1
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
3
|
Ruggieri F, Compagne N, Antraygues K, Eveque M, Flipo M, Willand N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur J Med Chem 2023; 256:115413. [PMID: 37150058 DOI: 10.1016/j.ejmech.2023.115413] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.
Collapse
Affiliation(s)
- Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kevin Antraygues
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
4
|
Pudipeddi A, Vasudevan S, Shanmugam K, Mohan S S, Vairaprakash P, Neelakantan P, Balraj AS, Solomon AP. Design, dynamic docking, synthesis, and in vitro validation of a novel DNA gyrase B inhibitor. J Biomol Struct Dyn 2022:1-14. [PMID: 35924774 DOI: 10.1080/07391102.2022.2107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate-resistant Staphylococcus aureus (VRSA) are among the WHO's high priority pathogens. Among these two, MRSA is the most globally documented pathogen that necessitates the pressing demand for new classes of anti-MRSA drugs. Bacterial gyrase targeted therapeutics are unique strategies to overcome cross-resistance as they are present only in bacteria and absent in higher eukaryotes. The GyrB subunit is essential for the catalytic functions of the bacterial enzyme DNA Gyrase, thereby constituting a promising druggable target. The current study performed a structure-based virtual screening to designing GyrB target-specific candidate molecules. The de novo ligand design of novel hit molecules was performed using a rhodanine scaffold. Through a systematic in silico screening process, the hit molecules were screened for their synthetic accessibility, drug-likeness and pharmacokinetics properties in addition to its target specific interactions. Of the 374 hit molecules obtained through de novo ligand design, qsl-304 emerged as the most promising ligand. The molecular dynamic simulation studies confirmed the stable interaction between the key residues and qsl-304. qsl-304 was synthesized through a one-step chemical synthesis procedure, and the in vitro activity was proven, with an IC50 of 31.23 µg/mL against the novobiocin resistant clinical isolate, Staphylococcus aureus sa-P2003. Further studies on time-kill kinetics showed the bacteriostatic nature with the diminished recurrence of resistance. The on-target gyrB inhibition further proved the efficacy of qsl-304.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhila Pudipeddi
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Suma Mohan S
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Alex Stanley Balraj
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Govender P, Müller R, Singh K, Reddy V, Eyermann CJ, Fienberg S, Ghorpade SR, Koekemoer L, Myrick A, Schnappinger D, Engelhart C, Meshanni J, Byl JAW, Osheroff N, Singh V, Chibale K, Basarab GS. Spiropyrimidinetrione DNA Gyrase Inhibitors with Potent and Selective Antituberculosis Activity. J Med Chem 2022; 65:6903-6925. [PMID: 35500229 DOI: 10.1021/acs.jmedchem.2c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antibiotics with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new spiropyrimidinetriones (SPTs), DNA gyrase inhibitors having activity against drug-resistant Mycobacterium tuberculosis (Mtb), the causative agent of TB. While the clinical candidate zoliflodacin has progressed to phase 3 trials for the treatment of gonorrhea, compounds herein demonstrated higher inhibitory potency against Mtb DNA gyrase (e.g., compound 42 with IC50 = 2.0) and lower Mtb minimum inhibitor concentrations (0.49 μM for 42). Notably, 42 and analogues showed selective Mtb activity relative to representative Gram-positive and Gram-negative bacteria. DNA gyrase inhibition was shown to involve stabilization of double-cleaved DNA, while on-target activity was supported by hypersensitivity against a gyrA hypomorph. Finally, a docking model for SPTs with Mtb DNA gyrase was developed, and a structural hypothesis was built for structure-activity relationship expansion.
Collapse
Affiliation(s)
- Preshendren Govender
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Rudolf Müller
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Kawaljit Singh
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Virsinha Reddy
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Charles J Eyermann
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Sandeep R Ghorpade
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lizbé Koekemoer
- Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Alissa Myrick
- Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Curtis Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jaclynn Meshanni
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town, 7935, South Africa
| |
Collapse
|
6
|
Spiropyrimidinetriones: a Class of DNA Gyrase Inhibitors with Activity against Mycobacterium tuberculosis and without Cross-Resistance to Fluoroquinolones. Antimicrob Agents Chemother 2022; 66:e0219221. [PMID: 35266826 PMCID: PMC9017349 DOI: 10.1128/aac.02192-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.
