1
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
2
|
Zaręba P, Drabczyk AK, Wnorowski A, Maj M, Malarz K, Rurka P, Latacz G, Duszyńska B, Ciura K, Greber KE, Boguszewska-Czubara A, Śliwa P, Kuliś J. Low-Basicity 5-HT 6 Receptor Ligands from the Group of Cyclic Arylguanidine Derivatives and Their Antiproliferative Activity Evaluation. Int J Mol Sci 2024; 25:10287. [PMID: 39408617 PMCID: PMC11477289 DOI: 10.3390/ijms251910287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HT6R ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HT6R ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines. The selected group of molecules was also tested for their antiproliferative activity on astrocytoma (1321N1) and glioblastoma (U87MG, LN-229, U-251) cell lines. Some of the molecules were subjected to ADMET tests in vitro, including lipophilicity, drug binding to plasma proteins, affinity for phospholipids, drug-drug interaction (DDI), the penetration of the membrane (PAMPA), metabolic stability, and hepatotoxicity as well as in vivo cardiotoxicity in the Danio rerio model. Two antagonists with an affinity constant Ki < 50 nM (PR 68Ki = 37 nM) were selected. These compounds were characterized by very high selectivity. An analysis of pharmacokinetic parameters for the lead compound PR 68 confirmed favorable properties for administration, including passive diffusion and acceptable metabolic stability (metabolized in 49%, MLMs). The compound did not exhibit the potential for drug-drug interactions.
Collapse
Affiliation(s)
- Przemysław Zaręba
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| | - Anna K. Drabczyk
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Artur Wnorowski
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Maciej Maj
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 11 Akademicka Street, 44-100 Gliwice, Poland;
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Patryk Rurka
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland;
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology—Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland;
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland;
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Julia Kuliś
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| |
Collapse
|
3
|
Drop M, Koczurkiewicz-Adamczyk P, Bento O, Pietruś W, Satała G, Blicharz-Futera K, Canale V, Grychowska K, Bantreil X, Pękala E, Kurczab R, Bojarski AJ, Chaumont-Dubel S, Marin P, Lamaty F, Zajdel P. 5-HT 6 receptor neutral antagonists protect astrocytes: A lesson from 2-phenylpyrrole derivatives. Eur J Med Chem 2024; 275:116615. [PMID: 38936149 DOI: 10.1016/j.ejmech.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The serotonin type 6 receptor (5-HT6R) displays a strong constitutive activity, suggesting it participates largely in the physiological and pathological processes controlled by the receptor. The active states of 5-HT6R engage particular signal transduction pathways that lead to different biological responses. In this study, we present the development of 5-HT6R neutral antagonists at Gs signaling built upon the 2-phenylpyrrole scaffold. Using molecular dynamics simulations, we outline the relationship between the exposure of the basic center of the molecules and their ability to target the agonist-activated state of the receptor. Our study identifies compound 30 as a potent and selective neutral antagonist at 5-HT6R-operated Gs signaling. Furthermore, we demonstrate the cytoprotective effects of 30 and structurally diverse 5-HT6R neutral antagonists at Gs signaling in C8-D1A cells and human astrocytes exposed to rotenone. This effect is not observed for 5-HT6R agonists or inverse agonists. In light of these findings, we propose compound 30 as a valuable molecular probe to study the biological effects associated with the agonist-activated state of 5-HT6R and provide insight into the glioprotective properties of 5-HT6R neutral antagonists at Gs signaling.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland; IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | | | - Ophélie Bento
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France; Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Klaudia Blicharz-Futera
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France; Institut Universitaire de France (IUF), France
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland.
| |
Collapse
|
4
|
Sinha JK, Trisal A, Ghosh S, Gupta S, Singh KK, Han SS, Mahapatra M, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Bhaskar R, Mishra PC, Jha SK, Jha NK, Singh AK. Psychedelics for alzheimer's disease-related dementia: Unveiling therapeutic possibilities and pathways. Ageing Res Rev 2024; 96:102211. [PMID: 38307424 DOI: 10.1016/j.arr.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.
Collapse
Affiliation(s)
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea
| | | | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea.
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
5
|
Kandhasamy K, Surajambika RR, Velayudham PK. Pyrazolo - Pyrimidines as Targeted Anticancer Scaffolds - A Comprehensive Review. Med Chem 2024; 20:293-310. [PMID: 37885114 DOI: 10.2174/0115734064251256231018104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Globally, cancer is the leading cause of death, which causes 10 million deaths yearly. Clinically, several drugs are used in treatment but due to drug resistance and multidrug resistance, there occurs a failure in the cancer treatment. OBJECTIVES The present review article is a comprehensive review of pyrazole and pyrimidine hybrids as potential anticancer agents. METHODS The review comprises more than 60 research works done in this field. The efficiency of the reported pyrazolopyrimidine fused heterocyclic with their biological data and the influence of the structural aspects of the molecule have been discussed. RESULTS This review highlighted pyrazolo-pyrimidines as targeted anticancer agents with effect on multiple targets. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for cancer therapy for designing new scaffolds with pyrazolo-pyrimidine moieties.
Collapse
Affiliation(s)
- Kesavamoorthy Kandhasamy
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| | | | - Pradeep Kumar Velayudham
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| |
Collapse
|
6
|
Gałęzowski M, Fabritius CH, Pesonen U, Salo H, Olszak-Płachta M, Czerwińska K, Adamczyk J, Król M, Prusis P, Sieprawska-Lupa M, Mikulski M, Kuokkanen K, Obuchowicz R, Korjamo T, Jalava N, Nikiforuk A, Nowak M. 5-HT 6 receptor antagonists. Design, synthesis, and structure-activity relationship of substituted 2-(1-methyl-4-piperazinyl)pyridines. Bioorg Med Chem Lett 2023; 96:129497. [PMID: 37806499 DOI: 10.1016/j.bmcl.2023.129497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
In this study, we present the discovery and pharmacological characterization of a new series of 6-piperazinyl-7-azaindoles. These compounds demonstrate potent antagonism and selectivity against the 5-HT6 receptor. Our research primarily focuses on optimizing the lead structure and investigating the structure-activity relationship (SAR) of these compounds. Our main objective is to improve their activity and selectivity against off-target receptors. Overall, our findings contribute to the advancement of novel compounds targeting the 5-HT6 receptor. Compound 29 exhibits significant promise in terms of pharmacological, physicochemical, and ADME (Absorption, Distribution, Metabolism, and Excretion) properties. Consequently, it merits thorough exploration as a potential drug candidate due to its favorable activity profile and successful outcomes in a range of in vivo experiments.
