1
|
Zhang C, Xue ZH, Luo WH, Jiang MY, Wu Y. The therapeutic potential of phosphodiesterase 9 (PDE9) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:759-772. [PMID: 38979973 DOI: 10.1080/13543776.2024.2376632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Zhao-Hang Xue
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
2
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Pal K, Srinivasu V, Biswas S, Sureshkumar D. Visible light-induced organo-photocatalyzed route to synthesize substituted pyrazoles. Org Biomol Chem 2024; 22:2384-2388. [PMID: 38441915 DOI: 10.1039/d4ob00248b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The synthesis of tetra-substituted pyrazoles holds significant synthetic value and has been accomplished through an organo-photocatalyzed decarboxylative intramolecular cyclization using readily available 1,2-diaza-1,3-dienes and α-ketoacids. This method allows for the systematic synthesis of substituted pyrazole derivatives. Notably, this approach is characterized by its metal-free and oxidant-free nature, offering distinct advantages such as short reaction times and exceptionally mild reaction conditions. The developed methodology enables the efficient construction of tetra-substituted pyrazoles, expanding the available chemical space for exploration and opening up potential applications in various scientific fields.
Collapse
Affiliation(s)
- Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Vinjamuri Srinivasu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
4
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Landucci E, Ribaudo G, Anyanwu M, Oselladore E, Giannangeli M, Mazzantini C, Lana D, Giovannini MG, Memo M, Pellegrini-Giampietro DE, Gianoncelli A. Virtual Screening-Accelerated Discovery of a Phosphodiesterase 9 Inhibitor with Neuroprotective Effects in the Kainate Toxicity In Vitro Model. ACS Chem Neurosci 2023; 14:3826-3838. [PMID: 37726213 PMCID: PMC10587872 DOI: 10.1021/acschemneuro.3c00431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
In the central nervous system, some specific phosphodiesterase (PDE) isoforms modulate pathways involved in neuronal plasticity. Accumulating evidence suggests that PDE9 may be a promising therapeutic target for neurodegenerative diseases. In the current study, computational techniques were used to identify a nature-inspired PDE9 inhibitor bearing the scaffold of an isoflavone, starting from a database of synthetic small molecules using a ligand-based approach. Furthermore, docking studies supported by molecular dynamics investigations allowed us to evaluate the features of the ligand-target complex. In vitro assays confirmed the computational results, showing that the selected compound inhibits the enzyme in the nanomolar range. Additionally, we evaluated the expression of gene and protein levels of PDE9 in organotypic hippocampal slices, observing an increase following exposure to kainate (KA). Importantly, the PDE9 inhibitor reduced CA3 damage induced by KA in a dose-dependent manner in organotypic hippocampal slices. Taken together, these observations strongly support the potential of the identified nature-inspired PDE9 inhibitor and suggest that such a molecule could represent a promising lead compound to develop novel therapeutic tools against neurological diseases..
Collapse
Affiliation(s)
- Elisa Landucci
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Giovanni Ribaudo
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Margrate Anyanwu
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Erika Oselladore
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Matteo Giannangeli
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Costanza Mazzantini
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Daniele Lana
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Maria Grazia Giovannini
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Maurizio Memo
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | | | - Alessandra Gianoncelli
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
6
|
Meibom D, Micus S, Andreevski AL, Anlauf S, Bogner P, von Buehler CJ, Dieskau AP, Dreher J, Eitner F, Fliegner D, Follmann M, Gericke KM, Maassen S, Meyer J, Schlemmer KH, Steuber H, Tersteegen A, Wunder F. BAY-7081: A Potent, Selective, and Orally Bioavailable Cyanopyridone-Based PDE9A Inhibitor. J Med Chem 2022; 65:16420-16431. [PMID: 36475653 PMCID: PMC9791655 DOI: 10.1021/acs.jmedchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.
Collapse
|
7
|
3-[(1H-Benzo[d][1,2,3]triazol-1-yl)oxy]propyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-3aH-cyclopenta[a]chrysene-3a-carboxylate. MOLBANK 2022. [DOI: 10.3390/m1419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We herein report on the synthesis of a pentacyclic triterpene functionalized through derivation of betulinic acid with hydroxybenzotriazole. The compound was fully characterized by proton (1H-NMR), carbon-13 (13C-NMR), heteronuclear single quantum coherence (HSQC) and distortionless enhancement by polarization transfer (DEPT-135 and DEPT-90) nuclear magnetic resonance. Ultraviolet (UV), and Fourier-transform infrared (FTIR) spectroscopies as well as and high-resolution mass spectrometry (HRMS) were also adopted. Computational studies were conducted to foresee the interactions between compound 3 and phosphodiesterase 9, a relevant target in the field of neurodegenerative diseases. Additionally, preliminary calculation of physico-chemical descriptors was performed to evaluate the drug-likeness of compound 3.
Collapse
|
8
|
You JY, Liu XW, Bao YX, Shen ZN, Wang Q, He GY, Lu J, Zhang JG, Chen JW, Liu PQ. A novel phosphodiesterase 9A inhibitor LW33 protects against ischemic stroke through the cGMP/PKG/CREB pathway. Eur J Pharmacol 2022; 925:174987. [DOI: 10.1016/j.ejphar.2022.174987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 01/24/2023]
|
9
|
Xi M, Sun T, Chai S, Xie M, Chen S, Deng L, Du K, Shen R, Sun H. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease. Eur J Med Chem 2022; 232:114170. [DOI: 10.1016/j.ejmech.2022.114170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
10
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Mishra S, Sadagopan N, Dunkerly-Eyring B, Rodriguez S, Sarver DC, Ceddia RP, Murphy SA, Knutsdottir H, Jani VP, Ashok D, Oeing CU, O'Rourke B, Gangoiti JA, Sears DD, Wong GW, Collins S, Kass DA. Inhibition of phosphodiesterase type 9 reduces obesity and cardiometabolic syndrome in mice. J Clin Invest 2021; 131:148798. [PMID: 34618683 DOI: 10.1172/jci148798] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to human disease, and effective therapies are needed. Here, we show that cyclic GMP-selective phosphodiesterase 9A inhibition (PDE9-I) in both male and ovariectomized female mice suppresses preestablished severe diet-induced obesity/CMS with or without superimposed mild cardiac pressure load. PDE9-I reduces total body, inguinal, hepatic, and myocardial fat; stimulates mitochondrial activity in brown and white fat; and improves CMS, without significantly altering activity or food intake. PDE9 localized at mitochondria, and its inhibition in vitro stimulated lipolysis in a PPARα-dependent manner and increased mitochondrial respiration in both adipocytes and myocytes. PPARα upregulation was required to achieve the lipolytic, antiobesity, and metabolic effects of PDE9-I. All these PDE9-I-induced changes were not observed in obese/CMS nonovariectomized females, indicating a strong sexual dimorphism. We found that PPARα chromatin binding was reoriented away from fat metabolism-regulating genes when stimulated in the presence of coactivated estrogen receptor-α, and this may underlie the dimorphism. These findings have translational relevance given that PDE9-I is already being studied in humans for indications including heart failure, and efficacy against obesity/CMS would enhance its therapeutic utility.
