1
|
Feng K, Liu YY, Zong Y, Lei Z, Wu Y, Yang J, Lin F, Qi QY, Li Q, Zhuang SY, Zhang J, Tian J, Zhou W, Ma D, Zhang DW, Li ZT, Yu SB. Structure-Activity Relationship Studies Leading to the Discovery of Highly Water-Soluble and Biocompatible Acyclic Cucurbit[ n]uril FY-3451 as a Universal Antagonist That Rapidly Reverses Neuromuscular Blocking Agents In Vivo. J Med Chem 2024; 67:17905-17918. [PMID: 39324796 DOI: 10.1021/acs.jmedchem.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The development of a reversal agent that can rapidly reverse clinically used nondepolarizing neuromuscular blocking agents (NMBAs) has long been a challenge. Here, we report the synthesis of a series of highly water-soluble acyclic cucurbit[n]urils (acCBs). Systematic structure-activity relationship studies reveal that introducing two propylidene units on the peripheral benzene rings not only remarkably improves the activity of the corresponding derivative acCB6 (FY 3451) in reversing the neuromuscular block of rocuronium, cisatracurium, vecuronium, and pancuronium, the four clinically used NMBAs, through stable inclusion, but also allows for high water-solubility as well as a maximum tolerated dose (2000 mg/kg on rats). In vivo experiments with rats show that, at the identical dose of 25 mg/kg, for rocuronium, vecuronium, and pancuronium, acCB6 can achieve a recovery time shorter than that of sugammadex for rocuronium and, at the dose of 100 mg/kg, realize comparably rapid reversal for cisatracurium.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Yang Zong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Zhuo Lei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yan Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Furong Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qian Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Sheng-Yi Zhuang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jiangshan Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jia Tian
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering, Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
2
|
Perera S, Shaurya A, Baptiste M, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril Receptors Function as Solid State Sequestrants for Organic Micropollutants. Angew Chem Int Ed Engl 2024; 63:e202407169. [PMID: 38661568 DOI: 10.1002/anie.202407169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
The accumulation of organic micropollutants (OMP) in aquatic systems is a major societal problem that can be addressed by approaches including nanofiltration, flocculation, reverse osmosis and adsorptive methods using insoluble materials (e.g. activated carbon, MOFs, nanocomposites). More recently, polymeric versions of supramolecular hosts (e.g. cyclodextrins, calixarenes, pillararenes) have been investigated as OMP sequestrants. Herein, we report our study of the use of water insoluble dimethylcatechol walled acyclic cucurbit[n]uril (CB[n]) hosts as solid state sequestrants for a panel of five OMPs. A series of hosts (H1-H4) were synthesized by reaction of glycoluril oligomer (monomer-tetramer) with 3,6-dimethylcatechol and fully characterized by spectroscopic means and x-ray crystallography. The solid hosts sequester OMPs from water with removal efficiencies exceeding 90 % in some cases. The removal efficiencies of the new hosts parallel the known molecular recognition properties of analogous water soluble acyclic CB[n]. OMP uptake by solid host occurs rapidly (≈120 seconds). Head-to-head comparison with CB[6] in batch-mode separation and DARCO activated carbon in flow-through separation mode show that tetramer derived host (H4) performs very well under identical conditions. The work establishes insoluble acyclic CB[n]-type receptors as a promising new platform for OMP sequestration.
