheads to modify Cys675 of JAK2 JH2. Successful covalent attachment was demonstrated first through observation of enhanced binding with increasing incubation time in fluorescence polarization experiments. Covalent binding also increased selectivity to as much as ca. 30-fold for binding the JAK2 JH2 domain over the JH1 domain after a 20-h incubation. Covalency was confirmed through HPLC electrospray quadrupole time-of-flight HRMS experiments, which revealed the expected mass shifts.
Collapse
Affiliation(s)
- Sean P. Henry
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Maria-Elena Liosi
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph A. Ippolito
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Fabian Menges
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana S. Newton
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
8
|
Sanachai K, Mahalapbutr P, Hengphasatporn K, Shigeta Y, Seetaha S, Tabtimmai L, Langer T, Wolschann P, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. Pharmacophore-Based Virtual Screening and Experimental Validation of Pyrazolone-Derived Inhibitors toward Janus Kinases. ACS OMEGA 2022; 7:33548-33559. [PMID: 36157769 PMCID: PMC9494641 DOI: 10.1021/acsomega.2c04535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Janus kinases (JAKs) are nonreceptor protein tyrosine kinases that play a role in a broad range of cell signaling. JAK2 and JAK3 have been involved in the pathogenesis of common lymphoid-derived diseases and leukemia cancer. Thus, inhibition of both JAK2 and JAK3 can be a potent strategy to reduce the risk of these diseases. In the present study, the pharmacophore models built based on the commercial drug tofacitinib and the JAK2/3 proteins derived from molecular dynamics (MD) trajectories were employed to search for a dual potent JAK2/3 inhibitor by a pharmacophore-based virtual screening of 54 synthesized pyrazolone derivatives from an in-house data set. Twelve selected compounds from the virtual screening procedure were then tested for their inhibitory potency against both JAKs in the kinase assay. The in vitro kinase inhibition experiment indicated that compounds 3h, TK4g, and TK4b can inhibit both JAKs in the low nanomolar range. Among them, the compound TK4g showed the highest protein kinase inhibition with the half-maximal inhibitory concentration (IC50) value of 12.61 nM for JAK2 and 15.80 nM for JAK3. From the MD simulations study, it could be found that the sulfonamide group of TK4g can form hydrogen bonds in the hinge region at residues E930 and L932 of JAK2 and E903 and L905 of JAK3, while van der Waals interaction also plays a dominant role in ligand binding. Altogether, TK4g, found by virtual screening and biological tests, could serve as a novel therapeutical lead candidate.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen40002, Thailand
| | - Kowit Hengphasatporn
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Supaphorn Seetaha
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Lueacha Tabtimmai
- Department
of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok10800, Thailand
| | - Thierry Langer
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, ViennaA-1090, Austria
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna1090, Austria
| | - Tanakorn Kittikool
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Sirilata Yotphan
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
9
|
Qinwufeng G, Jiacheng L, Xiaoling L, Tingru C, Yunyang W, Yanlong Y. Jiu-Wei-Yong-An Formula suppresses JAK1/STAT3 and MAPK signaling alleviates atopic dermatitis-like skin lesions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115428. [PMID: 35659915 DOI: 10.1016/j.jep.2022.115428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiu-Wei-Yong-An (JWYA) formula is a traditional Chinese medicine (TCM) prescription used to treat atopic dermatitis (AD) in the clinic. JWYA is considered to have anti-inflammatory and antipruritic properties. However, the mechanism of JWYA remains unclear. AIM OF THE STUDY This study aimed to investigate the effect of JWYA on an experimental mouse AD model. MATERIALS AND METHODS Mice were sensitized with 2,4-dinitrochlorobenzene (DNCB) and intragastrically administered with JWYA for 14 days. The therapeutic effect was assessed using a grade four dermatitis score, skin moisture, thickness measurements, and a mouse behavior tests. H&E and toluidine blue staining were used to observe epidermal inflammatory thickening and mast cells in mouse skin lesions. Serum IgE levels and skin TNF-α and IL-4 levels were determined using ELISAs. The TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ mRNA expression levels in skin lesions were detected using qPCR. Network pharmacology analysis based on serum active components was performed to elucidate the mechanism, and the results were verified by Western blotting. Finally, we tested the binding affinity between the active ingredients of JWYA and JAK1 via molecular docking. RESULTS JWYA improved the skin lesions of AD mice, relieved itching and reduced skin thickening. Additionally, JWYA decreased the serum IgE level and the levels of TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ in skin. Moreover, JWYA inhibited the activation of JAK1/STAT3 and MAPK (p38, ERK, and JNK) signaling. Molecular docking showed that kaempferol, luteolin, and forsythin have high affinity for JAK1. CONCLUSIONS JWYA alleviates AD-like skin lesions and inhibited inflammation and skin itch. The effect of JWYA is attributed to blocking the JAK1/STAT3 and MAPK signaling pathways. We suggest that JWYA may be an alternative therapy for the treatment of AD.