Collapse
|
7
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HEA, Al-Karmalamy AA, Abulkhair HS. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02838c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resistance of pathogenic microbes to currently available antimicrobial agents has been considered a global alarming concern.
Collapse
Affiliation(s)
- Mohamed H. El-Shershaby
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Kamal M. El-Gamal
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ahmed A. Al-Karmalamy
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Horus University - Egypt
- New Damietta
- Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| |
Collapse
|
8
|
Wang K, Wu Q, Liu Y, Liu L, Chen G, Li Y, Bi S. Theoretical Insights into Ester-Directed Reactions between Propiolates with 1,2-Benzisoxazoles by Au(I) Catalyst: [4 + 2]-Annulation versus Michael-Type Products. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kaifeng Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Qiao Wu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Guang Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, PR China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
9
|
Basarab GS, Doig P, Eyermann CJ, Galullo V, Kern G, Kimzey A, Kutschke A, Morningstar M, Schuck V, Vishwanathan K, Zhou F, Gowravaram M, Hauck S. Antibacterial Spiropyrimidinetriones with N-Linked Azole Substituents on a Benzisoxazole Scaffold Targeting DNA Gyrase. J Med Chem 2020; 63:11882-11901. [DOI: 10.1021/acs.jmedchem.0c01100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gregory S. Basarab
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Peter Doig
- Department of Biosciences, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Charles J. Eyermann
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Vincent Galullo
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gunther Kern
- Department of Biosciences, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Amy Kimzey
- Discovery Safety, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Amy Kutschke
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Marshall Morningstar
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Virna Schuck
- Drug Safety and Metabolism, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Karthick Vishwanathan
- Drug Safety and Metabolism, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Fei Zhou
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Madhusudhan Gowravaram
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sheila Hauck
- Department of Chemistry, Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
10
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
11
|
Bradford PA, Miller AA, O’Donnell J, Mueller JP. Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect Dis 2020; 6:1332-1345. [PMID: 32329999 DOI: 10.1021/acsinfecdis.0c00021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Centers for Disease Control and the World Health Organization have issued a list of priority pathogens for which there are dwindling therapeutic options, including antibiotic-resistant Neisseria gonorrheae, for which novel oral agents are urgently needed. Zoliflodacin, the first in a new class of antibacterial agents called the spiropyrimidinetriones, is being developed for the treatment of gonorrhea. It has a unique mode of inhibition against bacterial type II topoisomerases with binding sites in bacterial gyrase that are distinct from those of the fluoroquinolones. Zoliflodacin is bactericidal, with a low frequency of resistance and potent antibacterial activity against N. gonorrheae, including multi-drug-resistant strains (MICs ranging from ≤0.002 to 0.25 μg/mL). Although being developed for the treatment of gonorrhea, zoliflodacin also has activity against Gram-positive, fastidious Gram-negative, and atypical pathogens. A hollow-fiber infection model using S. aureus showed that that pharmacokinetic/pharmacodynamic index of fAUC/MIC best correlated with efficacy in in vivo neutropenic thigh models in mice. This data and unbound exposure magnitudes derived from the thigh models were subsequently utilized in a surrogate pathogen approach to establish dose ranges for clinical development with N. gonorrheae. In preclinical studies, a wide safety margin supported progression to phase 1 studies in healthy volunteers, which showed linear pharmacokinetics, good oral bioavailability, and no significant safety findings. In a phase 2 study, zoliflodacin was effective in treating gonococcal urogenital and rectal infections. In partnership with the Global Antibiotic Research Development Program (GARDP), zoliflodacin is currently being studied in a global phase 3 clinical trial. Zoliflodacin represents a promising new oral therapy for drug-resistant infections caused by N. gonorrheae.