Collapse
Affiliation(s)
| | | | - Ullamari Pesonen
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Harri Salo
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | | | - Justyna Adamczyk
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Marcin Król
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Peteris Prusis
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | - Maciej Mikulski
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | - Timo Korjamo
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Niina Jalava
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Mateusz Nowak
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| |
Collapse
|
7
|
Sharma HS, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Stress induced exacerbation of Alzheimer's disease brain pathology is thwarted by co-administration of nanowired cerebrolysin and monoclonal amyloid beta peptide antibodies with serotonin 5-HT6 receptor antagonist SB-399885. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:3-46. [PMID: 37783559 DOI: 10.1016/bs.irn.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is one of the devastating neurodegenerative diseases affecting mankind worldwide with advancing age mainly above 65 years and above causing great misery of life. About more than 7 millions are affected with Alzheimer's disease in America in 2023 resulting in huge burden on health care system and care givers and support for the family. However, no suitable therapeutic measures are available at the moment to enhance quality of life to these patients. Development of Alzheimer's disease may reflect the stress burden of whole life inculcating the disease processes of these neurodegenerative disorders of the central nervous system. Thus, new strategies using nanodelivery of suitable drug therapy including antibodies are needed in exploring neuroprotection in Alzheimer's disease brain pathology. In this chapter role of stress in exacerbating Alzheimer's disease brain pathology is explored and treatment strategies are examined using nanotechnology based on our own investigation. Our observations clearly show that restraint stress significantly exacerbate Alzheimer's disease brain pathology and nanodelivery of a multimodal drug cerebrolysin together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP) together with a serotonin 5-HT6 receptor antagonist SB399885 significantly thwarted Alzheimer's disease brain pathology exacerbated by restraint stress, not reported earlier. The possible mechanisms and future clinical significance is discussed.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Cilia R, Piacentini SHMJ, Cummings J. The challenges of finding novel and effective drugs targeting dementia and neuropsychiatric disturbances in PD: Insights from the SYNAPSE trial. Parkinsonism Relat Disord 2023; 114:105804. [PMID: 37633806 DOI: 10.1016/j.parkreldis.2023.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Affiliation(s)
- Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milano, Italy
| | | | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
| |
Collapse
|
9
|
Su C, Hou Y, Zhou M, Rajendran S, Maasch JRA, Abedi Z, Zhang H, Bai Z, Cuturrufo A, Guo W, Chaudhry FF, Ghahramani G, Tang J, Cheng F, Li Y, Zhang R, DeKosky ST, Bian J, Wang F. Biomedical discovery through the integrative biomedical knowledge hub (iBKH). iScience 2023; 26:106460. [PMID: 37020958 PMCID: PMC10068563 DOI: 10.1016/j.isci.2023.106460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
The abundance of biomedical knowledge gained from biological experiments and clinical practices is an invaluable resource for biomedicine. The emerging biomedical knowledge graphs (BKGs) provide an efficient and effective way to manage the abundant knowledge in biomedical and life science. In this study, we created a comprehensive BKG called the integrative Biomedical Knowledge Hub (iBKH) by harmonizing and integrating information from diverse biomedical resources. To make iBKH easily accessible for biomedical research, we developed a web-based, user-friendly graphical portal that allows fast and interactive knowledge retrieval. Additionally, we also implemented an efficient and scalable graph learning pipeline for discovering novel biomedical knowledge in iBKH. As a proof of concept, we performed our iBKH-based method for computational in-silico drug repurposing for Alzheimer's disease. The iBKH is publicly available.
Collapse
Affiliation(s)
- Chang Su
- Department of Health Service Administration and Policy, College of Public Health, Temple University, Philadelphia, PA 19122, USA
| | - Yu Hou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Manqi Zhou
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Suraj Rajendran
- Tri-Institutional Computational Biology & Medicine Program, Cornell University, New York, NY 10065, USA
| | | | - Zehra Abedi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Haotan Zhang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Winston Guo
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fayzan F. Chaudhry
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gregory Ghahramani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jian Tang
- Mila-Quebec AI Institute and HEC Montreal, Montreal, QC H2S 3H1, Canada
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yue Li
- School of Computer Science, McGill University, Montreal, QC H3A 0C6, Canada
| | - Rui Zhang
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven T. DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
He L, Zhao Q, Qi J, Wang Y, Han W, Chen Z, Cong Y, Wang S. Structural insights into constitutive activity of 5-HT 6 receptor. Proc Natl Acad Sci U S A 2023; 120:e2209917120. [PMID: 36989299 PMCID: PMC10083584 DOI: 10.1073/pnas.2209917120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/16/2023] [Indexed: 03/30/2023] Open
Abstract
While most therapeutic research on G-protein-coupled receptors (GPCRs) focuses on receptor activation by (endogenous) agonists, significant therapeutic potential exists through agonist-independent intrinsic constitutive activity that can occur in various physiological and pathophysiological settings. For example, inhibiting the constitutive activity of 5-HT6R-a receptor that is found almost exclusively in the brain and mediates excitatory neurotransmission-has demonstrated a therapeutic effect on cognitive/memory impairment associated with several neuropsychiatric disorders. However, the structural basis of such constitutive activity remains unclear. Here, we present a cryo-EM structure of serotonin-bound human 5-HT6R-Gs heterotrimer at 3.0-Å resolution. Detailed analyses of the structure complemented by comprehensive interrogation of signaling illuminate key structural determinants essential for constitutive 5-HT6R activity. Additional structure-guided mutagenesis leads to a nanobody mimic Gαs for 5-HT6R that can reduce its constitutive activity. Given the importance of 5-HT6R for a large number of neuropsychiatric disorders, insights derived from these studies will accelerate the design of more effective medications, and shed light on the molecular basis of constitutive activity.
Collapse
Affiliation(s)
- Licong He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Jianzhong Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
11
|
Asproni B, Catto M, Loriga G, Murineddu G, Corona P, Purgatorio R, Cichero E, Fossa P, Scarano N, Martínez AL, Brea J, Pinna GA. Novel thienocycloalkylpyridazinones as useful scaffolds for acetylcholinesterase inhibition and serotonin 5-HT6 receptor interaction. Bioorg Med Chem 2023; 84:117256. [PMID: 37003157 DOI: 10.1016/j.bmc.2023.117256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
A library of eighteen thienocycloalkylpyridazinones was synthesized for human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibition and serotonin 5-HT6 receptor subtype interaction by following a multitarget-directed ligand approach (MTDL), as a suitable strategy for treatment of Alzheimer's disease (AD). The novel compounds featured a tricyclic scaffold, namely thieno[3,2-h]cinnolinone, thienocyclopentapyridazinone and thienocycloheptapyridazinone, connected through alkyl chains of variable length to proper amine moieties, most often represented by N-benzylpiperazine or 1-(phenylsulfonyl)-4-(piperazin-1-ylmethyl)-1H-indole as structural elements addressing AChE and 5-HT6 interaction, respectively. Our study highlighted the versatility of thienocycloalkylpyridazinones as useful architectures for AChE interaction, with several N-benzylpiperazine-based analogues emerging as potent and selective hAChE inhibitors with IC50 in the 0.17-1.23 μM range, exhibiting low to poor activity for hBChE (IC50 = 4.13-9.70 μM). The introduction of 5-HT6 structural moiety phenylsulfonylindole in place of N-benzylpiperazine, in tandem with a pentamethylene linker, gave potent 5-HT6 thieno[3,2-h]cinnolinone and thienocyclopentapyridazinone-based ligands both displaying hAChE inhibition in the low micromolar range and unappreciable activity towards hBChE. While docking studies provided a rational structural explanation for AChE/BChE enzyme and 5-HT6 receptor interaction, in silico prediction of ADME properties of tested compounds suggested further optimization for development of such compounds in the field of MTDL for AD.