Collapse
Affiliation(s)
- Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Alok Shaurya
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Michael Baptiste
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| |
Collapse
|
3
|
Huo M, Song SQ, Dai XY, Li FF, Hu YY, Liu Y. Phosphorescent acyclic cucurbituril solid supramolecular multicolour delayed fluorescence behaviour. Chem Sci 2024; 15:5163-5173. [PMID: 38577356 PMCID: PMC10988582 DOI: 10.1039/d4sc00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Organic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.86 μs. Its RTP properties are significantly promoted with an extended lifetime up to 2.12 s and considerable quantum yield of 6.29% after assembly with a polyvinyl alcohol (PVA) matrix. By virtue of the intrinsic self-crimping configuration of ACB-COOH, organic guests, including fluorescence dyes (Rhodamine B (RhB) and Pyronin Y (PyY)) and a drug molecule (morphine (Mor)), could be fully encapsulated by ACB-COOH to attain energy transfer involving phosphorescent acyclic cucurbituril. Ultimately, as-prepared systems are successfully exploited to establish multicolor afterglow materials and visible sensing of morphine. As an expansion of phosphorescent acyclic cucurbituril, the host afterglow color can be readily regulated by attaching different aromatic sidewalls. This study develops the fabrication strategies and application scope of a supramolecular phosphorescent host and opens up a new direction for the manufacture of intelligent long-lived luminescent materials.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Shuang-Qi Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Fan-Fan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu-Yang Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
4
|
Acyclic cucurbiturils and their applications. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Zadorozhnii PV, Kiselev VV, Hrek OO, Kharchenko AV, Okhtina OV. Synthesis, spectral characteristics, and molecular structure of 2-(2,4-dichlorophenyl)-6-(2-methoxybenzyl)-4-(trichloromethyl)-4H-1,3,5-oxadiazine. Struct Chem 2022. [DOI: 10.1007/s11224-022-02024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Yin P, Zhang S, Liu J, Liao X, Zhou G, Yang J, Wang B, Yang B. Preparation, binding behaviours and thermal stability of inclusion complexes between (Z)‐jasmone and acyclic cucurbit[n]urils. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peipei Yin
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Shuqing Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Jing Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Guiyuan Zhou
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
7
|
Zhang Y, Kong L, Zhu P, Liu Q, Liao X, Si T, Yang B. Preparation, Characterization and Anticancer Activity of Inclusion Complexes between Genistein and Amino‐Appended β‐Cyclodextrins. ChemistrySelect 2022. [DOI: 10.1002/slct.202201125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yazhou Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Lingguang Kong
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Panyong Zhu
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Qingmeng Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Tian Si
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| |
Collapse
|
8
|
Duan Y, Wang J, Cheng L, Duan H, Tian P, Zhang Y, Cao L. A fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container for drug delivery. Org Biomol Chem 2022; 20:3998-4005. [PMID: 35504031 DOI: 10.1039/d2ob00520d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the rational design and construction of drug delivery systems (DDSs) via a supramolecular approach for improving chemical therapeutics have gained significant attention. Here, we report a host-guest DDS formed from a fluorescent, chirality-responsive, and water-soluble tetraphenylethene-based octacationic cage as a fluorescent/chiral probe, solubilizer, and molecular cargo, which can recognize chiral nucleoside drugs, enhance the solubility of insoluble drugs, and protect drugs from the outside environment by forming host-guest complexes in aqueous solution. Given the fluorescence properties and dynamically rotational conformation of tetraphenylethene (TPE) units, this fluorescent and chirality-responsive cage exhibits different responses including turn-on/turn-off fluorescence and negative/positive circular dichroism (CD) when binding with different chiral nucleoside drugs in water, resulting in multiple-responsive photophysical behaviors for these chiral drugs. Furthermore, this water-soluble cationic cage with a hydrophobic cavity can improve the water solubility of insoluble drugs (e.g., CPT) by forming host-guest complexes in water. More importantly, this multifunctional cage exhibits a low toxicity to both human colon and breast cancer cell lines in vitro, and drugs encapsulated by the cage are more effective in killing cancer cells than drugs alone. Finally, the on-off-on fluorescence responses in the formation and dissociation processes of the cage⊃drug complexes have been successfully used to monitor drug release and track drug delivery by fluorescence microscopy in vitro. Therefore, this fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container can be used to construct a smart drug delivery system with several functions of fluorescence and CD detection, water solubilization, real-time monitoring, and chemotherapy.
