1
|
Hennessy MR, Creed SM, Gutridge AM, Rusali LE, Luo D, Sepehri B, Rhoda ES, Villegas JA, van Rijn RM, Riley AP. Discovery of Potent Kappa Opioid Receptor Agonists Derived from Akuammicine. J Med Chem 2024; 67:20842-20857. [PMID: 39565354 DOI: 10.1021/acs.jmedchem.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Akuammicine (1), an alkaloid isolated from Picralima nitida, is an agonist of the kappa opioid receptor (κOR). To establish structure-activity relationships (SARs) for this structurally unique κOR ligand, a collection of semisynthetic derivatives was synthesized. Evaluating these derivatives for their ability to activate the κOR and mu opioid receptor (μOR) revealed key SAR trends and identified derivatives with enhanced κOR potency. Most notably, substitutions to the C10 position of the aryl ring led to a > 200-fold improvement in κOR potency and nearly complete selectivity for the κOR. A selection of the most potent ligands was shown to possess differing abilities recruitment of β-Arrestin-2 to the κOR, indicating they have distinct signaling properties from each other and existing κOR ligands. The discovery of these κOR agonists underscores the potential of using natural products to identify new classes of potent and selective ligands and provides new tools to probe the κOR.
Collapse
Affiliation(s)
- Madeline R Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Simone M Creed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bakhtyar Sepehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Alexeev MS, Strelkova TV, Ilyin MM, Nelyubina YV, Bespalov IA, Medvedev MG, Khrustalev VN, Kuznetsov NY. Amine adducts of triallylborane as highly reactive allylborating agents for Cu(I)-catalyzed allylation of chiral sulfinylimines. Org Biomol Chem 2024; 22:4680-4696. [PMID: 38716901 DOI: 10.1039/d4ob00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The implementation of selective catalytic processes with highly active reagents is an attractive strategy that meets the modern principles of sustainable development of chemistry. In the current study, we for the first time describe the method and general principles of Cu(I)-catalyzed allylation of imines with amine adducts of allylic triorganoboranes. Triallylborane is an extremely reactive compound and cannot be used for the catalytic allylation of imines, whereas its amine adducts are ideal substrates for catalysis. The structure of the amine fragment successfully balances the safety, selectivity and stability of the allylboron reagent, allowing it to demonstrate high activity in catalytic allylation reactions, exceeding many times any known allylboranes. The obtained results are supported by quantitative kinetics data and DFT calculations. The catalytic efficacy of the system was demonstrated on model sulfinylimines (23 examples). High diastereoselectivity up to >99% was achieved, including for the gram-scale synthesis of 2-hydroxyphenyl-derivatives. Taking into account the high reactivity and unsurpassed atom-economy of amine adducts of triallylborane (AAT), they can be considered as prospective allylation reagents with Cu(I) and other appropriate metallocatalysts.
Collapse
Affiliation(s)
- Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael M Ilyin
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Ivan A Bespalov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Victor N Khrustalev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Peoples Friendship University of Russia, Miklukho-Maklay st. 6, 117198 Moscow, Russian Federation
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| |
Collapse
|
3
|
Chen DQ, Xie Y, Cao LQ, Fleishman JS, Chen Y, Wu T, Yang DH. The role of ABCC10/MRP7 in anti-cancer drug resistance and beyond. Drug Resist Updat 2024; 73:101062. [PMID: 38330827 DOI: 10.1016/j.drup.2024.101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Multidrug resistance protein 7 (MRP7), also known as ATP-binding cassette (ABC) transporter subfamily C10 (ABCC10), is an ABC transporter that was first identified in 2001. ABCC10/MRP7 is a 171 kDa protein located on the basolateral membrane of cells. ABCC10/MRP7 consists of three transmembrane domains and two nucleotide binding domains. It mediates multidrug resistance of tumor cells to a variety of anticancer drugs by increasing drug efflux and results in reducing intracellular drug accumulation. The transport substrates of ABCC10/MRP7 include antineoplastic drugs such as taxanes, vinca alkaloids, and epothilone B, as well as endobiotics such as leukotriene C4 (LTC4) and estradiol 17 β-D-glucuronide. A variety of ABCC10/MRP7 inhibitors, including cepharanthine, imatinib, erlotinib, tariquidar, and sildenafil, can reverse ABCC10/MRP7-mediated MDR. Additionally, the presence or absence of ABCC10/MRP7 is also closely related to renal tubular dysfunction, obesity, and other diseases. In this review, we discuss: 1) Structure and functions of ABCC10/MRP7; 2) Known substrates and inhibitors of ABCC10/MRP7 and their potential therapeutic applications in cancer; and 3) Role of ABCC10/MRP7 in non-cancerous diseases.