Collapse
Affiliation(s)
- Patricia A. Bradford
- Antimicrobial Development Specialists, LLC, Nyack, New York 10960, United States
| | - Alita A. Miller
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - John O’Donnell
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - John P. Mueller
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| |
Collapse
|
12
|
Premkumar J, Sampath P, Sanjay R, Chandrakala A, Rajagopal D. Synthetic Guaiacol Derivatives as Promising Myeloperoxidase Inhibitors Targeting Atherosclerotic Cardiovascular Disease. ChemMedChem 2020; 15:1187-1199. [DOI: 10.1002/cmdc.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jayaraj Premkumar
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology-Vellore Tamilnadu 632014 India
| | - Parthasarathy Sampath
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| | - Rajagopalan Sanjay
- Division of Cardiovascular MedicineHarrington Heart and Vascular Institute Cleveland 44106 Ohio USA
- Cardiovascular Research InstituteSchool of MedicineCase Western Reserve University Cleveland Ohio 44106 USA
| | - Aluganti Chandrakala
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| | - Desikan Rajagopal
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology-Vellore Tamilnadu 632014 India
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| |
Collapse
|
13
|
Josa-Culleré L, Hirst MG, Lockett JP, Thompson AL, Moloney MG. Spirocyclic Tetramates by Sequential Knoevenagel and [1,5]-Prototropic Shift. J Org Chem 2019; 84:9671-9683. [PMID: 31276419 DOI: 10.1021/acs.joc.9b01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly functionalized spirocyclic tetramates were prepared via a sequential Knoevenagel reaction and [1,5]-prototropic shift (T-reaction) of bicyclic tetramates. While these compounds isomerize in solution, stable analogues can be prepared via an appropriate choice of substituents. Further modification of these compounds allows for the introduction of aromatic groups, making them suitable as skeletons for application in medicinal chemistry.
Collapse
Affiliation(s)
- Laia Josa-Culleré
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Michael G Hirst
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Jonathan P Lockett
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Amber L Thompson
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Mark G Moloney
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K.,Oxford Suzhou Centre for Advanced Research , Building A, 388 Ruo Shui Road, Suzhou Industrial Park , Jiangsu 215123 , P. R. China
| |
Collapse
|
14
|
Shi C, Zhang Y, Wang T, Lu W, Zhang S, Guo B, Chen Q, Luo C, Zhou X, Yang Y. Design, Synthesis, and Biological Evaluation of Novel DNA Gyrase-Inhibiting Spiropyrimidinetriones as Potent Antibiotics for Treatment of Infections Caused by Multidrug-Resistant Gram-Positive Bacteria. J Med Chem 2019; 62:2950-2973. [PMID: 30698430 DOI: 10.1021/acs.jmedchem.8b01750] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spiropyrimidinetriones are a novel class of antibacterial agents that target the bacterial type II topoisomerase via a new mode of action. Compound ETX0914 is thus far the only drug from this class that is being evaluated in clinical trials. To improve the antibacterial activity and pharmacokinetic properties of ETX0914, we carried out systematic structural modification of this compound, and a number of compounds with increased potency were obtained. The most promising compound 33e, with incorporation of a spirocyclopropane at the oxazolidinone 5 position reduced metabolism, exhibited excellent antibacterial activity against Gram-positive pathogens and a good pharmacokinetic profile combined with high aqueous solubility. In addition, compound 33e exhibited good selectivity for Staphylococcus aureus gyrase over human Topo IIα. In a murine model of systemic methicillin-resistant S. aureus infection, 33e exhibited superior in vivo efficacy (ED50 = 3.87 mg/kg) compared to ETX0914 (ED50 = 11.51 mg/kg).
Collapse
Affiliation(s)
- Chenghui Shi
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinyong Zhang
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan Province 610031 , China
| | - Ting Wang
- Department of Microbiology , Sichuan Primed Bio-Tech Group Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Wenchao Lu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuhua Zhang
- Department of Microbiology , Sichuan Primed Bio-Tech Group Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Bin Guo
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qian Chen
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Cheng Luo
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xianli Zhou
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan Province 610031 , China
| | - Yushe Yang
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
15
|
Pandit YB, Sahani RL, Liu RS. Gold-Catalyzed Michael-Type Reactions and [4 + 2]-Annulations between Propiolates and 1,2-Benzisoxazoles with Ester-Directed Chemoselectivity. Org Lett 2018; 20:6655-6658. [DOI: 10.1021/acs.orglett.8b02663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yashwant Bhaskar Pandit
- Frontier Research Centers of Matter Science and Technology and Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Rajkumar Lalji Sahani
- Frontier Research Centers of Matter Science and Technology and Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Rai-Shung Liu
- Frontier Research Centers of Matter Science and Technology and Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| |
Collapse
|
16
|
Zhao HW, Feng NN, Guo JM, Du J, Ding WQ, Wang LR, Song XQ. Diastereoselective and Enantioselective Synthesis of Barbiturate-Fused Spirotetrahydroquinolines via Chiral Palladium(0)/Ligand Complex Catalyzed [4 + 2] Cycloaddition of Vinyl Benzoxazinanones with Barbiturate-Based Olefins. J Org Chem 2018; 83:9291-9299. [PMID: 30019580 DOI: 10.1021/acs.joc.8b01268] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Under the catalysis of chiral palladium(0)/ligand complex, the [4 + 2] cycloaddition between vinyl benzoxazinanones and barbiturate-based olefins proceeded readily and provided barbiturate-fused spirotetrahydroquinolines in up to 96% chemical yield with up to >99:1 dr and 97% ee. The absolute configuration of barbiturate-fused spirotetrahydroquinolines was clearly identified by X-ray single crystal structure analysis. The reaction mechanism was proposed to shed light on the enantioselective formation of barbiturate-fused spirotetrahydroquinolines.