Collapse
|
12
|
Impact of 5-HT 6 Receptor Subcellular Localization on Its Signaling and Its Pathophysiological Roles. Cells 2023; 12:cells12030426. [PMID: 36766768 PMCID: PMC9913600 DOI: 10.3390/cells12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The serotonin (5-HT)6 receptor still raises particular interest given its unique spatio-temporal pattern of expression among the serotonin receptor subtypes. It is the only serotonin receptor specifically expressed in the central nervous system, where it is detected very early in embryonic life and modulates key neurodevelopmental processes, from neuronal migration to brain circuit refinement. Its predominant localization in the primary cilium of neurons and astrocytes is also unique among the serotonin receptor subtypes. Consistent with the high expression levels of the 5-HT6 receptor in brain regions involved in the control of cognitive processes, it is now well-established that the pharmacological inhibition of the receptor induces pro-cognitive effects in several paradigms of cognitive impairment in rodents, including models of neurodevelopmental psychiatric disorders and neurodegenerative diseases. The 5-HT6 receptor can engage several signaling pathways in addition to the canonical Gs signaling, but there is still uncertainty surrounding the signaling pathways that underly its modulation of cognition, as well as how the receptor's coupling is dependent on its cellular compartmentation. Here, we describe recent findings showing how the proper subcellular localization of the receptor is achieved, how this peculiar localization determines signaling pathways engaged by the receptor, and their pathophysiological influence.
Collapse
|
13
|
Sonochemical synthesis and biological evaluation of isoquinolin-1(2H)-one/isoindolin-1-one derivatives: Discovery of a positive ago-allosteric modulator (PAAM) of 5HT2CR. Bioorg Chem 2022; 129:106202. [DOI: 10.1016/j.bioorg.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022]
|
14
|
Colwell MJ, Tagomori H, Chapman S, Gillespie AL, Cowen PJ, Harmer CJ, Murphy SE. Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. Transl Psychiatry 2022; 12:484. [PMID: 36396622 PMCID: PMC9671959 DOI: 10.1038/s41398-022-02249-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Impaired cognition is often overlooked in the clinical management of depression, despite its association with poor psychosocial functioning and reduced clinical engagement. There is an outstanding need for new treatments to address this unmet clinical need, highlighted by our consultations with individuals with lived experience of depression. Here we consider the evidence to support different pharmacological approaches for the treatment of impaired cognition in individuals with depression, including treatments that influence primary neurotransmission directly as well as novel targets such as neurosteroid modulation. We also consider potential methodological challenges in establishing a strong evidence base in this area, including the need to disentangle direct effects of treatment on cognition from more generalised symptomatic improvement and the identification of sensitive, reliable and objective measures of cognition.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Sarah Chapman
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Amy L Gillespie
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
15
|
Yi C, Chen K, Liang H, Wang Z, Wang T, Li K, Yu J, Sun J, Jin C. Novel difluoromethylated 1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole derivatives as potent 5-HT6 receptor antagonist with AMDE-improving properties: Design, synthesis, and biological evaluation. Bioorg Med Chem 2022; 71:116950. [DOI: 10.1016/j.bmc.2022.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
|
16
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
17
|
Huang ZH, Fang Y, Wang XL, Wang Q, Wang T. Screening Traditional Chinese Medicine Combination for Co-Treatment of Alzheimer's Disease and Major Depressive Disorder by Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Due to their close relationship, the efficacy of major depressive disorder (MDD) drugs in the treatment of Alzheimer's disease (AD) has received widespread attention in recent years. Methods: In this study, we explored the potential therapeutic value of traditional Chinese medicine (TCM) and multitarget components on both MDD and AD by using a comprehensive strategy with network pharmacology and molecular docking technology. Results: In total, 234 MDD-related TCM prescriptions were analyzed and the 10 most commonly used Chinese herbs, correlating to 198 active ingredients, were identified. Through a comparative analysis of 144 prospective ingredient targets, 1095 MDD-related targets, and 1684 AD-related targets, network pharmacology identified 30 common targets, 9 key targets, and 7 representative compounds. The results of GO and KEGG enrichment analysis revealed that common targets were required to regulate multiple pathways related to MDD and AD. In addition, network analysis demonstrated that the combination of Xiangfu (Cyperi Rhizoma)-Gancao (Licorice)-Chaihu (Radix Bupleuri) constituted the major part of the representative ingredients and could be used to treat both diseases. Moreover, ALB, AKT1, ESR1, CASP3, and NOS3 were also chosen as prospective targets for synthetic multitarget ingredient screening. Further docking studies revealed that various natural chemicals exhibited binding affinity with the 5 targets, including quercetin, kaempferol, β-sitosterol, stigmasterol, isorhamnetin, naringenin, and 8-isopentenyl-kaempferol. Conclusion: Taken as a whole, the current study indicates a TCM combination with positive advantages in the combined treatment of AD and MDD.
Collapse
Affiliation(s)
- Zhao-han Huang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuan Fang
- Shanghai Center for Women and Children’s Health, Shanghai, People’s Republic of China
| | - Xiao-lu Wang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qi Wang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tong Wang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Bukhari SNA, Elsherif MA, Junaid K, Ejaz H, Alam P, Samad A, Jawarkar RD, Masand VH. Perceiving the Concealed and Unreported Pharmacophoric Features of the 5-Hydroxytryptamine Receptor Using Balanced QSAR Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070834. [PMID: 35890133 PMCID: PMC9316833 DOI: 10.3390/ph15070834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/12/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-hydroxytryptamine receptor 6 (5-HT6) has gained attention as a target for developing therapeutics for Alzheimer’s disease, schizophrenia, cognitive dysfunctions, anxiety, and depression, to list a few. In the present analysis, a larger and diverse dataset of 1278 molecules covering a broad chemical and activity space was used to identify visual and concealed structural features associated with binding affinity for 5-HT6. For this, quantitative structure–activity relationships (QSAR) and molecular docking analyses were executed. This led to the development of a statistically robust QSAR model with a balance of excellent predictivity (R2tr = 0.78, R2ex = 0.77), the identification of unreported aspects of known features, and also novel mechanistic interpretations. Molecular docking and QSAR provided similar as well as complementary results. The present analysis indicates that the partial charges on ring carbons present within four bonds from a sulfur atom, the occurrence of sp3-hybridized carbon atoms bonded with donor atoms, and a conditional occurrence of lipophilic atoms/groups from nitrogen atoms, which are prominent but unreported pharmacophores that should be considered while optimizing a molecule for 5-HT6. Thus, the present analysis led to identification of some novel unreported structural features that govern the binding affinity of a molecule. The results could be beneficial in optimizing the molecules for 5-HT6.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Amravati 444603, Maharashtra, India
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444602, Maharashtra, India
| |
Collapse
|
19
|
Novel Difluoromethyl-Containing 1-((4-methoxy-3-(piperazin-1-yl)phenyl)sulfonyl)-1H-indole Scaffold as Potent 5-HT6R Antagonists: Design, Synthesis, Biological Evaluation, and Early in vivo Cognition-Enhancing Studies. Bioorg Med Chem 2022; 70:116917. [DOI: 10.1016/j.bmc.2022.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
|
20
|
Abstract
Cognitive impairment affects up to 80% of patients with Parkinson's disease (PD) and is associated with poor quality of life. PD cognitive dysfunction includes poor working memory, impairments in executive function and difficulty in set-shifting. The pathophysiology underlying cognitive impairment in PD is still poorly understood, but there is evidence to support involvements of the cholinergic, dopaminergic, and noradrenergic systems. Only rivastigmine, an acetyl- and butyrylcholinesterase inhibitor, is efficacious for the treatment of PD dementia, which limits management of cognitive impairment in PD. Whereas the role of the serotonergic system in PD cognition is less understood, through its interactions with other neurotransmitters systems, namely, the cholinergic system, it may be implicated in cognitive processes. In this chapter, we provide an overview of the pharmacological, clinical and pathological evidence that implicates the serotonergic system in mediating cognition in PD.