Collapse
Affiliation(s)
- Gu Qinwufeng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lin Jiacheng
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Lu Xiaoling
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, China
| | - Chen Tingru
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wu Yunyang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yang Yanlong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Mai NT, Lan NT, Vu TY, Tung NT, Phung HTT. A computationally affordable approach for accurate prediction of the binding affinity of JAK2 inhibitors. J Mol Model 2022; 28:163. [DOI: 10.1007/s00894-022-05149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
11
|
Babu S, Nagarajan SK, Sathish S, Negi VS, Sohn H, Madhavan T. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Front Pharmacol 2022; 13:837369. [PMID: 35529449 PMCID: PMC9068899 DOI: 10.3389/fphar.2022.837369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 01/06/2023] Open
Abstract
JAK1 plays a significant role in the intracellular signaling by interacting with cytokine receptors in different types of cells and is linked to the pathogenesis of various cancers and in the pathology of the immune system. In this study, ligand-based pharmacophore modeling combined with virtual screening and molecular docking methods was incorporated to identify the potent and selective lead compounds for JAK1. Initially, the ligand-based pharmacophore models were generated using a set of 52 JAK1 inhibitors named C-2 methyl/hydroxyethyl imidazopyrrolopyridines derivatives. Twenty-seven pharmacophore models with five and six pharmacophore features were generated and validated using potency and selectivity validation methods. During potency validation, the Guner-Henry score was calculated to check the accuracy of the generated models, whereas in selectivity validation, the pharmacophore models that are capable of identifying selective JAK1 inhibitors were evaluated. Based on the validation results, the best pharmacophore models ADHRRR, DDHRRR, DDRRR, DPRRR, DHRRR, ADRRR, DDHRR, and ADPRR were selected and taken for virtual screening against the Maybridge, Asinex, Chemdiv, Enamine, Lifechemicals, and Zinc database to identify the new molecules with novel scaffold that can bind to JAK1. A total of 4,265 hits were identified from screening and checked for acceptable drug-like properties. A total of 2,856 hits were selected after ADME predictions and taken for Glide molecular docking to assess the accurate binding modes of the lead candidates. Ninety molecules were shortlisted based on binding energy and H-bond interactions with the important residues of JAK1. The docking results were authenticated by calculating binding free energy for protein–ligand complexes using the MM-GBSA calculation and induced fit docking methods. Subsequently, the cross-docking approach was carried out to recognize the selective JAK1 lead compounds. Finally, top five lead compounds that were potent and selective against JAK1 were selected and validated using molecular dynamics simulation. Besides, the density functional theory study was also carried out for the selected leads. Through various computational studies, we observed good potency and selectivity of these lead compounds when compared with the drug ruxolitinib. Compounds such as T5923555 and T5923531 were found to be the best and can be further validated using in vitro and in vivo methods.
Collapse
Affiliation(s)
- Sathya Babu
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
| | - Santhosh Kumar Nagarajan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
| | - Sruthy Sathish
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Pondicherry, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea
- *Correspondence: Thirumurthy Madhavan, ; Honglae Sohn,
| | - Thirumurthy Madhavan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
- *Correspondence: Thirumurthy Madhavan, ; Honglae Sohn,
| |
Collapse
|
12
|
Zhao MY, Zhang W, Rao GW. Targeting Janus Kinase (JAK) for Fighting Diseases: The Research of JAK Inhibitor Drugs. Curr Med Chem 2022; 29:5010-5040. [PMID: 35255783 DOI: 10.2174/1568026622666220307124142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Janus Kinase (JAK), a nonreceptor protein tyrosine kinase, has emerged as an excellent target through research and development since its discovery in the 1990s. As novel small-molecule targeted drugs, JAK inhibitor drugs have been successfully used in the treatment of rheumatoid arthritis (RA), myofibrosis (MF) and ulcerative colitis (UC). With the gradual development of JAK targets in the market, JAK inhibitors have also received very considerable feedback in the treatment of autoimmune diseases such as atopic dermatitis (AD), Crohn's disease (CD) and graft-versus host disease (GVHD). This article reviews the research progress of JAK inhibitor drugs: introducing the existing JAK inhibitors on the market and some JAK inhibitors in clinical trials currently. In addition, the synthesis of various types of JAK inhibitors were summarized, and the effects of different drug structures on drug inhibition and selectivity.