Collapse
Affiliation(s)
| | | | | | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vivek P Jani
- Division of Cardiology, Department of Medicine, and.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Jon A Gangoiti
- UCSD Biochemical Genetics and Metabolomics Laboratory and
| | - Dorothy D Sears
- Department of Medicine, UCSD, La Jolla, California, USA.,College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, and.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wu Y, Wang Q, Jiang MY, Huang YY, Zhu Z, Han C, Tian YJ, Zhang B, Luo HB. Discovery of Potent Phosphodiesterase-9 Inhibitors for the Treatment of Hepatic Fibrosis. J Med Chem 2021; 64:9537-9549. [PMID: 34142552 DOI: 10.1021/acs.jmedchem.1c00862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis commonly exists in chronic liver disease and would eventually develop to cirrhosis and liver cancer with high fatality. Phosphodiesterase-9 (PDE9) has attracted profound attention as a drug target because of its highest binding affinity among phosphodiesterases (PDEs) with cyclic guanosine monophosphate. However, no published study has reported PDE9 inhibitors as potential agents against hepatic fibrosis yet. Herein, structural modification from a starting hit LL01 led to lead 4a, which exhibited an IC50 value of 7.3 nM against PDE9, excellent selectivity against other PDE subfamilies, and remarkable microsomal stability. The cocrystal structure of PDE9 with 4a revealed an important residue, Phe441, capable of improving the selectivity of PDE9 inhibitors. Administration of 4a exerted a significant antifibrotic effect in bile duct-ligation-induced rats with hepatic fibrosis and transforming growth factor-β-induced fibrogenesis. This therapeutic effect was indeed achieved by selectively inhibiting PDE9 rather than other PDE isoforms, identifying PDE9 inhibitors as potential agents against hepatic fibrosis.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Ziran Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-Jing Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| |
Collapse
|
13
|
Diversifying the xanthine scaffold for potential phosphodiesterase 9A inhibitors: synthesis and validation. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Al-Nema MY, Gaurav A. Phosphodiesterase as a Target for Cognition Enhancement in Schizophrenia. Curr Top Med Chem 2021; 20:2404-2421. [PMID: 32533817 DOI: 10.2174/1568026620666200613202641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a severe mental disorder that affects more than 1% of the population worldwide. Dopamine system dysfunction and alterations in glutamatergic neurotransmission are strongly implicated in the aetiology of schizophrenia. To date, antipsychotic drugs are the only available treatment for the symptoms of schizophrenia. These medications, which act as D2-receptor antagonist, adequately address the positive symptoms of the disease, but they fail to improve the negative symptoms and cognitive impairment. In schizophrenia, cognitive impairment is a core feature of the disorder. Therefore, the treatment of cognitive impairment and the other symptoms related to schizophrenia remains a significant unmet medical need. Currently, phosphodiesterases (PDEs) are considered the best drug target for the treatment of schizophrenia since many PDE subfamilies are abundant in the brain regions that are relevant to cognition. Thus, this review aims to illustrate the mechanism of PDEs in treating the symptoms of schizophrenia and summarises the encouraging results of PDE inhibitors as anti-schizophrenic drugs in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mayasah Y Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Sivakumar D, Mudedla S, Jang S, Kim H, Park H, Choi Y, Oh J, Wu S. Computational Study on Selective PDE9 Inhibitors on PDE9-Mg/Mg, PDE9-Zn/Mg, and PDE9-Zn/Zn Systems. Biomolecules 2021; 11:biom11050709. [PMID: 34068780 PMCID: PMC8151263 DOI: 10.3390/biom11050709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
PDE9 inhibitors have been studied to validate their potential to treat diabetes, neurodegenerative disorders, cardiovascular diseases, and erectile dysfunction. In this report, we have selected highly potent previously reported selective PDE9 inhibitors BAY73-6691R, BAY73-6691S, 28r, 28s, 3r, 3s, PF-0447943, PF-4181366, and 4r to elucidate the differences in their interaction patterns in the presence of different metal systems such as Zn/Mg, Mg/Mg, and Zn/Zn. The initial complexes were generated by molecular docking followed by molecular dynamics simulation for 100 ns in triplicate for each system to understand the interactions’ stability. The results were carefully analyzed, focusing on the ligands’ non-bonded interactions with PDE9 in different metal systems.
Collapse
Affiliation(s)
| | - Sathishkumar Mudedla
- R&D Center, Pharmcadd, 221, 17 APEC-ro, Haeundae-gu, Busan 48060, Korea; (D.S.); (S.M.); (S.J.)
| | - Seonghun Jang
- R&D Center, Pharmcadd, 221, 17 APEC-ro, Haeundae-gu, Busan 48060, Korea; (D.S.); (S.M.); (S.J.)
| | - Hyunjun Kim
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Hyunjin Park
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Yonwon Choi
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Joongyo Oh
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Sangwook Wu
- R&D Center, Pharmcadd, 221, 17 APEC-ro, Haeundae-gu, Busan 48060, Korea; (D.S.); (S.M.); (S.J.)
- Correspondence: ; Tel.: +82-51-731-5688
| |
Collapse
|
16
|
Pyrazole Scaffold Synthesis, Functionalization, and Applications in Alzheimer's Disease and Parkinson's Disease Treatment (2011-2020). Molecules 2021; 26:molecules26051202. [PMID: 33668128 PMCID: PMC7956461 DOI: 10.3390/molecules26051202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
The remarkable prevalence of pyrazole scaffolds in a versatile array of bioactive molecules ranging from apixaban, an anticoagulant used to treat and prevent blood clots and stroke, to bixafen, a pyrazole-carboxamide fungicide used to control diseases of rapeseed and cereal plants, has encouraged both medicinal and organic chemists to explore new methods in developing pyrazole-containing compounds for different applications. Although numerous synthetic strategies have been developed in the last 10 years, there has not been a comprehensive overview of synthesis and the implication of recent advances for treating neurodegenerative disease. This review first presents the advances in pyrazole scaffold synthesis and their functionalization that have been published during the last decade (2011-2020). We then narrow the focus to the application of these strategies in the development of therapeutics for neurodegenerative diseases, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
17
|
Paes D, Xie K, Wheeler DG, Zook D, Prickaerts J, Peters M. Inhibition of PDE2 and PDE4 synergistically improves memory consolidation processes. Neuropharmacology 2021; 184:108414. [PMID: 33249120 DOI: 10.1016/j.neuropharm.2020.108414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Phosphodiesterases (PDE) are the only enzymes that degrade cAMP and cGMP which are second messengers crucial to memory consolidation. Different PDE inhibitors have been developed and tested for their memory-enhancing potential, but the occurrence of side effects has hampered clinical progression. As separate inhibition of the PDE2 and PDE4 enzyme family has been shown to enhance memory, we investigated whether concurrent treatment with a PDE2 and PDE4 inhibitor can have synergistic effects on memory consolidation processes. We found that combined administration of PF-999 (PDE2 inhibitor) and roflumilast (PDE4 inhibitor) increases the phosphorylation of the AMPA receptor subunit GluR1 and induces CRE-mediated gene expression. Moreover, when combined sub-effective and effective doses of PF-999 and roflumilast were administered after learning, time-dependent forgetting was abolished in an object location memory task. Pharmacokinetic assessment indicated that combined treatment does not alter exposure of the individual compounds. Taken together, these findings suggest that combined PDE2 and PDE4 inhibition has synergistic effects on memory consolidation processes at sub-effective doses, which could therefore provide a therapeutic strategy with an improved safety profile.