Collapse
Affiliation(s)
- Yanjuan Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Jingjing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Honghong Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Ping Tian
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
9
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Du G, Yang W, Liao X, Gao C, Yang J, Yang B. Synthesis, Characterization and Thermal Controlled Release Of 2‐Isopropyl‐N,2,3‐Trimethylbutyramide with Acyclic Cucurbit[n]urils Inclusion Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang Du
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Waixiang Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| |
Collapse
|
11
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
12
|
Warmerdam Z, Kamba BE, Le MH, Schrader T, Isaacs L, Bayer P, Hof F. Binding Methylarginines and Methyllysines as Free Amino Acids: A Comparative Study of Multiple Host Classes*. Chembiochem 2021; 23:e202100502. [PMID: 34758178 PMCID: PMC9299052 DOI: 10.1002/cbic.202100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Indexed: 01/18/2023]
Abstract
Methylated free amino acids are an important class of targets for host‐guest chemistry that have recognition properties distinct from those of methylated peptides and proteins. We present comparative binding studies for three different host classes that are each studied with multiple methylated arginines and lysines to determine fundamental structure‐function relationships. The hosts studied are all anionic and include three calixarenes, two acyclic cucurbiturils, and two other cleft‐like hosts, a clip and a tweezer. We determined the binding association constants for a panel of methylated amino acids using indicator displacement assays. The acyclic cucurbiturils display stronger binding to the methylated amino acids, and some unique patterns of selectivity. The two other cleft‐like hosts follow two different trends, shallow host (clip) following similar trends to the calixarenes, and the other more closed host (tweezer) binding certain less‐methylated amino acids stronger than their methylated counterparts. Molecular modelling sheds some light on the different preferences of the various hosts. The results identify hosts with new selectivities and with affinities in a range that could be useful for biomedical applications. The overall selectivity patterns are explained by a common framework that considers the geometry, depth of binding pockets, and functional group participation across all host classes.
Collapse
Affiliation(s)
- Zoey Warmerdam
- Department of Chemistry and the Centre for, Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Rd, V8W 3V6, Victoria, BC, Canada
| | - Bianca E Kamba
- Department of Structural and Medicinal Biochemistry, Universität Duisburg Essen, Universitätstrasse 2, 45141, Essen, Germany
| | - My-Hue Le
- Department of Chemistry, Universität Duisburg Essen, Universitätstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Department of Chemistry, Universität Duisburg Essen, Universitätstrasse 7, 45117, Essen, Germany
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, College Park, USA
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Universität Duisburg Essen, Universitätstrasse 2, 45141, Essen, Germany
| | - Fraser Hof
- Department of Chemistry and the Centre for, Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Rd, V8W 3V6, Victoria, BC, Canada
| |
Collapse
|
13
|
Pashkina EA, Grishina LV, Aktanova AA, Kozlov VA. Antitumor activity of supramolecular complexes of cucurbituril with platinum(II) compounds. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Liu H, He ZZ, Yu L, Ma J, Jin XP. Improved solubility and stability of rifampicin as an inclusion complex of acyclic cucurbit[n]uril. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01093-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cheng M, Isaacs L. Acyclic Cucurbituril Featuring Pendant Cyclodextrins. Supramol Chem 2021; 33:53-62. [PMID: 34305377 PMCID: PMC8294166 DOI: 10.1080/10610278.2021.1927033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