Collapse
Affiliation(s)
- Hong-Wu Zhao
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Ning-Ning Feng
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Jia-Ming Guo
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Juan Du
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Wan-Qiu Ding
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Li-Ru Wang
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Xiu-Qing Song
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| |
Collapse
|
17
|
In Vitro and In Vivo Activities of DS-2969b, a Novel GyrB Inhibitor, and Its Water-Soluble Prodrug, DS11960558, against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:AAC.02556-17. [PMID: 29610202 DOI: 10.1128/aac.02556-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 01/04/2023] Open
Abstract
DS-2969b is a novel GyrB inhibitor under clinical development. In this study, the in vitro activity of DS-2969b and the in vivo activities of DS-2969b and its water-soluble prodrug, DS11960558, against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. DS-2969b inhibited the supercoiling activity of S. aureus DNA gyrase and the decatenation activity of its topoisomerase IV. DS-2969b showed antibacterial activity against Gram-positive aerobes but not against Gram-negative aerobes, except for Moraxella catarrhalis and Haemophilus influenzae DS-2969b was active against MRSA with an MIC90 of 0.25 μg/ml, which was 8-fold lower than that of linezolid. The presence of a pulmonary surfactant did not affect the MIC of DS-2969b. DS-2969b showed time-dependent slow killing against MRSA. The frequency of spontaneous resistance development was less than 6.2 × 10-10 in all four S. aureus isolates at 4× MIC of DS-2969b. In a neutropenic MRSA-induced murine muscle infection model, DS-2969b was more efficacious than linezolid by both the subcutaneous and oral routes. DS-2969b and DS11960558 showed efficacy in a neutropenic murine MRSA lung infection model. The pharmacokinetics and pharmacodynamics of DS-2969b and DS11960558 against MRSA were characterized in a neutropenic murine thigh infection model; the percentage of time during the dosing period in which the free drug concentration exceeded the MIC (fTMIC) correlated best with in vivo efficacy, and the static percent fTMIC was 43 to 49%. A sufficient fTMIC was observed in a phase 1 multiple-ascending-dose study of DS-2969b given orally at 400 mg once a day. These results suggest that DS11960558 and DS-2969b have potential for use as intravenous-to-oral step-down therapy for treating MRSA infections with a higher efficacy than linezolid.
Collapse
|
18
|
Gerasyuto AI, Arnold MA, Wang J, Chen G, Zhang X, Smith S, Woll MG, Baird J, Zhang N, Almstead NG, Narasimhan J, Peddi S, Dumble M, Sheedy J, Weetall M, Branstrom AA, Prasad JVN, Karp GM. Discovery and Optimization of Indolyl-Containing 4-Hydroxy-2-Pyridone Type II DNA Topoisomerase Inhibitors Active against Multidrug Resistant Gram-negative Bacteria. J Med Chem 2018; 61:4456-4475. [PMID: 29727185 PMCID: PMC5991783 DOI: 10.1021/acs.jmedchem.8b00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC90 values against Escherichia coli (0.5-1 μg/mL) and Acinetobacter baumannii (8-16 μg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.