Collapse
Affiliation(s)
- Dean Paes
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Keqiang Xie
- In Vitro Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Damian G Wheeler
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Douglas Zook
- DMPK, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Jos Prickaerts
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Marco Peters
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA; Neurobiology and Behavior & Center for the Neurobiology of Learning and Memory, University of California Irvine, 213 Qureshey Research Lab, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Zhang P, Jiang MY, Le ML, Zhang B, Zhou Q, Wu Y, Zhang C, Luo HB. Design, synthesis and evaluation of pyrazolopyrimidinone derivatives as novel PDE9A inhibitors for treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2020; 30:127254. [DOI: 10.1016/j.bmcl.2020.127254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 01/24/2023]
|
19
|
Chakroborty S, Manfredsson FP, Dec AM, Campbell PW, Stutzmann GE, Beaumont V, West AR. Phosphodiesterase 9A Inhibition Facilitates Corticostriatal Transmission in Wild-Type and Transgenic Rats That Model Huntington's Disease. Front Neurosci 2020; 14:466. [PMID: 32581668 PMCID: PMC7283904 DOI: 10.3389/fnins.2020.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) results from abnormal expansion in CAG trinucleotide repeats within the HD gene, a mutation which leads to degeneration of striatal medium-sized spiny neurons (MSNs), deficits in corticostriatal transmission, and loss of motor control. Recent studies also indicate that metabolism of cyclic nucleotides by phosphodiesterases (PDEs) is dysregulated in striatal networks in a manner linked to deficits in corticostriatal transmission. The current study assessed cortically-evoked firing in electrophysiologically-identified MSNs and fast-spiking interneurons (FSIs) in aged (9-11 months old) wild-type (WT) and BACHD transgenic rats (TG5) treated with vehicle or the selective PDE9A inhibitor PF-04447943. WT and TG5 rats were anesthetized with urethane and single-unit activity was isolated during low frequency electrical stimulation of the ipsilateral motor cortex. Compared to WT controls, MSNs recorded in TG5 animals exhibited decreased spike probability during cortical stimulation delivered at low to moderate stimulation intensities. Moreover, large increases in onset latency of cortically-evoked spikes and decreases in spike probability were observed in FSIs recorded in TG5 animals. Acute systemic administration of the PDE9A inhibitor PF-04447943 significantly decreased the onset latency of cortically-evoked spikes in MSNs recorded in WT and TG5 rats. PDE9A inhibition also increased the proportion of MSNs responding to cortical stimulation and reversed deficits in spike probability observed in TG5 rats. As PDE9A is a cGMP specific enzyme, drugs such as PF-04447943 which act to facilitate striatal cGMP signaling and glutamatergic corticostriatal transmission could be useful therapeutic agents for restoring striatal function and alleviating motor and cognitive symptoms associated with HD.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Alexander M Dec
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Peter W Campbell
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
20
|
Hesp KD, Xiao J, West GM. Late-stage synthesis and application of photoreactive probes derived from direct benzoylation of heteroaromatic C–H bonds. Org Biomol Chem 2020; 18:3669-3673. [DOI: 10.1039/d0ob00336k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetically-driven, late-stage C–H benzoylation strategy for the expedited preparation and evaluation of heterocyclic alternatives to more classical benzophenone photoreactive probes is reported.
Collapse
Affiliation(s)
| | - Jun Xiao
- Pfizer
- Inc
- Medicine Design
- Groton
- USA
| | | |
Collapse
|
21
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
22
|
Harms JF, Menniti FS, Schmidt CJ. Phosphodiesterase 9A in Brain Regulates cGMP Signaling Independent of Nitric-Oxide. Front Neurosci 2019; 13:837. [PMID: 31507355 PMCID: PMC6716477 DOI: 10.3389/fnins.2019.00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
PDE9A is a cGMP-specific phosphodiesterase expressed in neurons throughout the brain that has attracted attention as a therapeutic target to treat cognitive disorders. Indeed, PDE9A inhibitors are under evaluation in clinical trials as a treatment for Alzheimer's disease and schizophrenia. However, little is known about the cGMP signaling cascades regulated by PDE9A. Canonical cGMP signaling in brain follows the activation of neuronal nitric oxide synthase (nNOS) and the generation of nitric oxide, which activates soluble guanylyl cyclase and cGMP synthesis. However, we show that in mice, PDE9A regulates a pool of cGMP that is independent of nNOS, specifically, and nitric oxide signaling in general. This PDE9A-regulated cGMP pool appears to be highly compartmentalized and independent of cGMP pools regulated by several PDEs. These findings provide a new foundation for study of the upstream and downstream signaling elements regulated by PDE9A and its potential as a therapeutic target for brain disease.
Collapse
Affiliation(s)
- John F. Harms
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, United States
| | - Frank S. Menniti
- George & Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Christopher J. Schmidt
- Pfizer Innovation and Research Lab Unit, Pfizer Global Research and Development, Cambridge, MA, United States
| |
Collapse
|
23
|
Reddy GL, Dar MI, Hudwekar AD, Mahajan P, Nargotra A, Baba AM, Nandi U, Wazir P, Singh G, Vishwakarma RA, Syed SH, Sawant SD. Design, synthesis and biological evaluation of pyrazolopyrimidinone based potent and selective PDE5 inhibitors for treatment of erectile dysfunction. Bioorg Chem 2019; 89:103022. [PMID: 31181491 DOI: 10.1016/j.bioorg.2019.103022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023]
Abstract
Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.