We report the design and synthesis of the acyclic cucurbit[n]uril-β-cyclodextrin chimeric host H1. The goal of the study is to deepen the cavity of the receptor to allow β-CD complexation of moieties on the guest (especially fentanyl) that protrude from the cavity of the primary acyclic CB[n] binding site to enhance binding affinity and deliver new supramolecular antidotes for fentanyl intoxication. 1H NMR spectroscopy was used to deduce the geometry of the complexes between H1 and H2 and the guest panel (G1 - G8 and fentanyl) whereas isothermal titration calorimetry was used to determine the thermodynamic parameters of complexation. Hosts H1 and H2 retain the essential molecular recognition features of CB[n] receptors, but chimeric host H1 binds slightly stronger toward the guest panel than H2 for reasons that remain unclear. Compared to tetraanionic hosts M1 and M2, the dianionic hosts H1 and H2 are less potent receptors which reflects the importance of electrostatic (ion-ion and ion-dipole) interactions in this series of hosts. The work highlights the challenges inherent in the optimization of binding affinity of hosts as potential supramolecular antidotes.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Host−guest inclusion systems of nicotine with acyclic cucurbit[n]urils for controlled heat releases. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Dračínský M, Hurtado CS, Masson E, Kaleta J. Stuffed pumpkins: mechanochemical synthesis of host-guest complexes with cucurbit[7]uril. Chem Commun (Camb) 2021; 57:2132-2135. [PMID: 33605291 DOI: 10.1039/d1cc00240f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Solvent-free mechanochemical synthesis (ball-milling) was used to prepare inclusion complexes with cucurbit[7]uril and four model guest molecules (adamantane, adamantyl-1-amine hydrochloride, toluidine hydrochloride, and p-phenylenediamine dihydrochloride). Successful formation of individual inclusions was independently confirmed by one- and two-dimensional solid-state NMR techniques and differential scanning calorimetry. Mechanochemical synthesis represents an alternative path towards new types of cucurbit[n]uril/guest inclusion complexes that are not accessible due to limited solubility of the individual components.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| | - Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
18
|
Gao R, Yang W, Xu J, Chen L, Yang J, Wang B, Yang B. Host‐Guest Inclusion Complexes of Geraniol and Nerol with Acyclic Cucurbit[n]urils: Preparation, Characterization and Controlled Release. ChemistrySelect 2021. [DOI: 10.1002/slct.202004685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rui Gao
- R&D Center of China Tobacco Yunnan Industrial Co., Kunming Yunnan 650231 P.R. China
| | - Waixiang Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| | - Jicang Xu
- R&D Center of China Tobacco Yunnan Industrial Co., Kunming Yunnan 650231 P.R. China
| | - Liyuan Chen
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co., Kunming Yunnan 650231 P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| |
Collapse
|
19
|
Murkli S, Klemm J, King D, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril-Type Receptors: Aromatic Wall Extension Enhances Binding Affinity, Delivers Helical Chirality, and Enables Fluorescence Sensing. Chemistry 2020; 26:15249-15258. [PMID: 32658342 PMCID: PMC7704778 DOI: 10.1002/chem.202002874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/30/2022]
Abstract
We report the linear extension from M1 to M2 to anthracene walled M3 which adopts a helical conformation (X-ray) to avoid unfavorable interactions between sidewalls. M3 is water soluble (=30 mm) and displays enhanced optical properties (ϵ=1.28×105 m-1 cm-1 , λmax =370 nm) relative to M2. The binding properties of M3 toward guests 1-29 were examined by 1 H NMR and ITC. The M3⋅guest complexes are stronger than the analogous complexes of M2 and M1. The enhanced binding of M3 toward neuromuscular blockers 25, 27-29 suggests that M3 holds significant promise as an in vivo reversal agent. The changes in fluorescence observed for M3⋅guest complexes are a function of the relative orientation of the anthracene sidewalls, guest concentration, Ka , and guest electronics which rendered M3 a superb component of a fluorescence sensing array. The work establishes M3 as a next generation sequestering agent and a versatile component of fluorescence sensors.
