1
|
Hwang HJ, Son YJ, Kim D, Lee J, Shin YJ, Kwon Y, Ciufolini MA. Diversity-oriented routes to thiopeptide antibiotics: total synthesis and biological evaluation of micrococcin P2. Org Biomol Chem 2022; 20:1893-1899. [PMID: 34908070 DOI: 10.1039/d1ob02145a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the first total synthesis of micrococcin P2 (MP2, 1) by a diversity-oriented route that incorporates a number of refinements relative to earlier syntheses. Biological data regarding the activity of 1 against a range of human pathogens are also provided. Furthermore, we disclose a chemical property of MP2 that greatly facilitates medicinal chemistry work in the micrococcin area and describe a method to obtain MP2 by fermentation in B. subtilis.
Collapse
Affiliation(s)
- Hee-Jong Hwang
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6 K 1Z1, Canada.
| | - Young-Jin Son
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dahyun Kim
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
| | - Jusuk Lee
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
| | - Yun-Jeong Shin
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6 K 1Z1, Canada.
| |
Collapse
|
2
|
Zhang X, Chen S, Zhang L, Zhang Q, Zhang W, Chen Y, Zhang W, Zhang H, Zhang C. Dassonmycins A and B, Polycyclic Thioalkaloids from a Marine Sponge-Derived Nocardiopsis dassonvillei SCSIO 40065. Org Lett 2021; 23:2858-2862. [PMID: 33703905 DOI: 10.1021/acs.orglett.1c00328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two polycyclic thioalkaloides dassonmycins A (1) and B (2) were isolated from Nocardiopsis dassonvillei SCSIO 40065 associated with marine sponge Petrosia sp. Structures of 1 and 2 were elucidated by comprehensive spectroscopic analysis and confirmed by single-crystal X-ray diffraction experiments, to have a 6/6/6/6-fused tetracyclic ring featuring a naphthoquinone[2,3-e]piperazine[1,2-c]thiomorpholine scaffold. Compound 2 formed a caged core through an additional ether bridge. Both compounds exhibited moderate antibacterial and cytotoxic activities.
Collapse
Affiliation(s)
- Xinya Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Siqiang Chen
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
3
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Mhlongo JT, Brasil E, de la Torre BG, Albericio F. Naturally Occurring Oxazole-Containing Peptides. Mar Drugs 2020; 18:md18040203. [PMID: 32290087 PMCID: PMC7231064 DOI: 10.3390/md18040203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Oxazole-containing peptides are mostly of marine origin and they form an intriguing family with a broad range of biological activities. Here we classify these peptides on the basis of their chemical structure and discuss a number of representatives of each class that reflect the extraordinary potential of this family as a source of new drugs.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (J.T.M.); (E.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Edikarlos Brasil
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (J.T.M.); (E.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (J.T.M.); (E.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614009144 (F.A.)
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (J.T.M.); (E.B.)
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614009144 (F.A.)
| |
Collapse
|
5
|
Christy MP, Johnson T, McNerlin CD, Woodard J, Nelson AT, Lim B, Hamilton TL, Freiberg KM, Siegel D. Total Synthesis of Micrococcin P1 through Scalable Thiazole Forming Reactions of Cysteine Derivatives and Nitriles. Org Lett 2020; 22:2365-2370. [DOI: 10.1021/acs.orglett.0c00202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mitchell P. Christy
- Department of Chemistry & Biochemistry, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Trevor Johnson
- Department of Chemistry & Biochemistry, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Clare D. McNerlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - John Woodard
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Andrew T. Nelson
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, A5300, Austin, Texas 78712-1224, United States
- School of Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Bryant Lim
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Tiffany L. Hamilton
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Kaitlyn M. Freiberg
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| |
Collapse
|
6
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
7
|
Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02361-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Characterization of Nocardithiocin Derivatives Produced by Amino Acid Substitution of Precursor Peptide notG. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Voznesenskaia NG, Shmatova OI, Ilyin MM, Ilyin MM, Nenajdenko VG. Enantioselective Synthesis of Thiazole-Derived α-Perfluoroalkylated 5-7-Membered Amines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Olga I. Shmatova
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Mikhail M. Ilyin
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilov St. 119991 Moscow Russia
| | - Mikhail M. Ilyin
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilov St. 119991 Moscow Russia
| | | |
Collapse
|
10
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
11
|
Abstract
This review describes a selection of macrocyclic natural products and structurally modified analogs containing peptidic and non-peptidic elements as structural features that potentially modulate cellular permeability. Examples range from exclusively peptidic structures like cyclosporin A or phepropeptins to compounds with mostly non-peptidic character, such as telomestatin or largazole. Furthermore, semisynthetic approaches and synthesis platforms to generate general and focused libraries of compounds at the interface of cyclic peptides and non-peptidic macrocycles are discussed.