Collapse
Affiliation(s)
- G Lakshma Reddy
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Mohd Ishaq Dar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Abhinandan D Hudwekar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Priya Mahajan
- Discovery Informatics, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Amit Nargotra
- Discovery Informatics, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Adil Manzoor Baba
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India
| | - Utpal Nandi
- PK-PD-Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Priya Wazir
- PK-PD-Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Gurdarshan Singh
- PK-PD-Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Sajad Hussain Syed
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India.
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India.
| |
Collapse
|
24
|
Wu Y, Zhou Q, Zhang T, Li Z, Chen YP, Zhang P, Yu YF, Geng H, Tian YJ, Zhang C, Wang Y, Chen JW, Chen Y, Luo HB. Discovery of Potent, Selective, and Orally Bioavailable Inhibitors against Phosphodiesterase-9, a Novel Target for the Treatment of Vascular Dementia. J Med Chem 2019; 62:4218-4224. [DOI: 10.1021/acs.jmedchem.8b01041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tianhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Pei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yan-Fa Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Haiju Geng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-Jing Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yu Wang
- Infinitus (China) Co. Ltd., Guangzhou 510663, P. R. China
| | - Jian-Wen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yan Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Charnigo RJ, Beidler D, Rybin D, Pittman DD, Tan B, Howard J, Michelson AD, Frelinger AL, Clarke N. PF-04447943, a Phosphodiesterase 9A Inhibitor, in Stable Sickle Cell Disease Patients: A Phase Ib Randomized, Placebo-Controlled Study. Clin Transl Sci 2019; 12:180-188. [PMID: 30597771 PMCID: PMC6440678 DOI: 10.1111/cts.12604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/21/2018] [Indexed: 11/27/2022] Open
Abstract
This phase Ib study randomized patients with stable sickle cell disease (SCD) aged 18-65 years to twice-daily PF-04447943 (a phosphodiesterase 9A inhibitor; 5 or 25 mg) or placebo, with/without hydroxyurea coadministration, for up to 29 days. Blood samples were collected at baseline and various posttreatment time points for assessments of PF-04447943 pharmacokinetics (PKs)/pharmacodynamics (PDs). Change from baseline in potential SCD-related biomarkers was evaluated. Of 30 patients, 15 received hydroxyurea and 28 completed the study. PF-04447943, with/without hydroxyurea, was generally well tolerated, with no treatment-related serious adverse events. Plasma PF-04447943 exposure was dose proportional. Twice-daily PF-04447943 25 mg significantly reduced the number and size of circulating monocyte-platelet and neutrophil-platelet aggregates and levels of circulating soluble E-selectin at day 29 vs. baseline (adjusted P < 0.15). PF-04447943 demonstrated PK/PD effects suggestive of inhibiting pathways that may contribute to vaso-occlusion. This study also provides guidance regarding biomarkers for future SCD studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jo Howard
- Guy's and St. Thomas’ HospitalGreat Maze PondLondonUK
| | - Alan D. Michelson
- Center for Platelet Research StudiesDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew L. Frelinger
- Center for Platelet Research StudiesDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
26
|
Helal CJ, Bartolozzi A, Goble SD, Mani NS, Guzman-Perez A, Ohri AK, Shi ZC, Subramanyam C. Increased building block access through collaboration. Drug Discov Today 2018; 23:1458-1462. [DOI: 10.1016/j.drudis.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/15/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
|
27
|
Horton A, Nash K, Tackie-Yarboi E, Kostrevski A, Novak A, Raghavan A, Tulsulkar J, Alhadidi Q, Wamer N, Langenderfer B, Royster K, Ducharme M, Hagood K, Post M, Shah ZA, Schiefer IT. Furoxans (Oxadiazole-4 N-oxides) with Attenuated Reactivity are Neuroprotective, Cross the Blood Brain Barrier, and Improve Passive Avoidance Memory. J Med Chem 2018; 61:4593-4607. [PMID: 29683322 DOI: 10.1021/acs.jmedchem.8b00389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the central nervous system. Furoxan 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP-dependent neuroprotection was observed, and 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 h after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.
Collapse
|
28
|
Huang XF, Jiang WT, Liu L, Song FC, Zhu X, Shi GL, Ding SM, Ke HM, Wang W, O'Donnell JM, Zhang HT, Luo HB, Wan YQ, Song GQ, Xu Y. A novel PDE9 inhibitor WYQ-C36D ameliorates corticosterone-induced neurotoxicity and depression-like behaviors by cGMP-CREB-related signaling. CNS Neurosci Ther 2018; 24:889-896. [PMID: 29722134 DOI: 10.1111/cns.12864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a mental disease characterized by depressed mood, lifetime anxiety, and deficits of learning and memory. Inhibition of phosphodiesterase 9 (PDE9) has been reported to improve rodent cognitive and memory function. However, the role of PDE9 in MDD, in particular its manifestations of depression and anxiety, has not been investigated. METHODS We examined the protective effects of WYQ-C36D (C36D), a novel PDE9 inhibitor, against corticosterone-induced cytotoxicity, pCREB/CREB and BDNF expression by cell viability, and immunoblot assays in HT-22 cells. The potential effects of C36D at doses of 0.1, 0.5, and 1 mg/kg on stress-induced depression- and anxiety-like behaviors and memory deficits were also examined in mice. RESULTS C36D significantly protected HT-22 cells against corticosterone-induced cytotoxicity and rescued corticosterone-induced decreases in cGMP, CREB phosphorylation, and BDNF expression. All these effects were otherwise blocked by the PKG inhibitor Rp-8-Br-PET-cGMPS (Rp8). In addition, when tested in vivo in stressed mice, C36D produced antidepressant-like effects on behavior, as shown by decreased immobility time both in the forced swimming and tail suspension tests. C36D also showed anxiolytic-like and memory-enhancing effects in the elevated plus-maze and novel object recognition tests. CONCLUSION Our results show that inhibition of PDE9 by C36D produces antidepressant- and anxiolytic-like behavioral effects and memory enhancement by activating cGMP/PKG signaling pathway. PDE9 inhibitors may have the potential as a novel class of drug to treat MDD.