Collapse
Affiliation(s)
- Aleksey I Gerasyuto
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Michael A Arnold
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Jiashi Wang
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Guangming Chen
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Xiaoyan Zhang
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Sean Smith
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Matthew G Woll
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - John Baird
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Nanjing Zhang
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Neil G Almstead
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Jana Narasimhan
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Srinivasa Peddi
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Melissa Dumble
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Josephine Sheedy
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Marla Weetall
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Arthur A Branstrom
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - J V N Prasad
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Gary M Karp
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| |
Collapse
|
19
|
Chen C, Xu L, Wang L, Li SS. Efficient construction of tetrahydroquinolines via fluorinated alcohol mediated cascade [1,5]-hydride transfer/cyclization. Org Biomol Chem 2018; 16:7109-7114. [DOI: 10.1039/c8ob02012d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An environmentally benign cascade redox-neutral process was developed for the efficient construction of pharmaceutically important spirocyclic tetrahydroquinolines via a 3-step cascade Knoevenagel condensation/[1,5]-hydride transfer/cyclization.
Collapse
Affiliation(s)
- Chunqi Chen
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
20
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Rakesh KP, Shantharam CS, Sridhara MB, Manukumar HM, Qin HL. Benzisoxazole: a privileged scaffold for medicinal chemistry. MEDCHEMCOMM 2017; 8:2023-2039. [PMID: 30108720 PMCID: PMC6072331 DOI: 10.1039/c7md00449d] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022]
Abstract
The benzisoxazole analogs represent one of the privileged structures in medicinal chemistry and there has been an increasing number of studies on benzisoxazole-containing compounds. The unique benzisoxazole scaffold also exhibits an impressive potential as antimicrobial, anticancer, anti-inflammatory, anti-glycation agents and so on. This review examines the state of the art in medicinal chemistry as it relates to the comprehensive and general summary of the different benzisoxazole analogs, their use as starting building blocks of multifarious architectures on scales sufficient to drive human drug trials. The number of reports describing benzisoxazole-containing highly active compounds leads to the expectation that this scaffold will further emerge as a potential candidate in the field of drug discovery.
Collapse
Affiliation(s)
- K P Rakesh
- Department of Pharmaceutical Engineering , School of Chemistry , Chemical Engineering and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan , 430073 , PR China .
| | - C S Shantharam
- Department of Chemistry , Pooja Bhagavath Memorial Mahajana Education Centre , Mysuru-570016 , Karnataka , India . ; Tel: +91 8904386977
| | - M B Sridhara
- Department of Chemistry , Rani Channamma University , Vidyasangama , Belagavi-591156 , Karnataka , India
| | - H M Manukumar
- Department of Studies in Biotechnology , University of Mysore , Manasagangotri , Mysuru-570006 , Karnataka , India
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering , School of Chemistry , Chemical Engineering and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan , 430073 , PR China .
| |
Collapse
|
22
|
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Metal-Involving Synthesis and Reactions of Oximes. Chem Rev 2017; 117:13039-13122. [PMID: 28991449 DOI: 10.1021/acs.chemrev.7b00264] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review classifies and summarizes the past 10-15 years of advancements in the field of metal-involving (i.e., metal-mediated and metal-catalyzed) reactions of oximes. These reactions are diverse in nature and have been employed for syntheses of oxime-based metal complexes and cage-compounds, oxime functionalizations, and the preparation of new classes of organic species, in particular, a wide variety of heterocyclic systems spanning small 3-membered ring systems to macroheterocycles. This consideration gives a general outlook of reaction routes, mechanisms, and driving forces and underlines the potential of metal-involving conversions of oxime species for application in various fields of chemistry and draws attention to the emerging putative targets.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Marina Ya Demakova
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
23
|
Abstract
DNA gyrase and topoisomerase IV are type IIA bacterial topoisomerases that are targeted by highly effective antibiotics. However, resistance via multiple mechanisms arises to limit the efficacies of these drugs. Continued research on type IIA bacterial topoisomerases has provided novel approaches to counter the most common resistance mechanism for utilization of these proven targets in antibacterial therapy. Bacterial topoisomerase I is being explored as an alternative target that is not expected to show cross-resistance. Dual targeting or combination therapy could be strategies for circumventing the development of resistance to topoisomerase-targeting antibiotics. Bacterial topoisomerases are high-value bactericidal targets that could continue to be exploited for antibacterial therapy, if new tactics to counter resistance can be adopted.