Collapse
Affiliation(s)
- Min-Yan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
13
|
Xu P, Shen P, Wang H, Qin L, Ren J, Sun Q, Ge R, Bian J, Zhong Y, Li Z, Wang J, Qiu Z. Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2. Eur J Med Chem 2021; 218:113394. [PMID: 33813153 DOI: 10.1016/j.ejmech.2021.113394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023]
Abstract
Herein, we describe the design, synthesis, and structure-activity relationships of a series of imidazopyrrolopyridines derivatives that selectively inhibit Janus kinase 2 (JAK2). These screening cascades revealed that 6k was a preferred compound, with IC50 values of 10 nM for JAK2. Moreover, 6k was a selective JAK2 inhibitor with 19-fold, >30-fold and >30-fold selectivity over JAK1, JAK3 and TYK2 respectively. In cytokine-stimulated cell-based assays, 6k exhibited a higher JAK2 selectivity over JAK1 isoforms. Indeed, at a dose of 20 mg/kg compound 6k, pSTAT3 and pSTAT5 expression was reduced to levels comparable to those of control animals untreated with GM-CSF. Additionally, 6k showed a relatively good bioavailability (F = 38%), a suitable half-life time (T1/2 = 1.9 h), a satisfactory metabolic stability, suggesting that 6k might be a promising inhibitor of JAK2 for further development research for the treatment of MPNs.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Hai Wang
- Changzhou Siyao Pharmaceutical Co. Ltd. No.567, Zhongwu Avenue, Changzhou, Jiangsu, 213018, China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jie Ren
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Qiushuang Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Raoling Ge
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650000, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Yi Zhong
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| | - JuBo Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| |
Collapse
|
14
|
Davis RR, Li B, Yun SY, Chan A, Nareddy P, Gunawan S, Ayaz M, Lawrence HR, Reuther GW, Lawrence NJ, Schönbrunn E. Structural Insights into JAK2 Inhibition by Ruxolitinib, Fedratinib, and Derivatives Thereof. J Med Chem 2021; 64:2228-2241. [PMID: 33570945 DOI: 10.1021/acs.jmedchem.0c01952] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery that aberrant activity of Janus kinase 2 (JAK2) is a driver of myeloproliferative neoplasms (MPNs) has led to significant efforts to develop small molecule inhibitors for this patient population. Ruxolitinib and fedratinib have been approved for use in MPN patients, while baricitinib, an achiral analogue of ruxolitinib, has been approved for rheumatoid arthritis. However, structural information on the interaction of these therapeutics with JAK2 remains unknown. Here, we describe a new methodology for the large-scale production of JAK2 from mammalian cells, which enabled us to determine the first crystal structures of JAK2 bound to these drugs and derivatives thereof. Along with biochemical and cellular data, the results provide a comprehensive view of the shape complementarity required for chiral and achiral inhibitors to achieve highest activity, which may facilitate the development of more effective JAK2 inhibitors as therapeutics.
Collapse
Affiliation(s)
- Ryan R Davis
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| | - Baoli Li
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| | - Sang Y Yun
- Chemical Biology Core, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Alice Chan
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| | - Pradeep Nareddy
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| | - Steven Gunawan
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| | - Muhammad Ayaz
- Chemical Biology Core, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Harshani R Lawrence
- Chemical Biology Core, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Gary W Reuther
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Nicholas J Lawrence
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| | - Ernst Schönbrunn
- Drug Discovery DepartmentMoffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|
15
|
Daoud S, Taha MO. Pharmacophore modeling of JAK1: A target infested with activity-cliffs. J Mol Graph Model 2020; 99:107615. [PMID: 32339898 DOI: 10.1016/j.jmgm.2020.107615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Janus kinase 1 (JAK1) is protein kinase involved in autoimmune diseases (AIDs). JAK1 inhibitors have shown promising results in treating AIDs. JAK1 inhibitors are known to exhibit regions of SAR discontinuity or activity cliffs (ACs). ACs represent fundamental challenge to successful QSAR/pharmacophore modeling because QSAR modeling rely on the basic premise that activity is a smooth continuous function of structure. We propose that ACs exist because active ACs members exhibit subtle, albeit critical, enthalpic features absent from their inactive twins. In this context we compared the performances of two computational modeling workflows in extracting valid pharmacophores from 151 diverse JAK1 inhibitors that include ACs: QSAR-guided pharmacophore selection versus docking-based comparative intermolecular contacts analysis (db-CICA). The two methods were judged based on the receiver operating characteristic (ROC) curves of their corresponding pharmacophore models and their abilities to distinguish active members among established JAK1 ACs. db-CICA modeling significantly outperformed ligand-based pharmacophore modeling. The resulting optimal db-CICA pharmacophore was used as virtual search query to scan the National Cancer Institute (NCI) database for novel JAK1 inhibitory leads. The most active hit showed IC50 of 1.04 μM. This study proposes the use of db-CICA modeling as means to extract valid pharmacophores from SAR data infested with ACs.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
16
|
Yang M, Tao B, Chen C, Jia W, Sun S, Zhang T, Wang X. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. J Chem Inf Model 2019; 59:5002-5012. [DOI: 10.1021/acs.jcim.9b00798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Minjian Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
- Joint Laboratory of Artificial Intelligence of the Institute of Materia Medica and Yuan Qi Zhi Yao, Beijing 100050, P.R. China
| | - Bingzhong Tao
- Joint Laboratory of Artificial Intelligence of the Institute of Materia Medica and Yuan Qi Zhi Yao, Beijing 100050, P.R. China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Wenqiang Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Shaolei Sun
- Joint Laboratory of Artificial Intelligence of the Institute of Materia Medica and Yuan Qi Zhi Yao, Beijing 100050, P.R. China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Xiaojian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
- Joint Laboratory of Artificial Intelligence of the Institute of Materia Medica and Yuan Qi Zhi Yao, Beijing 100050, P.R. China
| |
Collapse
|
17
|
Elsayed MSA, Nielsen JJ, Park S, Park J, Liu Q, Kim CH, Pommier Y, Agama K, Low PS, Cushman M. Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) Series. J Med Chem 2018; 61:10440-10462. [PMID: 30460842 DOI: 10.1021/acs.jmedchem.8b00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present account describes the discovery and development of a new benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) JAK inhibitory chemotype that has produced selective JAK inhibitors. Sequential palladium chemistry was optimized for the rapid access to a focused library of derivatives to explore the structure-activity relationships of the new scaffold. Several compounds from the series displayed potencies in the low nanomolar range against the four members of the JAK family with various selectivity profiles. Compound 20a, with an azetidine amide side chain, showed the best selectivity for JAK1 kinase vs JAK2, JAK3, and TYK2, with low nanomolar potency (IC50 = 3.4 nM). On the other hand, BPNs 17b and 18 had good general activity against the JAK family with excellent kinome selectivity profiles. Many of the new BPNs inhibited JAK3-mediated STAT-5 phosphorylation, the production of inflammatory cytokines, and the proliferation of primary T cells. Moreover, BPN 17b showed very similar in vivo results to tofacitinib in a rheumatoid arthritis animal model.