Collapse
Affiliation(s)
- Xian-Feng Huang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Wen-Tao Jiang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Fang-Chen Song
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Xia Zhu
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gui-Lan Shi
- Zibo Vocational Institute, Zibo, Shandong, China
| | - Shu-Ming Ding
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Heng-Ming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Wei Wang
- Department of Chemistry, University of New Mexico, Albuquerque, NM, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Han-Ting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology, Pharmacology& Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Qian Wan
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Qiang Song
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
29
|
Fjelbye K, Marigo M, Clausen RP, Jørgensen EB, Christoffersen CT, Juhl K. Elucidation of fluorine's impact on p Ka and in vitro Pgp-mediated efflux for a series of PDE9 inhibitors. MEDCHEMCOMM 2018; 9:893-896. [PMID: 30108979 DOI: 10.1039/c8md00114f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 01/04/2023]
Abstract
P-Glycoprotein (Pgp)-mediated cellular efflux is recognized as a common challenge in CNS drug discovery. In this study, the influence of replacing a hydrogen atom with fluorine on the pKa and Pgp-mediated efflux is elucidated for a series of PDE9 inhibitors. The PDE9 inhibitors with and without fluorine were synthesized using a novel condensation-oxidation approach, providing access to several analogues, all from the same stereoenriched aldehyde building block. The incorporation of fluorine was found to influence two acid-base functionalities concomitantly, both of which were involved in Pgp-recognition. By methylating the acidic functionality, it was possible to isolate the effect responsible for lowering the Pgp-mediated efflux.
Collapse
Affiliation(s)
- Kasper Fjelbye
- H. Lundbeck A/S , Ottiliavej 9 , 2500 Valby , Denmark . .,Department of Drug Design and Pharmacology , Faculty of Health and Medical Sciences , University of Copenhagen , 2 Universitetsparken , 2100 , Copenhagen , Denmark
| | - Mauro Marigo
- H. Lundbeck A/S , Ottiliavej 9 , 2500 Valby , Denmark .
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology , Faculty of Health and Medical Sciences , University of Copenhagen , 2 Universitetsparken , 2100 , Copenhagen , Denmark
| | | | | | - Karsten Juhl
- H. Lundbeck A/S , Ottiliavej 9 , 2500 Valby , Denmark .
| |
Collapse
|
30
|
Wu Y, Li Z, Huang YY, Wu D, Luo HB. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer's Disease. J Med Chem 2018; 61:5467-5483. [PMID: 29363967 DOI: 10.1021/acs.jmedchem.7b01370] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is one of the greatest public health challenges. Phosphodiesterases (PDEs) are a superenzyme family responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Since several PDE subfamilies are highly expressed in the human brain, the inhibition of PDEs is involved in neurodegenerative processes by regulating the concentration of cAMP and/or cGMP. Currently, PDEs are considered as promising targets for the treatment of AD since many PDE inhibitors have exhibited remarkable cognitive improvement effects in preclinical studies and over 15 of them have been subjected to clinical trials. The aim of this review is to summarize the outstanding progress that has been made by PDE inhibitors as anti-AD agents with encouraging results in preclinical studies and clinical trials. The binding affinity, pharmacokinetics, underlying mechanisms, and limitations of these PDE inhibitors in the treatment of AD are also reviewed and discussed.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|
31
|
Zhang C, Zhou Q, Wu XN, Huang YD, Zhou J, Lai Z, Wu Y, Luo HB. Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 33:260-270. [PMID: 29271265 PMCID: PMC7011943 DOI: 10.1080/14756366.2017.1412315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Phosphodiesterase-9 (PDE9) is a promising target for treatment of Alzheimer’s disease (AD). To discover multifunctional anti-AD agents with capability of PDE9 inhibition and antioxidant activity, a series of novel pyrazolopyrimidinone derivatives, coupling with the pharmacophore of antioxidants such as ferulic and lipolic acids have been designed with the assistance of molecular docking and dynamics simulations. Twelve out of 14 synthesised compounds inhibited PDE9A with IC50 below 200 nM, and showed good antioxidant capacities in the ORAC assay. Compound 1h, the most promising multifunctional anti-AD agent, had IC50 of 56 nM against PDE9A and good antioxidant ability (ORAC (trolox) = 3.3). The selectivity of 1h over other PDEs was acceptable. In addition, 1h showed no cytotoxicity to human neuroblastoma SH-SY5Y cells. The analysis on structure-activity relationship (SAR) and binding modes of the compounds may provide insight into further modification.
Collapse
Affiliation(s)
- Chen Zhang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Qian Zhou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Xu-Nian Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Ya-Dan Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Jie Zhou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Zengwei Lai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China.,b State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , PR China
| | - Yinuo Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Hai-Bin Luo
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China.,c Collaborative Innovation Center of High Performance Computing , National University of Defence Technology , Changsha , PR China
| |
Collapse
|
32
|
Wales JA, Chen CY, Breci L, Weichsel A, Bernier SG, Sheppeck JE, Solinga R, Nakai T, Renhowe PA, Jung J, Montfort WR. Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 2017; 293:1850-1864. [PMID: 29222330 DOI: 10.1074/jbc.ra117.000457] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/18/2017] [Indexed: 11/06/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) is the receptor for nitric oxide and a highly sought-after therapeutic target for the management of cardiovascular diseases. New compounds that stimulate sGC show clinical promise, but where these stimulator compounds bind and how they function remains unknown. Here, using a photolyzable diazirine derivative of a novel stimulator compound, IWP-051, and MS analysis, we localized drug binding to the β1 heme domain of sGC proteins from the hawkmoth Manduca sexta and from human. Covalent attachments to the stimulator were also identified in bacterial homologs of the sGC heme domain, referred to as H-NOX domains, including those from Nostoc sp. PCC 7120, Shewanella oneidensis, Shewanella woodyi, and Clostridium botulinum, indicating that the binding site is highly conserved. The identification of photoaffinity-labeled peptides was aided by a signature MS fragmentation pattern of general applicability for unequivocal identification of covalently attached compounds. Using NMR, we also examined stimulator binding to sGC from M. sexta and bacterial H-NOX homologs. These data indicated that stimulators bind to a conserved cleft between two subdomains in the sGC heme domain. L12W/T48W substitutions within the binding pocket resulted in a 9-fold decrease in drug response, suggesting that the bulkier tryptophan residues directly block stimulator binding. The localization of stimulator binding to the sGC heme domain reported here resolves the longstanding question of where stimulators bind and provides a path forward for drug discovery.