Collapse
Affiliation(s)
- Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Jared Klemm
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
20
|
Ai Q, Fu Q, Liang F. pH-Mediated Single Molecule Conductance of Cucurbit[7]uril. Front Chem 2020; 8:736. [PMID: 33195012 PMCID: PMC7477741 DOI: 10.3389/fchem.2020.00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Recognition tunneling technique owns the capability for investigating and characterizing molecules at single molecule level. Here, we investigated the conductance value of cucurbit[7]uril (CB[7]) and melphalan@CB[7] (Mel@CB[7]) complex molecular junctions by using recognition tunneling technique. The conductances of CB[7] and Mel@CB[7] with different pH values were studied in aqueous media as well as organic solvent. Both pH value and guest molecule have an impact on the conductance of CB[7] molecular junction. The conductances of CB[7] and Mel@CB[7] both showed slightly difference on the conductance under different measurement systems. This work extends the molecular conductance measurement to aqueous media and provides new insights of pH-responsive host-guest system for single molecule detection through electrical measurements.
Collapse
Affiliation(s)
- Qiushuang Ai
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Jiangxi College of Traditional Chinese Medicine, Fuzhou, China
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Shaya D, Isaacs L. Acyclic Cucurbit[n]uril-Type Containers as Receptors for Neuromuscular Blocking Agents: Structure-Binding Affinity Relationships. CROAT CHEM ACTA 2020; 92:163-171. [PMID: 32855560 DOI: 10.5562/cca3507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Acyclic cucurbit[n]uril molecular containers 1 and 2C3 have previously been shown to strongly bind to the neuromuscular blocking agents rocuronium, vecuronium, pancuronium, and cisatracurium in vitro by optical methods and to reverse neuromuscular block in vivo in rats. In this paper we study the in vitro binding of a panel of acyclic CB[n]-type receptors toward the four neuromuscular blocking agents and acetylcholine to develop structure-binding affinity relationships. The selected variants include those with different aromatic sidewalls (e.g. 1Me4 with dimethyl o-xylylene walls; 3 with 1,8-linked naphthalene walls), with different glycoluril oligomer lengths (e.g. 4 and 5 based on glycoluril trimer), and with different linker lengths between aromatic wall and SO3 - solubilizing group (e.g. 2C2 - 2C4). Based on the analysis of complexation induced changes in 1H NMR chemical shift we conclude that the hydrophobic regions of the guests bind in the hydrophobic cavity of the hosts with the cationic moieties of the guest binding at the ureidyl C=O portals by ion-dipole and ion-ion interactions. The thermodynamic parameters of binding were determined by direct and competition isothermal titration calorimetry experiments. We find that hosts 4 and 5 based on glycoluril trimer form significantly weaker complexes with the streroidal NMBAs than with the analogues hosts based on glycoluril tetramer (1 and 2C3). Similarly, hosts 1Me4 and 3 with different length and height aromatic walls do not exhibit the extreme binding constants displayed by 2C3 but rather behave similarly to 1. Finally, we find that hosts 2C2 and 2C4 bind only slightly more weakly to the NMBAs than 2C3, but retain the ability to discriminate against acetylcholine, and possess higher inherent water solubility than 2C3. Host 2C4, in particular, holds potential for future in vivo applications.
Collapse
Affiliation(s)
- David Shaya
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Pashkina E, Aktanova A, Blinova E, Mirzaeva I, Kovalenko E, Knauer N, Ermakov A, Kozlov V. Evaluation of the Immunosafety of Cucurbit[n]uril on Peripheral Blood Mononuclear Cells In Vitro. Molecules 2020; 25:E3388. [PMID: 32726898 PMCID: PMC7435832 DOI: 10.3390/molecules25153388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cucurbiturils (CB[n]s) are nanoscale macrocyclic compounds capable of encapsulating a molecule or part of a molecule by forming host-guest complexes. Integration of drugs with CB[n] is used for the following purposes: controlling clearance; protection of the drug from biodegradation; targeted delivery to specific organs, tissues, or cells; reduction of toxicity; and improving solubility. One of the major problems encountered in the application of new drug delivery systems is lack of knowledge of their biological properties. CB[n], unlike many other often toxic nanoparticles, has extremely low toxicity, even at high doses. However, many aspects of the biological actions of these nanoscale cavitands remain unclear, including the immunotropic properties. In this study, we investigated the immunotoxicity and immunomodulation properties of CB[n]. It was found that CB[7] and CB[6] did not decrease the viability of mononuclear cells at all tested concentrations from 0.1-1 mM. Overall, the results indicated an immunomodulatory effect of different concentrations of CB[n]. In the case of a longer cultivation time, CB[n] had an immunostimulating effect, which was indicated by an enhancement of the proliferative activity of cells and increased expression of HLA-DR on lymphocytes.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Elena Blinova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
| | - Irina Mirzaeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Lavrentiev ave., 630090 Novosibirsk, Russia; (I.M.); (E.K.)
| | - Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Lavrentiev ave., 630090 Novosibirsk, Russia; (I.M.); (E.K.)
| | - Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Aleksandr Ermakov
- Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia;
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia;
| |
Collapse
|
23
|
Cheng E, Zeng Y, Huang Y, Su T, Yang Y, Peng L, Li J. A LSER-based model to predict the solubilizing effect of drugs by inclusion with cucurbit[7]uril. RSC Adv 2020; 10:24542-24548. [PMID: 35516210 PMCID: PMC9055158 DOI: 10.1039/d0ra03394d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/18/2020] [Indexed: 01/19/2023] Open
Abstract
A large number of traditional drugs and the development of new drugs often encounter the problem of poor water solubility. Cucurbit[7]uril, a novel macrocyclic host, has attracted great interest in this field. Investigating the solubilizing effect of drugs by inclusion with cucurbit[7]uril could provide guidance for drug solubilization. In this work, the interactions of drugs with cucurbit[7]uril, drugs with water and the inclusion complexes with water, and the properties of drugs and inclusion complexes, are considered to establish a linear solvation energy relationships (LSER)-based model. This model could be applied to predicting the solubility of drugs with cucurbit[7]uril in water. Density functional theory (DFT) is employed to obtain the properties and interaction parameters. The multi-parameter solubility model obtained by stepwise regression shows good fitting and predicting results. And the surface area of inclusion complexes (A 3), the LUMO energy of inclusion complexes (E 3LUMO), the polarity index of inclusion complexes (I 3), the electronegativity of drugs (χ 1), and the oil-water partition coefficient of drugs (log p 1w) are effective parameters related to the solubilization of drugs with cucurbit[7]uril. Futhermore, the model could be extended to calculate the solubilizing effect of other macrocycles.
Collapse
Affiliation(s)
- Enping Cheng
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
| | - Yangyan Zeng
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
| | - Yan Huang
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
| | - Tiezhu Su
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
| | - Yang Yang
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
| | - Li Peng
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-592-2183055
- Collaborative Innovation Center of Chemistry for Energy Materials Xiamen 361005 China
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters Xiamen 361005 China
| |
Collapse
|
24
|
Leonard MZ, Rostin P, Hill KP, Grabitz SD, Eikermann M, Miczek KA. The Molecular-Container Calabadion-2 Prevents Methamphetamine-Induced Reinstatement in Rats: A Potential Approach to Relapse Prevention? Int J Neuropsychopharmacol 2020; 23:401-405. [PMID: 32531049 PMCID: PMC7311644 DOI: 10.1093/ijnp/pyz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Reexposure to methamphetamine with a single "priming dose" can trigger intense cravings and precipitate relapse in methamphetamine-dependent individuals. The acyclic cucurbit[n]uril "molecular container" calabadion-2 shows a high affinity to bind and sequester methamphetamine in vitro and attenuates its locomotor-stimulating effect in rats. The present study investigates whether pretreatment with calabadion-2 is sufficient to prevent the reinstatement of drug seeking by a priming dose of methamphetamine in rats. METHODS Male Long-Evans rats were trained to self-administer i.v. methamphetamine (0.06 mg/kg/infusion). Following 10 days of stable self-administration, rats underwent extinction training and were subsequently tested on a multi-phase reinstatement procedure. Drug-primed reinstatement sessions (0.3 mg/kg methamphetamine, i.v.) were preceded by either saline or calabadion-2 (130 mg/kg). Additional reinstatement tests were conducted after administration of yohimbine (1.0 mg/kg, i.v.) to define the pharmacological specificity of calabadion-2. RESULTS Pretreatment with calabadion-2 significantly attenuated methamphetamine-induced reinstatement of responding. Cal2 did not affect drug-seeking behavior stimulated by the pharmacological stressor yohimbine, indicating a mechanism of action specific to methamphetamine. CONCLUSIONS These results demonstrate the effectiveness of calabadion-2 in a preclinical model relapse-like behavior. With further structural optimization, molecular containers may provide a novel and efficacious pharmacokinetic approach to relapse prevention for methamphetamine-dependent individuals.