Collapse
Affiliation(s)
- Mohamed S A Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Sungtae Park
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jeongho Park
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Qingyang Liu
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Pathology and Mary H. Weiser Food Allergy Center , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Chang H Kim
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Pathology and Mary H. Weiser Food Allergy Center , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| | - Philip S Low
- The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
18
|
Jasuja H, Chadha N, Singh PK, Kaur M, Bahia MS, Silakari O. Putative dual inhibitors of Janus kinase 1 and 3 (JAK1/3): Pharmacophore based hierarchical virtual screening. Comput Biol Chem 2018; 76:109-117. [PMID: 29990790 DOI: 10.1016/j.compbiolchem.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 04/01/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Janus kinase 1 and 3 are non-receptor protein tyrosine kinases, involved in the regulation of various cytokines implicated in the pathogenesis of autoimmune and inflammatory disease conditions. Thus, they serve as therapeutic targets for the designing of multi-targeted agents for the treatment of inflammatory-mediated pathological conditions. In the present study, diverse inhibitors of JAK1 and JAK3 were considered for the development of ligand-based pharmacophore models, followed by docking analysis to design putative dual inhibitors. The pharmacophore models were generated in PHASE 3.4, and top five models for each target were selected on the basis of survival minus inactive score. The best model for JAK1 (AAADH.25) and JAK3 (ADDRR.142) were selected corresponding to the highest value of Q2test. Both models were employed for the screening of a PHASE database, and subsequently, the retrieved hits were filtered employing molecular docking in JAK1 and JAK3 proteins. The stable interactions between retrieved hits and proteins were confirmed using molecular dynamics simulations. Finally, ADME properties of screened dual inhibitors displaying essential interactions with both proteins were calculated. Thus, the new leads obtained in this way may be prioritized for experimental validation as potential novel therapeutic agents in the treatment of various autoimmune and inflammatory disorders related to JAK1 and JAK3.
Collapse
Affiliation(s)
- Haneesh Jasuja
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Navriti Chadha
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pankaj Kumar Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Maninder Kaur
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Malkeet Singh Bahia
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
19
|
Zhou Y, Liu X, Zhang Y, Peng L, Zhang JZH. Residue-specific free energy analysis in ligand bindings to JAK2. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1442596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yifan Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - Xiao Liu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - Youzhi Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - Long Peng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai, China
- Department of Chemistry, New York University , New York, NY, USA
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi, China
| |
Collapse
|
20
|
Okabe-Nakahara F, Masumoto E, Maruoka H, Yamagata K. Synthesis of Novel Angular and Linear Fused [5-6-5] Heterocycles by the Reaction of Methyl Cyano-(3-cyano-4,5-dihydro-2(3H)-furanylidene)acetate with Hydrazines and Dimethylformamide Dimethyl Acetal. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Siu T, Brubaker J, Fuller P, Torres L, Zeng H, Close J, Mampreian DM, Shi F, Liu D, Fradera X, Johnson K, Bays N, Kadic E, He F, Goldenblatt P, Shaffer L, Patel SB, Lesburg CA, Alpert C, Dorosh L, Deshmukh SV, Yu H, Klappenbach J, Elwood F, Dinsmore CJ, Fernandez R, Moy L, Young JR. The Discovery of 3-((4-Chloro-3-methoxyphenyl)amino)-1-((3R,4S)-4-cyanotetrahydro-2H-pyran-3-yl)-1H-pyrazole-4-carboxamide, a Highly Ligand Efficient and Efficacious Janus Kinase 1 Selective Inhibitor with Favorable Pharmacokinetic Properties. J Med Chem 2017; 60:9676-9690. [DOI: 10.1021/acs.jmedchem.7b01135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tony Siu
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Jason Brubaker
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Peter Fuller
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Luis Torres
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Hongbo Zeng
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Joshua Close
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Dawn M. Mampreian
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Feng Shi
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Duan Liu
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Xavier Fradera
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Kevin Johnson
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Nathan Bays
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Elma Kadic
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Fang He
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Peter Goldenblatt
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Lynsey Shaffer
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Sangita B. Patel
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Charles A. Lesburg
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Carla Alpert
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Lauren Dorosh
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Sujal V. Deshmukh
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Hongshi Yu
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Joel Klappenbach
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Fiona Elwood
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Christopher J. Dinsmore
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Rafael Fernandez