Collapse
Affiliation(s)
- Jessica A Wales
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Cheng-Yu Chen
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Linda Breci
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Andrzej Weichsel
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | | | | | - Robert Solinga
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Takashi Nakai
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Paul A Renhowe
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Joon Jung
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - William R Montfort
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| |
Collapse
|
33
|
Gonzalez P, Pota K, Turan LS, da Costa VCP, Akkaraju G, Green KN. Synthesis, Characterization, and Activity of a Triazine Bridged Antioxidant Small Molecule. ACS Chem Neurosci 2017; 8:2414-2423. [PMID: 28768410 DOI: 10.1021/acschemneuro.7b00184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metal-ion misregulation and oxidative stress continue to be components of the continually evolving hypothesis describing the molecular origins of Alzheimer's disease. Therefore, these features are viable targets for synthetic chemists to explore through hybridizations of metal-binding ligands and antioxidant units. To date, the metal-binding unit in potential therapeutic small molecules has largely been inspired by clioquinol with the exception of a handful of heterocyclic small molecules and open-chain systems. Heterocyclic small molecules such as cyclen (1,4,7,10-tetraazacyclododecane) have the advantage of straightforward N-based modifications, allowing the addition of functional groups. In this work, we report the synthesis of a triazine bridged system containing two cyclen metal-binding units and an antioxidant coumarin appendage inspired by nature. This new potential therapeutic molecule shows the ability to bind copper in a unique manner compared to other chelates proposed to treat Alzheimer's disease. DPPH and TEAC assays exploring the activity of N-(2-((4,6-di(1,4,7,10-tetraazacyclododecan-1-yl)-1,3,5-triazin-2-yl)amino)ethyl)-2-oxo-2H-chromene-3-carboxamide (molecule 1) show that the molecule is antioxidant. Cellular studies of molecule 1 indicate a low toxicity (EC50 = 80 μM) and the ability to protect HT-22 neuronal cells from cell death induced by Aβ + copper(II), thus demonstrating the potential for molecule 1 to serve as a multimodal therapeutic for Alzheimer's disease.
Collapse
Affiliation(s)
- Paulina Gonzalez
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Lara Su Turan
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Viviana C. P. da Costa
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
34
|
Mikami S, Sasaki S, Asano Y, Ujikawa O, Fukumoto S, Nakashima K, Oki H, Kamiguchi N, Imada H, Iwashita H, Taniguchi T. Discovery of an Orally Bioavailable, Brain-Penetrating, in Vivo Active Phosphodiesterase 2A Inhibitor Lead Series for the Treatment of Cognitive Disorders. J Med Chem 2017; 60:7658-7676. [PMID: 28759228 DOI: 10.1021/acs.jmedchem.7b00709] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the discovery of a potent, selective, brain-penetrating, in vivo active phosphodiesterase (PDE) 2A inhibitor lead series. To identify high-quality leads suitable for optimization and enable validation of the physiological function of PDE2A in vivo, structural modifications of the high-throughput screening hit 18 were performed. Our lead generation efforts revealed three key potency-enhancing functionalities with minimal increases in molecular weight (MW) and no change in topological polar surface area (TPSA). Combining these structural elements led to the identification of 6-methyl-N-((1R)-1-(4-(trifluoromethoxy)phenyl)propyl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (38a), a molecule with the desired balance of preclinical properties. Further characterization by cocrystal structure analysis of 38a bound to PDE2A uncovered a unique binding mode and provided insights into its observed potency and PDE selectivity. Compound 38a significantly elevated 3',5'-cyclic guanosine monophosphate (cGMP) levels in mouse brain following oral administration, thus validating this compound as a useful pharmacological tool and an attractive lead for future optimization.
Collapse
Affiliation(s)
- Satoshi Mikami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigekazu Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutomi Asano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Ujikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoji Fukumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kosuke Nakashima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Oki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naomi Kamiguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruka Imada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroki Iwashita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Taniguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
35
|
Wang PX, Li ZM, Cai SD, Li JY, He P, Huang Y, Feng GS, Luo HB, Chen SR, Liu PQ. C33(S), a novel PDE9A inhibitor, protects against rat cardiac hypertrophy through upregulating cGMP signaling. Acta Pharmacol Sin 2017. [PMID: 28649129 DOI: 10.1038/aps.2017.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphodiesterase-9A (PDE9A) expression is upregulated during cardiac hypertrophy and heart failure. Accumulating evidence suggests that PDE9A might be a promising therapeutic target for heart diseases. The present study sought to investigate the effects and underlying mechanisms of C33(S), a novel selective PDE9A inhibitor, on cardiac hypertrophy in vitro and in vivo. Treatment of neonatal rat cardiomyocytes (NRCMs) with PE (100 μmol/L) or ISO (1 μmol/L) induced cardiac hypertrophy characterized by significantly increased cell surface areas and increased expression of fetal genes (ANF and BNP). Furthermore, PE or ISO significantly increased the expression of PDE9A in the cells; whereas knockdown of PDE9A significantly alleviated PE-induced hypertrophic responses. Moreover, pretreatment with PDE9A inhibitor C33(S) (50 and 500 nmol/L) or PF-7943 (2 μmol/L) also alleviated the cardiac hypertrophic responses in PE-treated NRCMs. Abdominal aortic constriction (AAC)-induced cardiac hypertrophy and ISO-induced heart failure were established in SD rats. In ISO-treated rats, oral administration of C33(S) (9, 3, and 1 mg·kg-1·d-1, for 3 consecutive weeks) significantly increased fractional shortening (43.55%±3.98%, 54.79%±1.95%, 43.98%±7.96% vs 32.18%±6.28%), ejection fraction (72.97%±4.64%, 84.29%±1.56%, 73.41%±9.37% vs 49.17%±4.20%) and cardiac output (60.01±9.11, 69.40±11.63, 58.08±8.47 mL/min vs 48.97±2.11 mL/min) but decreased the left ventricular internal diameter, suggesting that the transition to heart failure was postponed by C33(S). We further revealed that C33(S) significantly elevated intracellular cGMP levels, phosphorylation of phospholamban (PLB) and expression of SERCA2a in PE-treated NRCMs in vitro and in ISO-induced heart failure model in vivo. Our results demonstrate that C33(S) effectively protects against cardiac hypertrophy and postpones the transition to heart failure, suggesting that it is a promising agent in the treatment of cardiac diseases.