Collapse
|
21
|
Abdildinova A, Kim YC, Lee GH, Park WK, Cho H, Gong YD. N-(2,7-dimethyl-2-alkyl-2H-chromen-6-yl)sulfonamide derivatives as selective serotonin 5-HT6 receptor antagonists: Design, synthesis, and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Dabaria KK, Bai R, Jat PK, Badsara SS. Atom-Economical, Catalyst-Free Hydrosulfonation of Densely Functionalized Alkenes: Access to Oxindole Containing Sulfones. NEW J CHEM 2022. [DOI: 10.1039/d2nj02462d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atom-economical hydrosulfonation of densely functionalized alkenes under catalyst-free conditions is described. Alkenes possessing hydroxy-oxindole moiety underwent hydrosulfonation on treatment with arylsulfinic acids in green media to afford the resulting...
Collapse
|
23
|
Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg Chem 2021; 119:105572. [PMID: 34971946 DOI: 10.1016/j.bioorg.2021.105572] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
A series of around eight novel chalcone based coumarin derivatives (23a-h) was designed, subjected to in-silico ADMET prediction, synthesized, characterized by IR, NMR, Mass analytical techniques and evaluated as acetylcholinesterase (AChE) inhibitor for the treatment of Alzheimer's disease (AD). The results of predicted ADMET study demonstrated the drug-likeness properties of the titled compounds with developmental challenges in lipophilicity and solubility parameters. The in vitro assessment of the synthesized compounds revealed that all of them showed significant activity (IC50 ranging from 0.42 to 1.296 µM) towards AChE compared to the standard drug, galantamine (IC50 = 1.142 ± 0.027 µM). Among these, compound 23e displayed the most potent inhibitory activity with IC50 value of 0.42 ± 0.019 µM. Cytotoxicity of all compounds was tested on normal human hepatic (THLE-2) cell lines at three different concentrations using the MTT assay, in which none of the compound showed significant toxicity at the highest concentration of 1000 µg/ml compared to the control group. Based on the docking study against AChE, the most active derivative 23e was orientated towards the active site and occupied both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the target enzyme. In-silico studies revealed tested showed better inhibition activity of AChE compared to Butyrylcholinesterase (BuChE). Molecular dynamics simulation explored the stability and dynamic behavior of 23e- AChE complex.
Collapse
|
24
|
Asati V, Anant A, Patel P, Kaur K, Gupta GD. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches. Eur J Med Chem 2021; 225:113781. [PMID: 34438126 DOI: 10.1016/j.ejmech.2021.113781] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Pyrazolopyrimidine scaffold is one of the privileged heterocycles in drug discovery. This scaffold produced numerous biological activities in which anticancer is important one. Previous studies showed its importance in interactions with various receptors such as growth factor receptor, TGFBR2 gene, CDK2/cyclin E and Abl kinase, adenosine receptor, calcium-dependent Protein Kinase, Pim-1 kinase, Potent Janus kinase 2, BTK kinase, P21-activated kinase 1, extracellular signal-regulated kinase 2, histone lysine demethylase and Human Kinesin-5. However, there is a need of numerous studies for the discovery of target based potential compounds. The structure activity relationship studies may help to explore the generation of potential compounds in short time period. Therefore, in the present review we tried to explore the structural aspects of Pyrazolopyrimidine with their structure activity relationship against various targets for the development of potential compounds. The current review is the compilation of significant advances made on Pyrazolopyrimidines reported between 2015 and 2020.
Collapse
Affiliation(s)
- Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| | - Arjun Anant
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
25
|
Gulcan HO, Kosar M. The hybrid compounds as multi-target ligands for the treatment of Alzheimer's Disease: Considerations on Donepezil. Curr Top Med Chem 2021; 22:395-407. [PMID: 34766890 DOI: 10.2174/1568026621666211111153626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/31/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
The strategies to combat Alzheimer's Disease (AD) have been changing with respect to the failures of many drug candidates assessed in clinical studies, the complex pathophysiology of AD, and the limitations of the current drugs employed. So far, none of the targets, either validated or nonvalidated, have been shown to be purely causative in the generation and development of AD. Considering the progressive and the neurodegenerative characteristics of the disease, the main strategy has been based on the design of molecules capable of showing activity on more than one receptor, and it is defined as multi-target ligand design strategy. The hybrid molecule concept is an outcome of this approach. Donepezil, as one of the currently employed drugs for AD therapy, has also been utilized in hybrid drug design studies. This review has aimed to present the promising donepezil-like hybrid molecules introduced in the recent period. Particularly, multi-target ligands with additional activities concomitant to cholinesterase inhibition are preferred.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus, via Mersin 10, Turkey
| | - Muberra Kosar
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus, via Mersin 10, Turkey
| |
Collapse
|
26
|
Reddy GS, Kamaraj R, Hossain KA, Kumar JS, Thirupataiah B, Medishetti R, Sushma Sri N, Misra P, Pal M. Amberlyst-15 catalysed synthesis of novel indole derivatives under ultrasound irradiation: Their evaluation as serotonin 5-HT 2C receptor agonists. Bioorg Chem 2021; 116:105380. [PMID: 34670330 DOI: 10.1016/j.bioorg.2021.105380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
A series of indole based novel Schiff bases was designed as potential agonists of 5-HT2C receptor that was supported by docking studies in silico. These compounds were synthesized via Amberlyst-15 catalysed condensation of an appropriate pyrazole based primary amine with the corresponding indole-3-aldehyde under ultrasound irradiation at ambient temperature. A number of target Schiff bases were obtained in good yields (77-87%) under mild conditions within 1 h. Notably, the methodology afforded the corresponding pyrazolo[4,3-d]pyrimidin-7(4H)-one derivatives when the primary amine was replaced by a secondary amine. Several Schiff bases showed agonist activity when tested against human 5-HT2C using luciferase assay in HEK293T cells in vitro. The SAR (Structure-Activity-Relationship) studies suggested that the imine moiety was more favorable over its cyclic form i.e. the corresponding pyrazolopyrimidinone ring. The Schiff bases 3b (EC50 1.8 nM) and 3i (EC50 5.7 nM) were identified as the most active compounds and were comparable with Lorcaserin (EC50 8.5 nM). Also like Lorcaserin, none of these compounds were found to be PAM of 5-HT2C. With ∼24 and ∼150 fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B respectively the compound 3i that reduced locomotor activity in zebrafish (Danio rerio) larvae model emerged as a promising hit molecule for further study.