Collapse
|
24
|
Malik M, Mustaev A, Schwanz HA, Luan G, Shah N, Oppegard LM, de Souza EC, Hiasa H, Zhao X, Kerns RJ, Drlica K. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Res 2016; 44:3304-16. [PMID: 26984528 PMCID: PMC4838383 DOI: 10.1093/nar/gkw161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/02/2016] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Arkady Mustaev
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Heidi A Schwanz
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Gan Luan
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Nirali Shah
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Lisa M Oppegard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ernane C de Souza
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xilin Zhao
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Robert J Kerns
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Karl Drlica
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Briones JF, Basarab GS. Expedient synthesis of tetrahydroquinoline-3-spirohydantoin derivatives via the Lewis acid-catalyzed tert-amino effect reaction. Chem Commun (Camb) 2016; 52:8541-4. [DOI: 10.1039/c6cc03600g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Magnesium triflate was found to effectively catalyze the tert-amino effect reaction (T-reaction) involving ethyl 3-(2-(dialkylamino)-phenyl)-2-nitroacrylates leading to tetrahydroquinoline nitroester derivatives.
Collapse
Affiliation(s)
- John F. Briones
- Infection Innovative Medicines
- AstraZeneca R&D Boston
- Waltham
- USA
| | | |
Collapse
|
26
|
Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics. Antimicrob Agents Chemother 2015; 60:845-54. [PMID: 26596941 DOI: 10.1128/aac.01747-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 01/11/2023] Open
Abstract
Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens.
Collapse
|
27
|
Biedenbach DJ, Huband MD, Hackel M, de Jonge BLM, Sahm DF, Bradford PA. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens. Antimicrob Agents Chemother 2015; 59:6053-63. [PMID: 26195518 PMCID: PMC4576048 DOI: 10.1128/aac.01016-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/12/2015] [Indexed: 11/20/2022] Open
Abstract
AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.
Collapse
Affiliation(s)
| | | | - Meredith Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | |
Collapse
|
28
|
Burns DJ, Best D, Wieczysty MD, Lam HW. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C-H Functionalization and 1,4-Migration. Angew Chem Int Ed Engl 2015; 54:9958-62. [PMID: 26224377 PMCID: PMC4557058 DOI: 10.1002/anie.201503978] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/13/2023]
Abstract
1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration.
Collapse
Affiliation(s)
- David J Burns
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK) E-mail:
| | - Daniel Best
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK) E-mail:
| | - Martin D Wieczysty
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King's BuildingsDavid Brewster Road, Edinburgh EH9 3FJ (UK)
| | - Hon Wai Lam
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK) E-mail:
| |
Collapse
|
29
|
Protective effect of Qnr on agents other than quinolones that target DNA gyrase. Antimicrob Agents Chemother 2015; 59:6689-95. [PMID: 26239981 DOI: 10.1128/aac.01292-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Qnr is a plasmid-encoded and chromosomally determined protein that protects DNA gyrase and topoisomerase IV from inhibition by quinolones. Despite its prevalence worldwide and existence prior to the discovery of quinolones, its native function is not known. Other synthetic compounds and natural products also target bacterial topoisomerases. A number were studied as molecular probes to gain insight into how Qnr acts. Qnr blocked inhibition by synthetic compounds with somewhat quinolone-like structure that target the GyrA subunit, such as the 2-pyridone ABT-719, the quinazoline-2,4-dione PD 0305970, and the spiropyrimidinetrione pyrazinyl-alkynyl-tetrahydroquinoline (PAT), indicating that Qnr is not strictly quinolone specific, but Qnr did not protect against GyrA-targeting simocyclinone D8 despite evidence that both simocyclinone D8 and Qnr affect DNA binding to gyrase. Qnr did not affect the activity of tricyclic pyrimidoindole or pyrazolopyridones, synthetic inhibitors of the GyrB subunit, or nonsynthetic GyrB inhibitors, such as coumermycin A1, novobiocin, gyramide A, or microcin B17.Thus, in this set of compounds the protective activity of Qnr was confined to those that, like quinolones, trap gyrase on DNA in cleaved complexes.