Collapse
|
36
|
Helal CJ, Arnold EP, Boyden TL, Chang C, Chappie TA, Fennell KF, Forman MD, Hajos M, Harms JF, Hoffman WE, Humphrey JM, Kang Z, Kleiman RJ, Kormos BL, Lee CW, Lu J, Maklad N, McDowell L, Mente S, O’Connor RE, Pandit J, Piotrowski M, Schmidt AW, Schmidt CJ, Ueno H, Verhoest PR, Yang EX. Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor. J Med Chem 2017; 60:5673-5698. [DOI: 10.1021/acs.jmedchem.7b00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Christopher J. Helal
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Eric P. Arnold
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tracey L. Boyden
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cheng Chang
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Thomas A. Chappie
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Kimberly F. Fennell
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael D. Forman
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mihaly Hajos
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - John F. Harms
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - William E. Hoffman
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - John M. Humphrey
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Zhijun Kang
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robin J. Kleiman
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Bethany L. Kormos
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Che-Wah Lee
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jiemin Lu
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Noha Maklad
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Laura McDowell
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scot Mente
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Rebecca E. O’Connor
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mary Piotrowski
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anne W. Schmidt
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. Schmidt
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Hirokazu Ueno
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Patrick R. Verhoest
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Edward X. Yang
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
37
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
38
|
Dyck B, Branstetter B, Gharbaoui T, Hudson AR, Breitenbucher JG, Gomez L, Botrous I, Marrone T, Barido R, Allerston CK, Cedervall EP, Xu R, Sridhar V, Barker R, Aertgeerts K, Schmelzer K, Neul D, Lee D, Massari ME, Andersen CB, Sebring K, Zhou X, Petroski R, Limberis J, Augustin M, Chun LE, Edwards TE, Peters M, Tabatabaei A. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties. J Med Chem 2017; 60:3472-3483. [DOI: 10.1021/acs.jmedchem.7b00302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Brian Dyck
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Bryan Branstetter
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tawfik Gharbaoui
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Andrew R. Hudson
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - J. Guy Breitenbucher
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Laurent Gomez
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Iriny Botrous
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tami Marrone
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Richard Barido
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Charles K. Allerston
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - E. Peder Cedervall
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Rui Xu
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Vandana Sridhar
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ryan Barker
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kathleen Aertgeerts
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kara Schmelzer
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - David Neul
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Dong Lee
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Mark Eben Massari
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Carsten B. Andersen
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kristen Sebring
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Xianbo Zhou
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Robert Petroski
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - James Limberis
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Martin Augustin
- Proteros Biostructures GmbH, Bunsenstraße 7a, D-82152 Martinsried, Germany
| | - Lawrence E. Chun
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Thomas E. Edwards
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Marco Peters
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ali Tabatabaei
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| |
Collapse
|
39
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Cameron RT, Whiteley E, Day JP, Parachikova AI, Baillie GS. Selective inhibition of phosphodiesterases 4, 5 and 9 induces HSP20 phosphorylation and attenuates amyloid beta 1-42-mediated cytotoxicity. FEBS Open Bio 2016; 7:64-73. [PMID: 28097089 PMCID: PMC5221464 DOI: 10.1002/2211-5463.12156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Phosphodiesterase (PDE) inhibitors are currently under evaluation as agents that may facilitate the improvement of cognitive impairment associated with Alzheimer's disease. Our aim was to determine whether inhibitors of PDEs 4, 5 and 9 could alleviate the cytotoxic effects of amyloid beta 1–42 (Aβ1–42) via a mechanism involving the small heatshock protein HSP20. We show that inhibition of PDEs 4, 5 and 9 but not 3 induces the phosphorylation of HSP20 which, in turn, increases the colocalisation between the chaperone and Aβ1–42 to significantly decrease the toxic effect of the peptide. We conclude that inhibition of PDE9 is most effective to combat Aβ1–42 cytotoxicity in our cell model.
Collapse
Affiliation(s)
- Ryan T Cameron
- Institute of Cardiovascular and Medical Sciences College of Veterinary Medical and Life Sciences University of Glasgow UK
| | - Ellanor Whiteley
- Institute of Cardiovascular and Medical Sciences College of Veterinary Medical and Life Sciences University of Glasgow UK
| | - Jon P Day
- Institute of Cardiovascular and Medical Sciences College of Veterinary Medical and Life Sciences University of Glasgow UK
| | | | - George S Baillie
- Institute of Cardiovascular and Medical Sciences College of Veterinary Medical and Life Sciences University of Glasgow UK
| |
Collapse
|
41
|
One-pot synthesis of pyran derivatives using silica-coated magnetic nanoparticles functionalized with piperidinium benzene-1,3-disulfonate as a new efficient reusable catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2762-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Su T, Zhang T, Xie S, Yan J, Wu Y, Li X, Huang L, Luo HB. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer's disease. Sci Rep 2016; 6:21826. [PMID: 26911795 PMCID: PMC4766439 DOI: 10.1038/srep21826] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, phosphodiesterase-9 (PDE9) inhibitors and biometal-chelators have received much attention as potential therapeutics for the treatment of Alzheimer’s disease (AD). Here, we designed, synthesized, and evaluated a novel series of PDE9 inhibitors with the ability to chelate metal ions. The bioassay results showed that most of these molecules strongly inhibited PDE9 activity. Compound 16 showed an IC50 of 34 nM against PDE9 and more than 55-fold selectivity against other PDEs. In addition, this compound displayed remarkable metal-chelating capacity and a considerable ability to halt copper redox cycling. Notably, in comparison to the reference compound clioquinol, it inhibited metal-induced Aβ1-42 aggregation more effectively and promoted greater disassembly of the highly structured Aβ fibrils generated through Cu2+-induced Aβ aggregation. These activities of 16, together with its favorable blood-brain barrier permeability, suggest that 16 may be a promising compound for treatment of AD.
Collapse
Affiliation(s)
- Tao Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shishun Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Huang M, Shao Y, Hou J, Cui W, Liang B, Huang Y, Li Z, Wu Y, Zhu X, Liu P, Wan Y, Ke H, Luo HB. Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor. Mol Pharmacol 2015; 88:836-45. [PMID: 26316540 PMCID: PMC4613944 DOI: 10.1124/mol.115.099747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/24/2015] [Indexed: 01/21/2023] Open
Abstract
Phosphodiesterase-9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of central nervous system diseases and diabetes. Here, we report the discovery of a new category of PDE9 inhibitors by rational design on the basis of the crystal structures. The best compound, (S)-6-((1-(4-chlorophenyl)ethyl)amino)-1-cyclopentyl-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-day]pyrimidin-4-one [(S)-C33], has an IC50 value of 11 nM against PDE9 and the racemic C33 has bioavailability of 56.5% in the rat pharmacokinetic model. The crystal structures of PDE9 in the complex with racemic C33, (R)-C33, and (S)-C33 reveal subtle conformational asymmetry of two M-loops in the PDE9 dimer and different conformations of two C33 enantiomers. The structures also identified a small hydrophobic pocket that interacts with the tyrosyl tail of (S)-C33 but not with (R)-C33, and is thus possibly useful for improvement of selectivity of PDE9 inhibitors. The asymmetry of the M-loop and the different interactions of the C33 enantiomers imply the necessity to consider the whole PDE9 dimer in the design of inhibitors.
Collapse
Affiliation(s)
- Manna Huang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yongxian Shao
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Jianying Hou
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Wenjun Cui
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Beibei Liang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yingchun Huang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Zhe Li
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yinuo Wu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Xinhai Zhu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Peiqing Liu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yiqian Wan
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Hengming Ke
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Hai-Bin Luo
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| |
Collapse
|
44
|
Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, Holewinski R, Jo SH, Danner T, Zhang M, Rainer PP, Bedja D, Kirk JA, Ranek MJ, Dostmann WR, Kwon C, Margulies KB, Van Eyk JE, Paulus WJ, Takimoto E, Kass DA. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 2015; 519:472-6. [PMID: 25799991 PMCID: PMC4376609 DOI: 10.1038/nature14332] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.