Collapse
Affiliation(s)
- Da-Qian Chen
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China
| | - Yuhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Lu-Qi Cao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Tiesong Wu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China.
| | - Dong-Hua Yang
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China; New York College of Traditional Chinese Medicine, Mineola, NY 11501, USA.
| |
Collapse
|
4
|
Zhou W, Xi S, Chen H, Jiang D, Yang J, Liu S, He L, Qiu H, Lan Y, Zhang M. A bridged backbone strategy enables collective synthesis of strychnan alkaloids. Nat Chem 2023:10.1038/s41557-023-01264-4. [PMID: 37365338 DOI: 10.1038/s41557-023-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Bridged frameworks are of high chemical and biological significance, being ubiquitous in pharmaceutical molecules and natural products. Specific structures are usually preformed to build these rigid segments at the middle or late stage in the synthesis of polycyclic molecules, resulting in decreased synthetic efficiency and target-specific syntheses. As a logically distinct synthetic strategy, we constructed an allene/ketone-equipped morphan core at the outset through an enantioselective α-allenylation of ketones. Experimental and theoretical results revealed that the high reactivity and enantioselectivity of this reaction are attributed to the cooperative effects of the organocatalyst and metal catalyst. The bridged backbone generated was employed as a structural platform to guide and facilitate the assembly of up to five fusing rings, and the allene and ketone groups thereon were used to precisely install various functionalities at C16 and C20 at the late stage, leading to a concise, collective total synthesis of nine strychnan alkaloids.
Collapse
Affiliation(s)
- Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Song Xi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Shuangwei Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, China.
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Barnes GL, Hong AY, Vanderwal CD. A Synthesis of Alstonlarsine A via Alstolucines B and F Demonstrates the Chemical Feasibility of a Proposed Biogenesis. Angew Chem Int Ed Engl 2023; 62:e202215098. [PMID: 36448226 PMCID: PMC9852003 DOI: 10.1002/anie.202215098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
We offer a new biogenetic proposal for the origin of the complex alkaloid alstonlarsine A, through rearrangement of the Strychnos alkaloids alstolucines B and F. Further, we provide evidence of the chemical feasibility of this proposal in the facile conversion of synthetic alstolucines into alstonlarsine A through a short, efficient sequence of N-methylation, β-elimination, and a cascade 1,7-hydride shift/Mannich cyclization. We believe that this is the first biogenetic proposal involving the "tert-amino effect", a hydride-shift-based internal redox trigger of a Mannich cyclization. A further interesting feature of the cascade is that its stereochemical outcome most likely originates in conformational preferences during the hydride shift.