Collapse
Affiliation(s)
- Gangireddy Sujeevan Reddy
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Rajamanikkam Kamaraj
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Kazi Amirul Hossain
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jetta Sandeep Kumar
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - B Thirupataiah
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Raghavender Medishetti
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - N Sushma Sri
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Parimal Misra
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
27
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
28
|
Kucwaj-Brysz K, Baltrukevich H, Czarnota K, Handzlik J. Chemical update on the potential for serotonin 5-HT 6 and 5-HT 7 receptor agents in the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128275. [PMID: 34311086 DOI: 10.1016/j.bmcl.2021.128275] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Despite the better understanding of the mechanisms underlying Alzheimer's Disease (AD) and launched clinical trials, no AD-modifying treatment based on a synthetic drug has been introduced for almost twenty years. The serotonin 5-HT6 and 5-HT7 receptors turned out to be promising biological targets for modulation of central nervous system dysfunctions including cognitive impairment. Within this paper, we evaluate the pharmacological potency of both, 5-HT6R and 5-HT7R, agents in search for novel AD treatment. An overview of chemical structures of the 5-HTRs ligands with simultaneous procognitive action which have undergone preclinical and clinical studies within the last 10 years has been performed.
Collapse
Affiliation(s)
- Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Hanna Baltrukevich
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Kinga Czarnota
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| |
Collapse
|
29
|
Qu C, Song G, Ou J, Tang D, Xu Z, Chen Z. Visible
Light‐Mediated
Construction of Sulfonated Dibenzazepines. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuan‐Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Gui‐Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Jian‐Hua Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Dian‐Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhi‐Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhong‐Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| |
Collapse
|
30
|
Development of Novel Potential Pleiotropic Compounds of Interest in Alzheimer's Disease Treatment through Rigidification Strategy. Molecules 2021; 26:molecules26092536. [PMID: 33926141 PMCID: PMC8123621 DOI: 10.3390/molecules26092536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of Multi-Target Directed Ligand is of clear interest for the treatment of multifactorial pathology such as Alzheimer’s disease (AD). In this context, acetylcholinesterase (AChE) inhibitors have been modulated in order to generate novel pleiotropic compounds targeting a second protein of therapeutic interest in AD. Among them, donecopride was the first example of a dual acetylcholinesterase inhibitor and 5-HT4 receptor agonist. In order to explore the structural diversity around this preclinical candidate we have explored the preparation of novel constrained analogs through late-stage rigidification strategy. A series of phenylpyrazoles was prepared in a late-stage functionalization process and all compounds were evaluated in vitro towards AChE and 5-HTRs. A docking study was performed in order to better explain the observed SAR towards AChE, 5-HT4R and 5-HT6R and this study led to the description of novel ligand targeting both AChE and 5-HT6R.
Collapse
|
31
|
Drop M, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Bantreil X, Walczak M, Koczurkiewicz-Adamczyk P, Latacz G, Gwizdak A, Krawczyk M, Gołębiowska J, Grychowska K, Bojarski AJ, Nikiforuk A, Subra G, Martinez J, Pawłowski M, Popik P, Marin P, Lamaty F, Zajdel P. 2-Phenyl-1 H-pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT 6 Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chem Neurosci 2021; 12:1228-1240. [PMID: 33705101 PMCID: PMC8041276 DOI: 10.1021/acschemneuro.1c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
Serotonin type 6
receptor (5-HT6R) has gained particular
interest as a promising target for treating cognitive deficits, given
the positive effects of its antagonists in a wide range of memory
impairment paradigms. Herein, we report on degradation of the 1H-pyrrolo[3,2-c]quinoline scaffold
to provide the 2-phenyl-1H-pyrrole-3-carboxamide,
which is devoid of canonical indole-like skeleton and retains recognition
of 5-HT6R. This modification has changed the compound’s
activity at 5-HT6R-operated signaling pathways from neutral
antagonism to inverse agonism. The study identified compound 27 that behaves as an inverse agonist of the 5-HT6R at the Gs and Cdk5 signaling pathways. Compound 27 showed high selectivity and metabolic stability and was brain penetrant.
Finally, 27 reversed scopolamine-induced memory decline
in the novel object recognition test and exhibited procognitive properties
in the attentional set-shifting task in rats. In light of these findings, 27 might be considered for further evaluation as a new cognition-enhancing
agent, while 2-phenyl-1H-pyrrole-3-carboxamide might
be used as a template for designing 5-HT6R inverse agonists.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Anna Gwizdak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
32
|
Opretzka LCF, de Freitas HF, Espírito-Santo RF, Abreu LS, Alves IM, Tavares JF, Velozo EDS, Castilho MS, Villarreal CF. 5- O-methylcneorumchromone K Exerts Antinociceptive Effects in Mice via Interaction with GABAA Receptors. Int J Mol Sci 2021; 22:ijms22073413. [PMID: 33810317 PMCID: PMC8037321 DOI: 10.3390/ijms22073413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
The proper pharmacological control of pain is a continuous challenge for patients and health care providers. Even the most widely used medications for pain treatment are still ineffective or unsafe for some patients, especially for those who suffer from chronic pain. Substances containing the chromone scaffold have shown a variety of biological activities, including analgesic effects. This work presents for the first time the centrally mediated antinociceptive activity of 5-O-methylcneorumchromone K (5-CK). Cold plate and tail flick tests in mice showed that the 5-CK-induced antinociception was dose-dependent, longer-lasting, and more efficacious than that induced by morphine. The 5-CK-induced antinociception was not reversed by the opioid antagonist naloxone. Topological descriptors (fingerprints) were employed to narrow the antagonist selection to further investigate 5-CK's mechanism of action. Next, based on the results of fingerprints analysis, functional antagonist assays were conducted on nociceptive tests. The effect of 5-CK was completely reversed in both cold plate and tail-flick tests by GABAA receptor antagonist bicuculline, but not by atropine or glibenclamide. Molecular docking studies suggest that 5-CK binds to the orthosteric binding site, with a similar binding profile to that observed for bicuculline and GABA. These results evidence that 5-CK has a centrally mediated antinociceptive effect, probably involving the activation of GABAergic pathways.