Collapse
|
12
|
Geninthiocins C and D from Streptomyces as 35-membered macrocyclic thiopeptides with modified tail moiety. J Antibiot (Tokyo) 2018; 72:106-110. [PMID: 30479394 DOI: 10.1038/s41429-018-0127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 11/09/2022]
Abstract
Geninthiocin is a thiopeptide with 35-membered macrocyclic core moiety. It has potent anti-Gram-positive (G+) bacteria activity. Herein, we reported two new congeners (2-3) of geninthiocin (geninthiocin A, 1) from Streptomyces sp. CPCC 200267, and designated them as geninthiocins C and D, whose structures were determined by NMR. Geninthiocins A, C and D had the same 35-membered macrocyclic core moiety, but possessed a -Dha-Dha-NH2, -Dha-Ala-NH2, and -NH2 tail, respectively. Besides, the Ala residue in geninthiocin C was determined as L- configuration by C3 Marfey's method. In vitro assays indicated that geninthiocins C-D showed no antibacterial activity, in contrast to the potent anti-G+ bacteria activity displayed by geninthiocin A. Therefore, the -Dha-Dha-NH2 tail of geninthiocin A played an important role in its potent activity against G+ bacteria.
Collapse
|
13
|
Dai X, Zhao Y, Li J, Li S, Lei R, Chen X, Zhang X, Li C. Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. NEW J CHEM 2018. [DOI: 10.1039/c7nj03251j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercial antibiotic therapies are becoming less efficient due to the emergence of bacterial resistance and the formation of bacterial biofilms.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Junsheng Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Sen Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Ruidong Lei
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
14
|
Dai X, Zhao Y, Yu Y, Chen X, Wei X, Zhang X, Li C. Single Continuous Near-Infrared Laser-Triggered Photodynamic and Photothermal Ablation of Antibiotic-Resistant Bacteria Using Effective Targeted Copper Sulfide Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30470-30479. [PMID: 28832120 DOI: 10.1021/acsami.7b09638] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains has made conventional antibiotic therapies less efficient. The development of a novel nanoantibiotic approach for efficiently ablating such bacterial infections is becoming crucial. Herein, a collection of poly(5-(2-ethyl acrylate)-4-methylthiazole-g-butyl)/copper sulfide nanoclusters (PATA-C4@CuS) was synthesized for efficient capture and effective ablation of levofloxacin-resistant Gram-negative and Gram-positive bacteria upon tissue-penetrable near-infrared (NIR) laser irradiation. In this work, we took advantage of the excellent photothermal and photodynamic properties of copper sulfide nanoparticles (CuSNPs) upon NIR laser irradiation and thiazole derivative as a membrane-targeting cationic ligand toward bacteria. The conjugated nanoclusters could anchor the bacteria to trigger the bacterial aggregation quickly and efficiently kill them. These conjugated nanoclusters could significantly inhibit levofloxacin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens at 5.5 μg/mL under NIR laser irradiation (980 nm, 1.5 W cm-2, 5 min), which suggested that the heat and reactive oxygen species (ROS) generated from the irradiated CuSNPs attached to bacteria were effective in eliminating and preventing the regrowth of the bacteria. Importantly, the conjugated nanoclusters could promote healing in bacteria-infected rat wounds without nonspecific damage to normal tissue. These findings highlight the promise of the highly versatile multifunctional nanoantibiotics in bacterial infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
15
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
16
|
Yao H, Liu J, Xu S, Zhu Z, Xu J. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov 2016; 12:121-140. [DOI: 10.1080/17460441.2016.1272757] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
17
|
LaMarche MJ, Leeds JA, Brewer J, Dean K, Ding J, Dzink-Fox J, Gamber G, Jain A, Kerrigan R, Krastel P, Lee K, Lombardo F, McKenney D, Neckermann G, Osborne C, Palestrant D, Patane MA, Rann EM, Robinson Z, Schmitt E, Stams T, Tiamfook S, Yu D, Whitehead L. Antibacterial and Solubility Optimization of Thiomuracin A. J Med Chem 2016; 59:6920-8. [DOI: 10.1021/acs.jmedchem.6b00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Jennifer A. Leeds
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | | | | | | | - Joanne Dzink-Fox
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | | | | | | | - Philipp Krastel
- Natural Products
Unit, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - David McKenney
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Georg Neckermann
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Colin Osborne
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | | | | | | | | | - Esther Schmitt
- Natural Products
Unit, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Stacey Tiamfook
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Donghui Yu
- Infectious
Disease Area, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | | |
Collapse
|
18
|
Predicting the unpredictable: Recent structure–activity studies on peptide-based macrocycles. Bioorg Chem 2015; 60:74-97. [DOI: 10.1016/j.bioorg.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
|