Collapse
Affiliation(s)
- Griffin L Barnes
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, CA92697-2025, USA
| | - Allen Y Hong
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, CA92697-2025, USA
| | - Christopher D Vanderwal
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, CA92697-2025, USA
- Department of Pharmaceutical Sciences, 101 Theory, University of California, Irvine, CA-92697, USA
| |
Collapse
|
6
|
Zhao S, Sirasani G, Andrade RB. Aspidosperma and Strychnos alkaloids: Chemistry and biology. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:1-143. [PMID: 34565505 DOI: 10.1016/bs.alkal.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Of Nature's nearly 3000 unique monoterpene indole alkaloids derived from tryptophan, those members belonging to the Aspidosperma and Strychnos families continue to impact the fields of natural products (i.e., isolation, structure determination, biosynthesis) and organic chemistry (i.e., chemical synthesis, methodology development) among others. This review covers the biological activity (Section 2), biosynthesis (Section 3), and synthesis of both classical and novel Aspidosperma (Section 4), Strychnos (Section 5), and selected bis-indole (Section 6) alkaloids. Technological advancements in genetic sequencing and bioinformatics have deepened our understanding of how Nature assembles these intriguing molecules. The proliferation of innovative synthetic strategies and tactics for the synthesis of the alkaloids covered in this review, which include contributions from over fifty research groups from around the world, are a testament to the creative power and technical skills of synthetic organic chemists. To be sure, Nature-the Supreme molecular architect and source of a dazzling array of irresistible chemical logic puzzles-continues to inspire scientists across multiple disciplines and will certainly continue to do so for the foreseeable future.
Collapse
Affiliation(s)
- Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | | | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Namasivayam V, Silbermann K, Pahnke J, Wiese M, Stefan SM. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Comput Struct Biotechnol J 2021; 19:3269-3283. [PMID: 34141145 PMCID: PMC8193046 DOI: 10.1016/j.csbj.2021.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Computer-aided pattern analysis (C@PA) was recently presented as a powerful tool to predict multitarget ABC transporter inhibitors. The backbone of this computational methodology was the statistical analysis of frequently occurring molecular features amongst a fixed set of reported small-molecules that had been evaluated toward ABCB1, ABCC1, and ABCG2. As a result, negative and positive patterns were elucidated, and secondary positive substructures could be suggested that complemented the multitarget fingerprints. Elevating C@PA to a non-statistical and exploratory level, the concluded secondary positive patterns were extended with potential positive substructures to improve C@PA's prediction capabilities and to explore its robustness. A small-set compound library of known ABCC1 inhibitors with a known hit rate for triple ABCB1, ABCC1, and ABCG2 inhibition was taken to virtually screen for the extended positive patterns. In total, 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors resulted, from which 10 have been purchased and biologically evaluated. Our approach revealed 4 novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors with a biological hit rate of 40%, but with a slightly lower inhibitory power than derived from the original C@PA. This is the very first report about discovering novel broad-spectrum inhibitors against the most prominent ABC transporters by improving C@PA.
Collapse
Key Words
- ABC transporter, ATP-binding cassette transporter
- ABCB1 (P-gp)
- ABCC1 (MRP1)
- ABCG2 (BCRP)
- ATP, adenosine-triphosphate
- Alzheimer's disease (AD)
- BCRP, breast cancer resistance protein (ABCG2)
- C@PA, computer-aided pattern analysis
- F1–5, pharmacophore features 1–5
- IC50, half-maximal inhibition concentration
- MDR, multidrug resistance
- MOE, molecular operating environment
- MRP1, multidrug resistance-associated protein 1 (ABCC1)
- Multidrug resistance (MDR)
- Multitarget fingerprints
- P-gp, P-glycoprotein (ABCB1)
- Pan-ABC inhibition / antagonism / blockage (PANABC)
- Pattern analysis (C@PA)
- SEM, standard error of the mean
- SMILES, simplified molecular input line entry specification
- Tc, Tanimotto coefficient
- Triple / multitarget / broad-spectrum / promiscuous inhibitor / antagonist
- Under-studied ABC transporters (e.g., ABCA7)
- Well-studied ABC transporters
- calcein AM, calcein acetoxymethyl