Collapse
Affiliation(s)
- Luiza Carolina França Opretzka
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Humberto Fonseca de Freitas
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Renan Fernandes Espírito-Santo
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador CEP 40 296-710, Brazil
| | - Lucas Silva Abreu
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa CEP 58 050-585, Brazil; (L.S.A.); (J.F.T.)
| | - Iura Muniz Alves
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Josean Fechine Tavares
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa CEP 58 050-585, Brazil; (L.S.A.); (J.F.T.)
| | - Eudes da Silva Velozo
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Marcelo Santos Castilho
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Cristiane Flora Villarreal
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador CEP 40 296-710, Brazil
- Correspondence: ; Tel.: +55-71-3283-6933
| |
Collapse
|
33
|
Drug design of new 5-HT 6R antagonists aided by artificial neural networks. J Mol Graph Model 2021; 104:107844. [PMID: 33529936 DOI: 10.1016/j.jmgm.2021.107844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's Disease (AD) is the most frequent illness and cause of death amongst the age related-neurodegenerative disorders. The Alzheimer's Disease International (ADI) reported in 2019 that over 50 million people were living with dementia in the world and this number could potentially be around 152 million by 2050.5-hydroxtryptamine subtype 6 receptor (5-HT6R) has been identified as a potential anti-amnesic drug target and therefore, the administration of 5-HT6R antagonists can likely mitigate the memory loss and intellectual deterioration associated with AD. Herein, computational tools were applied to design new 5-HT6 antagonists and their biological activity values were predicted by our QSAR model obtained from Artificial Neural Networks (ANN). The proposed compounds here from the QSAR-ANN model presented significant biological activity values and some of them have achieved pKi above 9.00. Furthermore, our results suggest that the presence of halogen atoms (especially bromine) linked to the aromatic ring at para-position (HYD) contribute considerably to the increase of the biological activity values while bulky groups in the PI position do not culminate with the increase antagonist activity of compounds here analyzed. Finally, the ADME/Tox profile as well as the synthetic accessibility of new proposed compounds qualify them to go on further with experimental procedures and thenceforward their antagonist effects can be confirmed.
Collapse
|
34
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
de Natale ER, Wilson H, Politis M. Serotonergic imaging in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:303-338. [PMID: 33785134 DOI: 10.1016/bs.pbr.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of monoaminergic central pathways such as the serotonergic. The degeneration of serotonergic signaling in striatal and extrastriatal brain regions is an early feature of PD and is associated with several motor and non-motor complications of the disease. Molecular imaging techniques with Positron Emission Tomography (PET) have greatly contributed to the investigation of biological changes in vivo and to the understanding of the extent of serotonergic pathology in patients or individuals at risk for PD. Such discoveries provide with opportunities for the identification of new targets that can be used for the development of novel disease-modifying drugs or symptomatic treatments. Future studies of imaging serotonergic molecular targets will better clarify the importance of serotonergic pathology in PD, including progression of pathology, target-identification for pharmacotherapy, and relevance to endogenous synaptic serotonin levels. In this article, we review the current status and understanding of serotonergic imaging in PD.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom.
| |
Collapse
|
36
|
Kadagathur M, Patra S, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Syntheses and medicinal chemistry of azepinoindolones: a look back to leap forward. Org Biomol Chem 2021; 19:738-764. [PMID: 33459333 DOI: 10.1039/d0ob02181d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds constitute nearly 75% of small molecules which favorably act as drug candidates. For the past few decades, numerous natural and synthetic indole-based scaffolds have been reported for their diverse pharmacological profiles. In particular, indole-fused azepines, termed azepinoindolones, have come under the radar of medicinal chemists owing to their synthetic and pharmacological importance. A plethora of literature reports has been generated thereof, which calls for the need for the compilation of information to understand their current status in drug discovery. Accumulating reports of evidence suggest that compounds containing this privileged scaffold display their cytotoxic effects via inhibition of kinase, topoisomerase I, mitochondrial malate dehydrogenase (mMDH), and tubulin polymerization and as DNA minor groove binding agents. Herein, we endeavor to present a closer look at the advancements of various synthetic and derivatization methods of azepinoindolone-based compounds. We have further extended our efforts to discuss the pharmacological effects of azepinoindolones in the whole range of medicinal chemistry as anti-Alzheimer, anticancer, anti-inflammatory, antidiabetic, antileishmanial, and antipyranosomal agents and as drug delivery vectors. Our analysis of recent advances reveals that azepinoindolones will continue to serve as potential pharmaceutical modalities in the years to come and their substantial pool of synthetic methods will be ever expanding.
Collapse
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Sandip Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Neelima D Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
37
|
Amodeo DA, Oliver B, Pahua A, Hitchcock K, Bykowski A, Tice D, Musleh A, Ryan BC. Serotonin 6 receptor blockade reduces repetitive behavior in the BTBR mouse model of autism spectrum disorder. Pharmacol Biochem Behav 2021; 200:173076. [DOI: 10.1016/j.pbb.2020.173076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
|
38
|
Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E59. [PMID: 33383712 PMCID: PMC7823376 DOI: 10.3390/nano11010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), a progressively fatal neurodegenerative disorder, is the most prominent form of dementia found today. Patients suffering from Alzheimer's begin to show the signs and symptoms, like decline in memory and cognition, long after the cellular damage has been initiated in their brain. There are several hypothesis for the neurodegeneration process; however, the lack of availability of in vivo models makes the recapitulation of AD in humans impossible. Moreover, the drugs currently available in the market serve to alleviate the symptoms and there is no cure for the disease. There have been two major hurdles in the process of finding the same-the inefficiency in cracking the complexity of the disease pathogenesis and the inefficiency in delivery of drugs targeted for AD. This review discusses the different drugs that have been designed over the recent years and the drug delivery options in the field of nanotechnology that have been found most feasible in surpassing the blood-brain barrier (BBB) and reaching the brain.
Collapse
Affiliation(s)
- Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India;
| | - Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | | | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
- Hanvit Institute for Medical Genetics, Daegu 42601, Korea
| |
Collapse
|
39
|
Toublet FX, Lalut J, Hatat B, Lecoutey C, Davis A, Since M, Corvaisier S, Freret T, Sopková-de Oliveira Santos J, Claeysen S, Boulouard M, Dallemagne P, Rochais C. Pleiotropic prodrugs: Design of a dual butyrylcholinesterase inhibitor and 5-HT 6 receptor antagonist with therapeutic interest in Alzheimer's disease. Eur J Med Chem 2020; 210:113059. [PMID: 33310288 DOI: 10.1016/j.ejmech.2020.113059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Beside acetylcholinesterase, butyrylcholinesterase could be considered as a putative target of interest for the symptomatic treatment of Alzheimer's disease (AD). As a result of complexity of AD, no molecule has been approved since 2002. Idalopirdine, a 5-HT6 receptors antagonist, did not show its effectiveness in clinical trial despite its evaluation as adjunct to cholinesterase inhibitors. Pleiotropic molecules, known as multitarget directed ligands (MTDLs) are currently developed to tackle the multifactorial origin of AD. In this context, we have developed a pleiotropic carbamate 7, that behaves as a covalent inhibitor of BuChE (IC50 = 0.97 μM). The latter will deliver after hydrolysis, compound 6, a potent 5-HT6 receptors antagonist (Ki = 11.4 nM) related to idalopirdine. In silico and in vitro evaluation proving our concept were performed completed with first in vivo results that demonstrate great promise in restoring working memory.