Collapse
Affiliation(s)
- Dong I. Lee
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Takashi Sasaki
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | - Gun-Sik Cho
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Nazha Hamdani
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Ronald Holewinski
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
- Heart Institute and Advanced Clinical Biosystems Research Institute, Cedar Sinai Medical Center, 8700 Beverly Blvd, AHSP A9229 Los Angeles, CA 90048 (USA)
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Chuncheon 200-701, Korea
| | - Thomas Danner
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Manling Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Peter P. Rainer
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Jonathan A. Kirk
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | | | - Chulan Kwon
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - Kenneth B. Margulies
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (USA)
| | - Jennifer E. Van Eyk
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
- Heart Institute and Advanced Clinical Biosystems Research Institute, Cedar Sinai Medical Center, 8700 Beverly Blvd, AHSP A9229 Los Angeles, CA 90048 (USA)
| | - Walter J. Paulus
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Eiki Takimoto
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| | - David A. Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205 (USA)
| |
Collapse
|
45
|
Chong Q, Wang C, Wang D, Wang H, Wu F, Xin X, Wan B. DABCO-catalyzed synthesis of 3-bromo-/3-iodo-2H-pyrans from propargyl alcohols, dialkyl acetylene dicarboxylates, and N-bromo-/N-iodosuccinimides. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Shiro T, Fukaya T, Tobe M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur J Med Chem 2014; 97:397-408. [PMID: 25532473 DOI: 10.1016/j.ejmech.2014.12.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Among all heterocycles, the heterocycle-fused quinolinone scaffold is one of the privileged structures in drug discovery as heterocycle-fused quinolinone derivatives exhibit various biological activities allowing them to act as anti-inflammatory, anticancer, antidiabetic, and antipsychotic agents. This wide spectrum of biological activity has attracted a great deal of attention in the field of medicinal chemistry. In this review, we provide a comprehensive description of the biological and pharmacological properties of various heterocycle-fused quinolinone scaffolds and discuss the synthetic methods of some of their derivatives.
Collapse
Affiliation(s)
- Tomoya Shiro
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan
| | - Takayuki Fukaya
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan
| | - Masanori Tobe
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan.
| |
Collapse
|
47
|
Shao YX, Huang M, Cui W, Feng LJ, Wu Y, Cai Y, Li Z, Zhu X, Liu P, Wan Y, Ke H, Luo HB. Discovery of a phosphodiesterase 9A inhibitor as a potential hypoglycemic agent. J Med Chem 2014; 57:10304-13. [PMID: 25432025 PMCID: PMC4281101 DOI: 10.1021/jm500836h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Phosphodiesterase 9 (PDE9) inhibitors
have been studied as potential therapeutics for treatment of diabetes
and Alzheimer’s disease. Here we report a potent PDE9 inhibitor 3r that has an IC50 of 0.6 nM and >150-fold
selectivity over other PDEs. The HepG2 cell-based assay shows that 3r inhibits the mRNA expression of phosphoenolpyruvate carboxykinase
and glucose 6-phosphatase. These activities of 3r, together
with the reasonable pharmacokinetic properties and no acute toxicity
at 1200 mg/kg dosage, suggest its potential as a hypoglycemic agent.
The crystal structure of PDE9-3r reveals significantly
different conformation and hydrogen bonding pattern of 3r from those of previously published 28s. Both 3r and 28s form a hydrogen bond with Tyr424,
a unique PDE9 residue (except for PDE8), but 3r shows
an additional hydrogen bond with Ala452. This structure information
might be useful for design of PDE9 inhibitors.
Collapse
Affiliation(s)
- Yong-xian Shao
- School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou 510006, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li Z, Lu X, Feng LJ, Gu Y, Li X, Wu Y, Luo HB. Molecular dynamics-based discovery of novel phosphodiesterase-9A inhibitors with non-pyrazolopyrimidinone scaffolds. MOLECULAR BIOSYSTEMS 2014; 11:115-25. [PMID: 25328054 DOI: 10.1039/c4mb00389f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phosphodiesterase-9A (PDE9A) is a promising therapeutic target for the treatment of diabetes and Alzheimer's disease (AD). The Pfizer PDE9A inhibitor PF-04447943 has completed Phase II clinical trials in subjects with mild to moderate AD in 2013. However, most of the reported PDE9A inhibitors share the same scaffold as pyrazolopyrimidinone, which lacks structural diversity and is unfavorable for the development of novel PDE9A inhibitors. In the present study, a combinatorial method including pharmacophores, molecular docking, molecular dynamics simulations, binding free energy calculations, and bioassay was used to discover novel PDE9A inhibitors with new scaffolds rather than pyrazolopyrimidinones from the SPECS database containing about 200,000 compounds. As a result, 15 hits out of 29 molecules (a hit rate of 52%) with five novel scaffolds were identified to be PDE9A inhibitors with inhibitory affinities no more than 50 μM to enrich the structural diversity, different from the pyrazolopyrimidinone-derived family. The high hit ratio of 52% for this virtual screening method indicated that the combinatorial method is a good compromise between computational cost and accuracy. Binding pattern analyses indicate that those hits with non-pyrazolopyrimidinone scaffolds can bind the same active site pocket of PDE9A as classical PDE9A inhibitors. In addition, structural modification of compound AG-690/40135604 (IC50=8.0 μM) led to a new one, 16, with an improved inhibitory affinity of 2.1 μM as expected. The five novel scaffolds discovered in the present study can be used for the rational design of PDE9A inhibitors with higher affinities.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmaceutical Sciences, SunYat-Sen University, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Claffey MM, Helal CJ, Hou X. PDEs as CNS Targets: PDE9 Inhibitors for Cognitive Deficit Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/9783527682348.ch08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Li M, Zhao BX. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013). Eur J Med Chem 2014; 85:311-40. [PMID: 25104650 DOI: 10.1016/j.ejmech.2014.07.102] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
Condensed pyrazole derivatives are important heterocyclic compounds due to their excellent biological activities and have been widely applied in pharmaceutical and agromedical fields. In recent years, numerous condensed pyrazole derivatives have been synthesized and advanced to clinic studies with various biological activities. In this review, we summarized the reported synthesis methods of condensed pyrazole derivatives from 2010 until now. All compounds are divided into three parts according to the rings connected to pyrazole-ring, i.e. [5, 5], [5,F 6], and [5, 7]-condensed pyrazole derivatives. The biological activities and applications in pharmaceutical fields are briefly introduced to offer an orientation for the design and synthesis of condensed pyrazole derivatives with good biological activities.
Collapse
Affiliation(s)
- Meng Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|