Collapse
Affiliation(s)
| | - Paul Rostin
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Kevin P Hill
- Division of Addiction Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Stephanie D Grabitz
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA,Department of Anesthesiology and Intensive Care Medicine, University Duisburg-Essen, Essen, Germany,Correspondence: Klaus Miczek, PhD, Department of Psychology, Tufts University Medford, 530 Boston Ave, 02155, MA () and Matthias Eikermann, MD, PhD, Department of Anaesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, 330 Brookline Avenue, MA 02215 ()
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MA,Departments of Neuroscience and Pharmacology, Tufts University, Boston, MA,Correspondence: Klaus Miczek, PhD, Department of Psychology, Tufts University Medford, 530 Boston Ave, 02155, MA () and Matthias Eikermann, MD, PhD, Department of Anaesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, 330 Brookline Avenue, MA 02215 ()
| |
Collapse
|
25
|
Abstract
Since the discovery and structural characterization of metal organic polygons and polyhedra (MOPs), scientists have explored their potential in various applications like catalysis, separation, storage, and sensing. In recent years, scientists have explored the potential of supramolecular MOPs in biomedical application. Pioneering works by Ehrlich, Rosenberg, Lippard, Stang and others have demonstrated that MOPs have great potential as a novel class of metallo-therapeutics that can deliver cargoes (drugs and dyes) selectively. In this article, we document the progress made over the past two decades on the biomedical applications of MOPs and discuss the future prospects of this emerging field.
Collapse
Affiliation(s)
- Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
- School of Chemistry, University of Bristol, Cantock's Close, United Kingdom, BS8 1TS
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| |
Collapse
|
26
|
Yan Q, Liu W, Wen H, Zhibin X, Meng Z. A New Fluorescent Sensor for Fe
3+
Based on Glycoluril Molecular Clip. ChemistrySelect 2020. [DOI: 10.1002/slct.201904902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiaoli Yan
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Wenjin Liu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Hongliang Wen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Xu Zhibin
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Institution 5 South Zhongguancun Street Beijing 100081 P.R. China
| |
Collapse
|
27
|
Brady KG, Gilberg L, Sigwalt D, Bistany-Riebman J, Murkli S, Klemm J, Kulhánek P, Šindelář V, Isaacs L. Conformationally Mobile Acyclic Cucurbit[n]uril-Type Receptors Derived from an S-shaped Methylene Bridged Glycoluril Pentamer. Supramol Chem 2020; 32:479-494. [PMID: 33731981 DOI: 10.1080/10610278.2020.1795173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the synthesis of the conformationally mobile S-shaped glycoluril pentamer building block 3a and two new acyclic CB[n]-type receptors P1 and P2. P1 (9 mM) and P2 (11 mM) have moderate aqueous solubility but their host•guest complexes are poorly soluble. Host P1 does not undergo intermolecular self-association whereas P2 does (Ks = 189±27 M-1). 1H NMR titrations show that P1 and P2 are poor hosts toward hydrophobic (di)cations 6 - 11 (P1: Ka = 375-1400 M-1; P2: Ka = 1950-19800 M-1) compared to Tet1 and Tet2 (Tet1: Ka = 3.09 × 106 to 4.69 × 108 M-1; Tet2: Ka = 4.59 × 108 to 1.30 × 1010 M-1). Molecular modelling shows that P1 and P2 exist as a mixture of three different conformers due to the two S-shaped methylene bridged glycoluril dimer subunits that each possess two different conformations. The lowest energy conformers of P1 and P2 do not feature a well-defined central cavity. In the presence of guests, P2 adapts its conformation to form 1:1 P2•guest complexes; the binding free energy pays the energetic price of conformer selection. This energetically unfavorable conformer selection results in significantly decreased Ka values of P1 and P2 compared to Tet1 and Tet2.