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Lily Moy
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Jonathan R. Young
- Department of Medicinal Chemistry, ‡Department of Discovery Process Chemistry, §Department of Modeling & Informatics, ∥Department of In Vitro Pharmacology, ⊥Department of Structural Chemistry, #Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, ∇Department of Discovery Pharmaceutical Sciences, ○Department of Molecular Biomarkers, ¶Department of In Vivo Pharmacology, $Department of Respiratory and Immunology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United
- Department of Chemistry and ◇Department of Biology, Pharmaron Beijing Co. Ltd, 6 Taihe Road BDA, Beijing 100176, P.R. China
| |
Collapse
|
22
|
Itteboina R, Ballu S, Sivan SK, Manga V. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations. J Recept Signal Transduct Res 2017; 37:453-469. [DOI: 10.1080/10799893.2017.1328442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ramesh Itteboina
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Srilata Ballu
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Sree Kanth Sivan
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
23
|
Aliagas I, Berger R, Goldberg K, Nishimura RT, Reilly J, Richardson P, Richter D, Sherer EC, Sparling BA, Bryan MC. Sustainable Practices in Medicinal Chemistry Part 2: Green by Design. J Med Chem 2017; 60:5955-5968. [DOI: 10.1021/acs.jmedchem.6b01837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ignacio Aliagas
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Raphaëlle Berger
- MRL, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kristin Goldberg
- Innovative Medicines Unit, AstraZeneca, Building 310, Milton Science Park, Cambridge, CB4 0FZ, U.K
| | - Rachel T. Nishimura
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - John Reilly
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paul Richardson
- Pfizer Global Research and Development, 10777 Science Center Drive (CB2), San Diego, California 92121, United States
| | - Daniel Richter
- Pfizer Global Research and Development, 10777 Science Center Drive (CB2), San Diego, California 92121, United States
| | - Edward C. Sherer
- MRL, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Brian A. Sparling
- Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
24
|
Bajusz D, Ferenczy GG, Keserű GM. Ensemble docking-based virtual screening yields novel spirocyclic JAK1 inhibitors. J Mol Graph Model 2016; 70:275-283. [PMID: 27771575 DOI: 10.1016/j.jmgm.2016.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Small molecule inhibition of Janus kinases (JAKs) has been demonstrated as a viable strategy for the treatment of various inflammatory conditions and continues to emerge in cancer-related indications. In this study, a large supplier database was screened to identify novel chemistry starting points for JAK1. The docking-based screening was followed up by testing ten hit compounds experimentally, out of which five have displayed single-digit micromolar and submicromolar IC50 values on JAK1. Thus, the study was concluded with the discovery of five novel JAK inhibitors from a tiny screening deck with a remarkable hitrate of 50%. The results have highlighted spirocyclic pyrrolopyrimidines with submicromolar JAK1 IC50 values and a preference for JAK1 over JAK2 as potential starting points in developing a novel class of JAK1 inhibitors.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary.
| |
Collapse
|
25
|
Itteboina R, Ballu S, Sivan SK, Manga V. Molecular docking, 3D QSAR and dynamics simulation studies of imidazo-pyrrolopyridines as janus kinase 1 (JAK 1) inhibitors. Comput Biol Chem 2016; 64:33-46. [DOI: 10.1016/j.compbiolchem.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 01/30/2023]
|
26
|
Kim H, Kim MK, Choo H, Chong Y. Novel JAK1-selective benzimidazole inhibitors with enhanced membrane permeability. Bioorg Med Chem Lett 2016; 26:3213-3215. [DOI: 10.1016/j.bmcl.2016.05.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
27
|
Toward selective TYK2 inhibitors as therapeutic agents for the treatment of inflammatory diseases. Pharm Pat Anal 2016; 3:449-66. [PMID: 25291316 DOI: 10.4155/ppa.14.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The family of JAK comprises four members and has received significant attention in recent years from the pharmaceutical industry as a therapeutic target. The role of JAK is central to cytokine signaling pathways. It is believed that selective modulation of one specific JAK can lead to the inhibition of a restricted set of cytokines, which should avoid undesired side effects and get closer to the profile of biologic therapies. Consequently, selective JAK inhibition has become a major focus area of drug discovery research. A review of the TYK2 patents indicates that industry attention has recently turned toward the development of specific inhibitors. Importantly, despite the increasing number of published patents, none of these drugs have yet made it to the clinical trials.
Collapse
|
28
|
Bajusz D, Ferenczy GG, Keserű GM. Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2015; 56:234-47. [DOI: 10.1021/acs.jcim.5b00634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| |
Collapse
|
29
|
Abstract
The discovery of the JAK-STAT pathway was a landmark in cell biology. The identification of these pathways has changed the landscape of treatment of rheumatoid arthritis and other autoimmune diseases. The two first (unselective) JAK inhibitors have recently been approved by the US FDA for the treatment of myelofibrosis and rheumatoid arthritis and many other JAK inhibitors are currently in clinical development or at the discovery stage. Research groups have demonstrated the different roles of JAK member and the therapeutic potential of targeting them selectively. JAK1 plays a critical and potentially dominant role in the transduction of γc cytokine (γc = common γ chain) and in IL-6 signaling. In this review, we will discuss the state-of-the-art research that evokes JAK1 selective inhibition.