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Builging, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
8
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
9
|
Walia M, Teijaro CN, Gardner A, Tran T, Kang J, Zhao S, O'Connor SE, Courdavault V, Andrade RB. Synthesis of (-)-Melodinine K: A Case Study of Efficiency in Natural Product Synthesis. JOURNAL OF NATURAL PRODUCTS 2020; 83:2425-2433. [PMID: 32786883 DOI: 10.1021/acs.jnatprod.0c00310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficiency is a key organizing principle in modern natural product synthesis. Practical criteria include time, cost, and effort expended to synthesize the target, which tracks with step-count and scale. The execution of a natural product synthesis, that is, the sum and identity of each reaction employed therein, falls along a continuum of chemical (abiotic) synthesis on one extreme, followed by the hybrid chemoenzymatic approach, and ultimately biological (biosynthesis) on the other, acknowledging the first synthesis belongs to Nature. Starting materials also span a continuum of structural complexity approaching the target with constituent elements on one extreme, followed by petroleum-derived and "chiral pool" building blocks, and complex natural products (i.e., semisynthesis) on the other. Herein, we detail our approach toward realizing the first synthesis of (-)-melodinine K, a complex bis-indole alkaloid. The total syntheses of monomers (-)-tabersonine and (-)-16-methoxytabersonine employing our domino Michael/Mannich annulation is described. Isolation of (-)-tabersonine from Voacanga africana and strategic biotransformation with tabersonine 16-hydroxylase for site-specific C-H oxidation enabled a scalable route. The Polonovski-Potier reaction was employed in biomimetic fragment coupling. Subsequent manipulations delivered the target. We conclude with a discussion of efficiency in natural products synthesis and how chemical and biological technologies define the synthetic frontier.
Collapse
Affiliation(s)
- Manish Walia
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alex Gardner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Thi Tran
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jinfeng Kang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute of Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours 37200, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
10
|
He W, Wang P, Chen J, Xie W. Recent progress in the total synthesis of Strychnos alkaloids. Org Biomol Chem 2020; 18:1046-1056. [DOI: 10.1039/c9ob02627d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent synthetic approaches toward Strychnos alkaloids are summarized, including novel synthetic methodologies and strategies.
Collapse
Affiliation(s)
- Weigang He
- School of Biology and Food Engineering
- Changshu Institute of Technology
- Changshu 215500
- China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
| | - Pengyan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
11
|
Hong AY, Vanderwal CD. A Sequential Cycloaddition Strategy for the Synthesis of Alsmaphorazine B Traces a Path Through a Family of Alstonia Alkaloids. Tetrahedron 2017; 73:4160-4171. [PMID: 28943664 PMCID: PMC5603193 DOI: 10.1016/j.tet.2016.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Driven by a new biogenetic hypothesis, the first total synthesis of alsmaphorazine B and several related indole alkaloids has been achieved. Numerous early approaches proved unsuccessful owing to unproductive side reactivity; nevertheless, they provided important clues that guided the evolution of our strategy. Critical to our success was a major improvement in our Zincke aldehyde cycloaddition strategy, which permitted the efficient gram-scale synthesis of akuammicine. The sequential chemoselective oxidations of akuammicine leading up to the key oxidative rearrangement also yielded several biogenetically related indole alkaloids en route to alsmaphorazine B.
Collapse
Affiliation(s)
- Allen Y. Hong
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025, USA
| | - Christopher D. Vanderwal
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
12
|
Jiang L, Yu Y, Li G, Zu L. Divergent Synthesis of Hydro-γ-Carbolines and Multisubstituted Indoles through Grob Fragmentation/Mannich Cyclization. Chem Asian J 2016; 11:2838-2840. [PMID: 27558845 DOI: 10.1002/asia.201600980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/23/2016] [Indexed: 11/07/2022]
Abstract
A distinct strategy for the divergent synthesis of hydro-γ-carbolines and multisubstituted indoles is reported. The stereochemical outcomes and a control experiment indicate that the reactions likely proceed through Grob fragmentation/Mannich cyclization rather than a concerted aza-pinacol rearrangement.