Collapse
Affiliation(s)
| | - Julien Lalut
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | - Bérénice Hatat
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France; IGF, Univ. Montpellier, CNRS, INSERM Montpellier, France
| | | | - Audrey Davis
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | - Marc Since
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | | | - Thomas Freret
- Normandie Univ, Unicaen, INSERM, Comete, GIP CYCERON, 14000 Caen, France
| | | | | | - Michel Boulouard
- Normandie Univ, Unicaen, INSERM, Comete, GIP CYCERON, 14000 Caen, France
| | | | | |
Collapse
|
40
|
Xie S, Li Y, Liu P, Sun P. Visible Light-Induced Radical Addition/Annulation to Construct Phenylsulfonyl-Functionalized Dihydrobenzofurans Involving an Intramolecular 1,5-Hydrogen Atom Transfer Process. Org Lett 2020; 22:8774-8779. [PMID: 33147046 DOI: 10.1021/acs.orglett.0c03038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible light-induced radical cascade reaction of 2-alkynylarylethers with sodium sulfinates was established for the synthesis of sulfonyl-functionalized dihydrobenzofurans, and an intramolecular 1,5-hydrogen atom transfer was involved in this transformation. This process provided an efficient and convenient C-C formation protocol for the construction of a dihydrobenzofuran ring. Various substituents on 2-alkynylarylethers and sodium sulfinates were tolerated in the reaction, and the corresponding products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shentong Xie
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yifan Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
41
|
Pagire SK, Kumagai N, Shibasaki M. The Different Faces of [Ru(bpy) 3Cl 2] and fac[Ir(ppy) 3] Photocatalysts: Redox Potential Controlled Synthesis of Sulfonylated Fluorenes and Pyrroloindoles from Unactivated Olefins and Sulfonyl Chlorides. Org Lett 2020; 22:7853-7858. [PMID: 32909759 DOI: 10.1021/acs.orglett.0c02760] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A cascade alkene sulfonylation that simultaneously forges C-S and C-C bonds is a highly efficient and powerful approach for directly accessing structurally diverse sulfonylated compounds in a single operation. The reaction was enabled by visible-light-mediated regioselective radical addition of sulfonyl chlorides to 2-arylstyrenes using fac[Ir(ppy)3] as a photocatalyst, demonstrating its unique role in a photocascade process to execute atom transfer radical addition (ATRA) followed by photocyclization. A new class of sulfonyl-substituted fluorenes and pyrroloindoles, which are useful in the field of photoelectronic materials and medicinal chemistry, was produced in excellent yields by this photocascade reaction. In contrast, the cyclization was interrupted when using the [Ru(bpy)3Cl2] catalyst having lower reduction potential, leading only to the formation of a C-S bond and the production of acyclic sulfonylated 2-arylstyrenes under identical reaction conditions. The synthetic utility of the present room-temperature photocatalysis is enhanced by the broad availability of bench-stable sulfonyl chlorides and unactivated olefins, thereby providing a cost-effective and broad-scope protocol.
Collapse
Affiliation(s)
- Santosh K Pagire
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
42
|
Staroń J, Bugno R, Pietruś W, Satała G, Mordalski S, Warszycki D, Hogendorf A, Hogendorf AS, Kalinowska-Tłuścik J, Lenda T, Pilarski B, Bojarski AJ. Rationally designed N-phenylsulfonylindoles as a tool for the analysis of the non-basic 5-HT 6R ligands binding mode. Eur J Med Chem 2020; 209:112916. [PMID: 33328102 DOI: 10.1016/j.ejmech.2020.112916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Among all of the monoaminergic receptors, the 5-HT6R has the highest number of non-basic ligands (approximately 5% of compounds stored in 25th version of ChEMBL database have the strongest basic pKa below 5, calculated using the Instant JChem calculator plugin). These compounds, when devoid of a basic nitrogen, exhibit high affinity and remarkable selectivity. Despite a decade of research, no clues have been given for explanation of such an intriguing phenomenon. Here, a series of analogs of four known 5-HT6R ligands, has been rationally designed to approach this issue. For each of the synthesized 42 compounds, a binding affinity for 5-HT6R has been measured, together with a selectivity profile against 5-HT1AR, 5-HT2AR, 5-HT7R and D2R. Performed induced fit docking and molecular dynamics experiments revealed that no particular interaction was responsible for the activity of non-basic compounds. In fact, a plain N-phenylsulfonylindole (1e) was found to possess a moderate (5-HT6R, Ki = 159 nM) affinity. No other monoaminergic receptor has as simple and selective ligand as this one. Thus, it is stated that it binds to the receptor solely based on its conformation and as such, possesses a minimum amount of features, required for binding. Also, any functional group able to form an additional interaction with the receptor increase the binding affinity, like in the case of two highly active non-basic compounds 3e and 5g (5-HT6R, Ki = 65 nM and 38 nM, respectively).
Collapse
Affiliation(s)
- Jakub Staroń
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland.
| | - Ryszard Bugno
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Stefan Mordalski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Dawid Warszycki
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Agata Hogendorf
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Adam S Hogendorf
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physic Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Tomasz Lenda
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| | | | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smętna Street, Poland
| |
Collapse
|
43
|
Mezeiova E, Chalupova K, Nepovimova E, Gorecki L, Prchal L, Malinak D, Kuca K, Soukup O, Korabecny J. Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:772-800. [PMID: 30819078 DOI: 10.2174/1567205016666190228122956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
44
|
Sudoł S, Kucwaj-Brysz K, Kurczab R, Wilczyńska N, Jastrzębska-Więsek M, Satała G, Latacz G, Głuch-Lutwin M, Mordyl B, Żesławska E, Nitek W, Partyka A, Buzun K, Doroz-Płonka A, Wesołowska A, Bielawska A, Handzlik J. Chlorine substituents and linker topology as factors of 5-HT 6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties in vivo. Eur J Med Chem 2020; 203:112529. [PMID: 32693296 DOI: 10.1016/j.ejmech.2020.112529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022]
Abstract
In the light of recent lines of evidence, 5-HT6R ligands are a promising tool for future treatment of memory impairment. Hence, this study has supplied highly potent 5-HT6R agents with procognitive effects, which represent an original chemical class of 1,3,5-triazines, different from widely studied sulfone and indole-like 5-HT6R ligands. The new compounds were rationally designed as modifications of lead, 4-(1-(2-chlorophenoxy)ethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (1), involving an introduction of: (i) two chlorines at benzene ring and (ii) varied linkers joining the triazine ring to aromatic ethers. Synthesis, in vitro and in vivo biological tests and computer-aided SAR analysis for 19 new compounds were carried out. Most of the new triazines displayed high affinity (Ki < 100 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R and D2R. The crystallography-supported docking studies, including quantum-polarized ligand docking (QPLD), indicated that chlorine atoms may be involved in different type of halogen bonding, however, the linker properties seem to predominately affect the 5-HT6R affinity. 4-[1-(2,5-Dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (9), which displayed: the highest affinity (Ki = 6 nM), very strong 5-HT6R antagonistic action (KB = 27 pM), procognitive effects in vivo in novel object recognition (NOR) test in rats, a very good permeability in PAMPA model and satisfying safety in vitro, was identified as the most potent 1,3,5-triazine agent so far, useful as a new lead for further research.