Collapse
|
30
|
Discovery of 3,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-2(1H)-one derivatives as novel JAK inhibitors. Bioorg Med Chem 2015; 23:4846-4859. [DOI: 10.1016/j.bmc.2015.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 11/22/2022]
|
31
|
Aliagas I, Gobbi A, Heffron T, Lee ML, Ortwine DF, Zak M, Khojasteh SC. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. J Comput Aided Mol Des 2015; 29:327-38. [DOI: 10.1007/s10822-015-9838-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/14/2015] [Indexed: 02/04/2023]
|
32
|
Kim MK, Kim KD, Chong Y. De Novo Design of 2-Amino-4-Alkylaminoquinazoline-7-Carboxamides as Potential Scaffold for JAK1-Selective Inhibitors. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
de Vicente J, Lemoine R, Bartlett M, Hermann JC, Hekmat-Nejad M, Henningsen R, Jin S, Kuglstatter A, Li H, Lovey AJ, Menke J, Niu L, Patel V, Petersen A, Setti L, Shao A, Tivitmahaisoon P, Vu MD, Soth M. Scaffold hopping towards potent and selective JAK3 inhibitors: Discovery of novel C-5 substituted pyrrolopyrazines. Bioorg Med Chem Lett 2014; 24:4969-75. [DOI: 10.1016/j.bmcl.2014.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
34
|
Jasuja H, Chadha N, Kaur M, Silakari O. Pharmacophore and docking-based virtual screening approach for the design of new dual inhibitors of Janus kinase 1 and Janus kinase 2. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:617-636. [PMID: 25148044 DOI: 10.1080/1062936x.2014.884163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Janus kinase 1 and 2, non-receptor protein tyrosine kinases, are implicated in various cancerous diseases. Involvement of these two enzymes in the pathways that stimulate cell proliferation in cancerous conditions makes them potential therapeutic targets for designing new dual-targeted agents for the treatment of cancer. In the present study, two separate pharmacophore models were developed and the best models for JAK1 (AAADH.25) and JAK2 (ADRR.92) were selected on the basis of their external predictive ability. Both models were subjected to a systematic virtual screening (VS) protocol using a PHASE database of 1.5 million molecules. The hits retrieved in VS were investigated for ADME properties to avoid selection of molecules with a poor pharmacokinetic profile. The molecules considered to be within the range of acceptable limits of ADME properties were further employed for docking simulations with JAK1 and JAK2 proteins to explore the final hits that possess structural features of both pharmacophore models as well as display essential interactions with both of them. Thus, the new molecules obtained in this way should show inhibitory activity against JAK1 and JAK2 and may serve as novel therapeutic agents for the treatment of cancerous disease conditions.
Collapse
Affiliation(s)
- H Jasuja
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | | | | | | |
Collapse
|
35
|
Kim MK, Bae O, Chong Y. Design, Synthesis, and Molecular Docking Study of Flavonol Derivatives as Selective JAK1 Inhibitors. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Thorarensen A, Banker ME, Fensome A, Telliez JB, Juba B, Vincent F, Czerwinski RM, Casimiro-Garcia A. ATP-mediated kinome selectivity: the missing link in understanding the contribution of individual JAK Kinase isoforms to cellular signaling. ACS Chem Biol 2014; 9:1552-8. [PMID: 24814050 DOI: 10.1021/cb5002125] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kinases constitute an important class of therapeutic targets being explored both by academia and the pharmaceutical industry. The major focus of this effort was directed toward the identification of ATP competitive inhibitors. Although it has long been recognized that the intracellular concentration of ATP is very different from the concentrations utilized in biochemical enzyme assays, little thought has been devoted to incorporating this discrepancy into our understanding of translation from enzyme inhibition to cellular function. Significant work has been dedicated to the discovery of JAK kinase inhibitors; however, a disconnect between enzyme and cellular function is prominently displayed in the literature for this class of inhibitors. Herein, we demonstrate utilizing the four JAK family members that the difference in the ATP Km of each individual kinase has a significant impact on the enzyme to cell inhibition translation. We evaluated a large number of JAK inhibitors in enzymatic assays utilizing either 1 mM ATP or Km ATP for the four isoforms as well as in primary cell assays. This data set provided the opportunity to examine individual kinase contributions to the heterodimeric kinase complexes mediating cellular signaling. In contrast to a recent study, we demonstrate that for IL-15 cytokine signaling it is sufficient to inhibit either JAK1 or JAK3 to fully inhibit downstream STAT5 phosphorylation. This additional data thus provides a critical piece of information explaining why JAK1 has incorrectly been thought to have a dominant role over JAK3. Beyond enabling a deeper understanding of JAK signaling, conducting similar analyses for other kinases by taking into account potency at high ATP rather than Km ATP may provide crucial insights into a compound's activity and selectivity in cellular contexts.