Collapse
|
30
|
Basarab GS, Doig P, Galullo V, Kern G, Kimzey A, Kutschke A, Newman JP, Morningstar M, Mueller J, Otterson L, Vishwanathan K, Zhou F, Gowravaram M. Discovery of Novel DNA Gyrase Inhibiting Spiropyrimidinetriones: Benzisoxazole Fusion with N-Linked Oxazolidinone Substituents Leading to a Clinical Candidate (ETX0914). J Med Chem 2015; 58:6264-82. [PMID: 26158756 DOI: 10.1021/acs.jmedchem.5b00863] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel class of bacterial type-II topoisomerase inhibitor displaying a spiropyrimidinetrione architecture fused to a benzisoxazole scaffold shows potent activity against Gram-positive and fastidious Gram-negative bacteria. Here, we describe a series of N-linked oxazolidinone substituents on the benzisoxazole that improve upon the antibacterial activity of initially described compounds of the class, show favorable PK properties, and demonstrate efficacy in an in vivo Staphylococcus aureus infection model. Inhibition of the topoisomerases DNA gyrase and topoisomerase IV from both Gram-positive and a Gram-negative organisms was demonstrated. Compounds showed a clean in vitro toxicity profile, including no genotoxicity and no bone marrow toxicity at the highest evaluated concentrations or other issues that have been problematic for some fluoroquinolones. Compound 1u was identified for advancement into human clinical trials for treatment of uncomplicated gonorrhea based on a variety of beneficial attributes including the potent activity and the favorable safety profile.
Collapse
|
31
|
Burns DJ, Best D, Wieczysty MD, Lam HW. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed CH Functionalization and 1,4-Migration. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503978] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep 2015; 5:11827. [PMID: 26168713 PMCID: PMC4501059 DOI: 10.1038/srep11827] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.
Collapse
|
33
|
Kern G, Palmer T, Ehmann DE, Shapiro AB, Andrews B, Basarab GS, Doig P, Fan J, Gao N, Mills SD, Mueller J, Sriram S, Thresher J, Walkup GK. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914. J Biol Chem 2015; 290:20984-20994. [PMID: 26149691 DOI: 10.1074/jbc.m115.663534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022] Open
Abstract
We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467-474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.
Collapse
Affiliation(s)
- Gunther Kern
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451.
| | - Tiffany Palmer
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - David E Ehmann
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Adam B Shapiro
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Beth Andrews
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Gregory S Basarab
- Departments of Chemistry, Infection Innovative Medicines Unit, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Peter Doig
- Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Jun Fan
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Ning Gao
- Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Scott D Mills
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - John Mueller
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Shubha Sriram
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Jason Thresher
- Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | - Grant K Walkup
- Departments of Biosciences, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| |
Collapse
|
34
|
Abstract
INTRODUCTION Benzisoxazoles represent a class of heterocyclic compounds of great importance for the preparation of biologically active compounds. Benzisoxazoles are an important structure and some benzisoxazole-based medicines have been approved for human clinical use, including atypical antipsychotics (risperidone, paliperidone and iloperidone) and an anticonvulsant (zonisamide). AREAS COVERED This review puts emphasis on the recent progress in therapeutically attractive benzisoxazole derivatives especially 1,2-benzisoxazoles, which were published in the patent literature between 2009 and 2014. As for the class of medicines, the main focus is on atypical antipsychotics and potential therapeutic treatments for other CNS disorders. This review also covers the examples of benzisoxazole-based kinase inhibitors. Moreover, novel benzisoxazoles with significant therapeutic interest are also mentioned. EXPERT OPINION More recent examples of structural modification of existing drugs led to the discovery of some promising benzisoxazoles for antipsychotic use. The design of multi-target ligands is important for the manipulation of pharmacological properties and safety profiles for the use of antipsychotics. Benzisoxazoles have been widely used as pharmacophores in the search for novel drug candidates in a variety of therapeutic area. It is fair to assume that the wide and frequent use of benzisoxazoles in drug discovery and development will continue into the future.
Collapse
Affiliation(s)
- Yoshikazu Uto
- Daiichi Sankyo Co., Ltd, Venture Science Laboratories , 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 , Japan
| |
Collapse
|
35
|
Basarab GS, Galullo V, DeGrace N, Hauck S, Joubran C, Wesolowski SS. Synthesis of a Tetrahydronaphthyridine Spiropyrimidinetrione DNA Gyrase Inhibiting Antibacterial Agent - Differential Substitution at all Five Carbon Atoms of Pyridine. Org Lett 2014; 16:6456-9. [DOI: 10.1021/ol503256h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Gregory S. Basarab
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Vincent Galullo
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Nancy DeGrace
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sheila Hauck
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Camil Joubran
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Steven S. Wesolowski
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|