Collapse
Affiliation(s)
- Sylwia Sudoł
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland; Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Natalia Wilczyńska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, PL 30-084, Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL 30-387, Kraków, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Kamila Buzun
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland; Deparmtent of Biotechnology, Medical University of Białystok, PL 15-222, Białystok, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Anna Bielawska
- Deparmtent of Biotechnology, Medical University of Białystok, PL 15-222, Białystok, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland.
| |
Collapse
|
45
|
Emon MA, Domingo-Fernández D, Hoyt CT, Hofmann-Apitius M. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures. BMC Bioinformatics 2020; 21:231. [PMID: 32503412 PMCID: PMC7275349 DOI: 10.1186/s12859-020-03568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, there has been a surge towards computational drug repositioning owing to constantly increasing -omics data in the biomedical research field. While numerous existing methods focus on the integration of heterogeneous data to propose candidate drugs, it is still challenging to substantiate their results with mechanistic insights of these candidate drugs. Therefore, there is a need for more innovative and efficient methods which can enable better integration of data and knowledge for drug repositioning. Results Here, we present a customizable workflow (PS4DR) which not only integrates high-throughput data such as genome-wide association study (GWAS) data and gene expression signatures from disease and drug perturbations but also takes pathway knowledge into consideration to predict drug candidates for repositioning. We have collected and integrated publicly available GWAS data and gene expression signatures for several diseases and hundreds of FDA-approved drugs or those under clinical trial in this study. Additionally, different pathway databases were used for mechanistic knowledge integration in the workflow. Using this systematic consolidation of data and knowledge, the workflow computes pathway signatures that assist in the prediction of new indications for approved and investigational drugs. Conclusion We showcase PS4DR with applications demonstrating how this tool can be used for repositioning and identifying new drugs as well as proposing drugs that can simulate disease dysregulations. We were able to validate our workflow by demonstrating its capability to predict FDA-approved drugs for their known indications for several diseases. Further, PS4DR returned many potential drug candidates for repositioning that were backed up by epidemiological evidence extracted from scientific literature. Source code is freely available at https://github.com/ps4dr/ps4dr.
Collapse
Affiliation(s)
- Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| |
Collapse
|
46
|
Courault P, Emery S, Bouvard S, Liger F, Chauveau F, Meyronet D, Fourier A, Billard T, Zimmer L, Lancelot S. Change in Expression of 5-HT6 Receptor at Different Stages of Alzheimer's Disease: A Postmortem Study with the PET Radiopharmaceutical [18F]2FNQ1P. J Alzheimers Dis 2020; 75:1329-1338. [PMID: 32417774 DOI: 10.3233/jad-191278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The 5-HT6 receptor is one of the most recently identified serotonin receptors in the central nervous system. Because of its role in memory and cognitive process, this receptor might be implicated in Alzheimer's disease (AD) and associated disorders. OBJECTIVE The aim of this study was to investigate the binding of [18F]2FNQ1P, a new specific radiotracer of 5-HT6 receptors, and to quantify 5-HT6 receptor density in caudate nucleus in a population of patients with different AD stages. METHODS Patients were classified according to the "ABC" NIA-AA classification. In vitro binding assays were performed in postmortem brain tissue from the healthy control (HC; n = 8) and severe AD ("High"; n = 8) groups. In vitro quantitative autoradiography was performed in human brain tissue (caudate nucleus) from patients with different stages of AD: HC (n = 15), "Low" (n = 18), "Int" (n = 20), and "High" (n = 15). RESULTS In vitro binding assays did not show significant differences for the KD and Bmax parameters between "High" and HC groups. In vitro quantitative autoradiography showed a significant difference between the "High" and HC groups (p = 0.0025). We also showed a progressive diminution in [18F]2FNQ1P specific binding, which parallels 5-HT6 receptors expression, according to increasing AD stage. Significant differences were observed between the HC group and all AD stages combined ("Low", "Intermediate", and "High") (p = 0.011). CONCLUSION This study confirms the interest of investigating the role of 5-HT6 receptors in AD and related disorders. [18F]2FNQ1P demonstrated specific binding to 5-HT6 receptors.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | - Stéphane Emery
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France
| | - Sandrine Bouvard
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France
| | - François Liger
- CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France
| | - Fabien Chauveau
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France
| | | | - Anthony Fourier
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | - Thierry Billard
- CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France.,Institute of Chemistry and Biochemistry (ICBMS), Université de Lyon, CNRS, Villeurbanne, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France.,CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France.,National Institute for Nuclear Science and Technology (INSTN), CEA, Saclay, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France.,CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France
| |
Collapse
|
47
|
Giri R, Alberts I, Harding WW. Synthesis, pharmacological evaluations, and molecular docking studies on a new 1,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine framework: Rigidification of D 1 receptor selective 1-phenylbenzazepines and discovery of a new 5-HT 6 receptor scaffold. Chem Biol Drug Des 2020; 96:825-835. [PMID: 32279445 DOI: 10.1111/cbdd.13691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
The novel 1,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine framework, a structurally rigidified variant of the 1-phenylbenzazepine template, was synthesized via direct arylation as a key reaction. Evaluation of the binding affinities of the rigidified compounds across a battery of serotonin, dopamine, and adrenergic receptors indicates that this scaffold unexpectedly has minimal affinity for D1 and other dopamine receptors and is selective for the 5-HT6 receptor. The affinity of these systems at the 5-HT6 receptor is significantly influenced by electronic and hydrophobic interactions as well as the enhanced rigidity of the ligands. Molecular docking studies indicate that the reduced D1 receptor affinity of the rigidified compounds may be due in part to weaker H-bonding interactions between the oxygenated moieties on the compounds and specific receptor residues. Key receptor-ligand H-bonding interactions, salt bridges, and π-π interactions appear to be responsible for the 5-HT6 receptor affinity of the compounds. Compounds 10 (6,7-dimethoxy-2,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine) and 12 (6,7-dimethoxy-2-methyl-2,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine) have been identified as structurally novel, high affinity (Ki = 5 nM), selective 5-HT6 receptor ligands.
Collapse
Affiliation(s)
- Rajan Giri
- Department of Chemistry, Hunter College, City University of New York, NY, USA.,Ph.D. Program in Chemistry, CUNY Graduate Center, New York, NY, USA
| | - Ian Alberts
- Department of Natural Sciences, LaGuardia Community College, Long Island City, NY, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, NY, USA.,Ph.D. Program in Chemistry, CUNY Graduate Center, New York, NY, USA.,Ph.D. Program in Biochemistry, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
48
|
da Silva AP, de Angelo RM, de Paula H, Honório KM, da Silva ABF. Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01513-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020; 9:cells9020506. [PMID: 32102186 PMCID: PMC7072884 DOI: 10.3390/cells9020506] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs’ role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song-Hee Jo
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
50
|
Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Cascade Cross-Coupling of Dienes: Photoredox and Nickel Dual Catalysis. Angew Chem Int Ed Engl 2020; 59:457-464. [PMID: 31778289 PMCID: PMC6973272 DOI: 10.1002/anie.201911109] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/12/2022]
Abstract
Chemical transformations based on cascade reactions have the potential to simplify the preparation of diverse and architecturally complex molecules dramatically. Herein, we disclose an unprecedented and efficient method for the cross-coupling of radical precursors, dienes, and electrophilic coupling partners via a photoredox- and nickel-enabled cascade cross-coupling process. The cascade reaction furnishes a diverse array of saturated carbo- and heterocyclic scaffolds, thus providing access to a quick gain in C-C bond saturation.
Collapse
Affiliation(s)
- Long Huang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Chen Zhu
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Liang Yi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Huifeng Yue
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| |
Collapse
|