Collapse
Affiliation(s)
- Atli Thorarensen
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mary Ellen Banker
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Andrew Fensome
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jean-Baptiste Telliez
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Brian Juba
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Fabien Vincent
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Robert M. Czerwinski
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Agustin Casimiro-Garcia
- Pfizer Worldwide Research, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
37
|
Hoashi Y, Takai T, Koike T, Uchikawa O. Synthesis of a novel tricyclic 1,6,7,8-tetrahydro-2H-cyclopenta[b]furo[3,2-d]pyridine derivative, the 5-aza analog of ramelteon. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
McDonnell ME, Bian H, Wrobel J, Smith GR, Liang S, Ma H, Reitz AB. Anilino-monoindolylmaleimides as potent and selective JAK3 inhibitors. Bioorg Med Chem Lett 2014; 24:1116-21. [DOI: 10.1016/j.bmcl.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
|
39
|
Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem 2014; 57:5023-38. [PMID: 24417533 DOI: 10.1021/jm401490p] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play an essential role in the signaling of numerous cytokines that have been implicated in the pathogenesis of inflammatory diseases. As a consequence, the JAKs have received significant attention in recent years from the pharmaceutical and biotechnology industries as therapeutic targets. Here, we provide a review of the JAK pathways, the structure, function, and activation of the JAK enzymes followed by a detailed look at the JAK inhibitors currently in the clinic or approved for these indications. Finally, a perspective is provided on what the past decade of research with JAK inhibitors for inflammatory indications has taught along with thoughts on what the future may hold in terms of addressing the opportunities and challenges that remain.
Collapse
Affiliation(s)
- James D Clark
- Pfizer Immunosciences , 200 CambridgePark, Cambridge, Massachusetts 02140, United States
| | | | | |
Collapse
|
40
|
Gehringer M, Pfaffenrot E, Bauer S, Laufer SA. Design and synthesis of tricyclic JAK3 inhibitors with picomolar affinities as novel molecular probes. ChemMedChem 2014; 9:277-81. [PMID: 24403205 DOI: 10.1002/cmdc.201300520] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 11/10/2022]
Abstract
The Janus kinase (JAK) signaling pathway is of particular importance in the pathology of inflammatory diseases and oncological disorders, and the inhibition of Janus kinase 3 (JAK3) with small molecules has proven to provide therapeutic immunosuppression. A novel class of tricyclic JAK inhibitors derived from the 3-methyl-1,6-dihydrodipyrrolo[2,3-b:2',3'-d]pyridine scaffold was designed based on the tofacitinib-JAK3 crystal structure by applying a rigidization approach. A convenient synthetic strategy to access the scaffold via an intramolecular Heck reaction was developed, and a small library of inhibitors was prepared and characterized using in vitro biochemical as well as cellular assays. IC50 values as low as 220 pM could be achieved with selectivity for JAK3 over other JAK family members. Both activity and selectivity were confirmed in a cellular STAT phosphorylation assay, providing also first-time data for tofacitinib. Our novel inhibitors may serve as tool compounds and useful probes to explore the role of JAK3 inhibition in pharmacodynamics studies.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen (Germany)
| | | | | | | |
Collapse
|
41
|
Kim MK, Shin H, Cho SY, Chong Y. Linear propargylic alcohol functionality attached to the indazole-7-carboxamide as a JAK1-specific linear probe group. Bioorg Med Chem 2013; 22:1156-62. [PMID: 24398382 DOI: 10.1016/j.bmc.2013.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 11/17/2022]
Abstract
Selective inhibition of JAK1 has recently been proposed as an appropriate therapeutic rationale for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). In this study, through pairwise comparison and 3D alignment of the JAK isozyme structures bound to the same inhibitor molecule, we reasoned that an alkynol functionality would serve as an isozyme-specific probe group, which would enable the resulting inhibitor to differentiate the ATP-binding site of JAK1 from those of other isozymes. The 3-alkynolyl-5-(4'-indazolyl)indazole-7-carboxamide derivatives were thus prepared, and in vitro evaluation of their inhibitory activity against the JAK isozymes revealed that the propargyl alcohol functionality endowed the 5-(4'-indazolyl)indazole-7-carboxamide scaffold with JAK1 selectivity over other JAK isozymes, particularly JAK2.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Heerim Shin
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seo Young Cho
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
42
|
Labadie S, Barrett K, Blair WS, Chang C, Deshmukh G, Eigenbrot C, Gibbons P, Johnson A, Kenny JR, Kohli PB, Liimatta M, Lupardus PJ, Shia S, Steffek M, Ubhayakar S, Abbema AV, Zak M. Design and evaluation of novel 8-oxo-pyridopyrimidine Jak1/2 inhibitors. Bioorg Med Chem Lett 2013; 23:5923-30. [DOI: 10.1016/j.bmcl.2013.08.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 01/12/2023]
|
43
|
Shaw SJ, Goff DA, Boralsky LA, Irving M, Singh R. Enantioselective Synthesis of cis-3-Fluoropiperidin-4-ol, a Building Block for Medicinal Chemistry. J Org Chem 2013; 78:8892-7. [DOI: 10.1021/jo401352z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Simon J. Shaw
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Dane A. Goff
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Luke A. Boralsky
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Mark Irving
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Rajinder Singh
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| |
Collapse
|
44
|
Menet CJ, Rompaey LV, Geney R. Advances in the discovery of selective JAK inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2013; 52:153-223. [PMID: 23384668 DOI: 10.1016/b978-0-444-62652-3.00004-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this review, we describe the current knowledge of the biology of the JAKs. The JAK family comprises the four nonreceptor tyrosine kinases JAK1, JAK2, JAK3, and Tyk2, all key players in the signal transduction from cytokine receptors to transcription factor activation. We also review the progresses made towards the optimization of JAK inhibitors and the importance of their selectivity profile. Indeed, the full array of many medicinal chemistry enabling tools (HTS, X-ray crystallography, scaffold morphing, etc.) has been deployed to successfully design molecules that discriminate among JAK family and other kinases. While the first JAK inhibitor was launched in 2011, this review also summarizes the status of several other small-molecule JAK inhibitors currently in development to treat arthritis, psoriasis, organ rejection, and multiple cancer types.