Collapse
Affiliation(s)
- Long Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Guang Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Brown DG, Boström J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? J Med Chem 2015; 59:4443-58. [DOI: 10.1021/acs.jmedchem.5b01409] [Citation(s) in RCA: 826] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dean G. Brown
- AstraZeneca Neurosciences, IMED Biotech Unit, AstraZeneca R&D Boston, 141 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jonas Boström
- CVMD
Innovative Medicines, IMED Biotech Unit, AstraZeneca, Mölndal SE-431 83, Sweden
| |
Collapse
|
14
|
Kokkonda P, Brown KR, Seguin TJ, Wheeler SE, Vaddypally S, Zdilla MJ, Andrade RB. Biomimetic Total Syntheses of (−)-Leucoridines A and C through the Dimerization of (−)-Dihydrovalparicine. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Kokkonda P, Brown KR, Seguin TJ, Wheeler SE, Vaddypally S, Zdilla MJ, Andrade RB. Biomimetic Total Syntheses of (-)-Leucoridines A and C through the Dimerization of (-)-Dihydrovalparicine. Angew Chem Int Ed Engl 2015; 54:12632-5. [PMID: 26315453 DOI: 10.1002/anie.201505198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/23/2015] [Indexed: 12/11/2022]
Abstract
Concise biomimetic syntheses of the Strychnos-Strychnos-type bis-indole alkaloids (-)-leucoridine A (1) and C (2) were accomplished through the biomimetic dimerization of (-)-dihydrovalparicine (3). En route to 3, the known alkaloids (+)-geissoschizoline (8) and (-)-dehydrogeissoschizoline (10) were also prepared. DFT calculations were employed to elucidate the mechanism, which favors a stepwise aza-Michael/spirocyclization sequence over the alternate hetero-Diels-Alder cycloaddition reaction.
Collapse
Affiliation(s)
- Praveen Kokkonda
- Department of Chemistry, Temple University, Philadelphia, PA 19122 (USA) https://www.cst.temple.edu/∼randrade
| | - Keaon R Brown
- Department of Chemistry, Temple University, Philadelphia, PA 19122 (USA) https://www.cst.temple.edu/∼randrade
| | - Trevor J Seguin
- Department of Chemistry, Texas A & M University, College Station, TX 77843 (USA)
| | - Steven E Wheeler
- Department of Chemistry, Texas A & M University, College Station, TX 77843 (USA)
| | - Shivaiah Vaddypally
- Department of Chemistry, Temple University, Philadelphia, PA 19122 (USA) https://www.cst.temple.edu/∼randrade
| | - Michael J Zdilla
- Department of Chemistry, Temple University, Philadelphia, PA 19122 (USA) https://www.cst.temple.edu/∼randrade
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA 19122 (USA) https://www.cst.temple.edu/∼randrade.
| |
Collapse
|
16
|
Hong AY, Vanderwal CD. A synthesis of alsmaphorazine B demonstrates the chemical feasibility of a new biogenetic hypothesis. J Am Chem Soc 2015; 137:7306-9. [PMID: 26034815 PMCID: PMC4477012 DOI: 10.1021/jacs.5b04686] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An N-oxide fragmentation/hydroxylamine oxidation/intramolecular 1,3-dipolar cycloaddition cascade efficiently converted an oxidized congener of akuammicine into the complex, hexacyclic architecture of the alsmaphorazine alkaloids. This dramatic structural change shows the chemical feasibility of our novel proposal for alsmaphorazine biogenesis. Critical to these endeavors was a marked improvement in our previously reported Zincke aldehyde cycloaddition approach to indole alkaloids, which permitted the gram-scale synthesis of akuammicine. The chemoselective oxidations of akuammicine leading up to the key rearrangement also generated several biogenetically related alkaloids of the alstolucine and alpneumine families.
Collapse
Affiliation(s)
- Allen Y. Hong
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christopher D. Vanderwal
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|