Collapse
|
45
|
Zak M, Hurley CA, Ward SI, Bergeron P, Barrett K, Balazs M, Blair WS, Bull R, Chakravarty P, Chang C, Crackett P, Deshmukh G, DeVoss J, Dragovich PS, Eigenbrot C, Ellwood C, Gaines S, Ghilardi N, Gibbons P, Gradl S, Gribling P, Hamman C, Harstad E, Hewitt P, Johnson A, Johnson T, Kenny JR, Koehler MFT, Bir Kohli P, Labadie S, Lee WP, Liao J, Liimatta M, Mendonca R, Narukulla R, Pulk R, Reeve A, Savage S, Shia S, Steffek M, Ubhayakar S, van Abbema A, Aliagas I, Avitabile-Woo B, Xiao Y, Yang J, Kulagowski JJ. Identification of C-2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2. J Med Chem 2013; 56:4764-85. [DOI: 10.1021/jm4004895] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Christopher A. Hurley
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Stuart I. Ward
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | - Richard Bull
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | - Peter Crackett
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | - Charles Ellwood
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Simon Gaines
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | | | - Peter Hewitt
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Tony Johnson
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | - Jiangpeng Liao
- WuXi AppTec Co., Ltd., 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | | | | | - Raman Narukulla
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Austin Reeve
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | | | - Barbara Avitabile-Woo
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Yisong Xiao
- WuXi AppTec Co., Ltd., 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Jing Yang
- WuXi AppTec Co., Ltd., 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Janusz J. Kulagowski
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| |
Collapse
|
46
|
Van Epps S, Fiamengo B, Edmunds J, Ericsson A, Frank K, Friedman M, George D, George J, Goedken E, Kotecki B, Martinez G, Merta P, Morytko M, Shekhar S, Skinner B, Stewart K, Voss J, Wallace G, Wang L, Wang L, Wishart N. Design and synthesis of tricyclic cores for kinase inhibition. Bioorg Med Chem Lett 2012; 23:693-8. [PMID: 23265875 DOI: 10.1016/j.bmcl.2012.11.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 02/01/2023]
Abstract
Interest in therapeutic kinase inhibitors continues to grow beyond success in oncology. To date, ATP-mimetic kinase inhibitors have focused primarily on monocyclic and bicyclic heterocyclic cores. We sought to expand on the repertoire of potential cores for kinase inhibition by exploring tricyclic variants of classical bicyclic hinge binding motifs such as pyrrolopyridine and pyrrolopyrazine. Herein we describe the syntheses of eight alternative tricyclic cores as well as in vitro screening results for representative kinases of potential therapeutic interest.
Collapse
Affiliation(s)
- Stacy Van Epps
- Abbott Bioresearch Center, 381 Plantation St, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Labadie S, Dragovich PS, Barrett K, Blair WS, Bergeron P, Chang C, Deshmukh G, Eigenbrot C, Ghilardi N, Gibbons P, Hurley CA, Johnson A, Kenny JR, Kohli PB, Kulagowski JJ, Liimatta M, Lupardus PJ, Mendonca R, Murray JM, Pulk R, Shia S, Steffek M, Ubhayakar S, Ultsch M, van Abbema A, Ward S, Zak M. Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2. Bioorg Med Chem Lett 2012; 22:7627-33. [DOI: 10.1016/j.bmcl.2012.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 01/25/2023]
|
48
|
Hanan EJ, van Abbema A, Barrett K, Blair WS, Blaney J, Chang C, Eigenbrot C, Flynn S, Gibbons P, Hurley CA, Kenny JR, Kulagowski J, Lee L, Magnuson SR, Morris C, Murray J, Pastor RM, Rawson T, Siu M, Ultsch M, Zhou A, Sampath D, Lyssikatos JP. Discovery of Potent and Selective Pyrazolopyrimidine Janus Kinase 2 Inhibitors. J Med Chem 2012; 55:10090-107. [DOI: 10.1021/jm3012239] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Sean Flynn
- Argenta,
8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Christopher A. Hurley
- Argenta,
8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Janusz Kulagowski
- Argenta,
8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | - Claire Morris
- Argenta,
8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|