Collapse
Affiliation(s)
- Kimberly G Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Laura Gilberg
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Sigwalt
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Joshua Bistany-Riebman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jared Klemm
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Binding behavior, water solubility and in vitro cytotoxicity of inclusion complexes between ursolic acid and amino-appended β-cyclodextrins. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Ndendjio SZ, Liu W, Yvanez N, Meng Z, Zavalij PY, Isaacs L. Triptycene Walled Glycoluril Trimer: Synthesis and Recognition Properties. NEW J CHEM 2019; 44:338-345. [PMID: 33867799 DOI: 10.1039/c9nj05336k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the synthesis of a new acyclic CB[n]-type host (1) that features a central glycoluril trimer capped by triptycene sidewalls. Host 1 has good solubility in water (≈ 3 mM) and does not undergo strong self-association (Ks = 480 M-1). We probed the geometry of the complexes by analyzing the complexation induced changes in the 1H NMR spectra and measured the complexation thermodynamics by isothermal titration calorimetry. The conformation of 1 and its packing in the solid state was revealed by single crystal x-ray diffraction measurements.
Collapse
Affiliation(s)
- Sandra Zebaze Ndendjio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Wenjin Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.,School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Nicolas Yvanez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.,École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F75231 Paris cedex 05, France
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
30
|
Lin J, Yang L, Liao X, Gao C, Yang B. Host–guest systems based on pH-sensitive acyclic cucurbit[n]urils for controlled release of camptothecin. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00935-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Xue W, Zavalij PY, Isaacs L. Triazole functionalized acyclic cucurbit[n]uril-type receptors: host·guest recognition properties. Org Biomol Chem 2019; 17:5561-5569. [PMID: 31112196 PMCID: PMC6572757 DOI: 10.1039/c9ob00906j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the synthesis of three new triazole functionalized acyclic CB[n]-type receptors (2-4) by click chemistry. The compounds have good solubility in water (≥8 mM) and do not undergo strong self-association (Ks ≤ 903 M-1). We measured the binding constants of 2-4 toward guests 9-24 and compared the results to those obtained for the prototypical acyclic CB[n]-type receptor 1. The X-ray crystal structure of 4 is also described.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
32
|
Zebaze Ndendjio SA, Isaacs L. Molecular recognition properties of acyclic cucurbiturils toward amino acids, peptides, and a protein. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1619737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| |
Collapse
|
33
|
Ahmadian N, Amininasab M, Mehrnejad F. Paclitaxel interaction with cucurbit [7]uril and acyclic Cucurbit[4]uril nanocontainers: A computational approach. J Mol Graph Model 2019; 90:210-218. [PMID: 31103913 DOI: 10.1016/j.jmgm.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Paclitaxel (PTX) is a natural terpenoid compound that has been broadly studied for its antitumor activities and widely used as a chemotherapy medication. The treatment efficacy of PTX is affected by its low aqueous solubility, thus causing a subject of extensive research. In recent years, synthetic molecular containers such as cucurbit[n]urils (CB[n]s) and their derivatives have been significantly developing because of their remarkable ability to bind hydrophobic and cationic drugs. Recent experimental studies have shown that acyclic CB[n]-type containers (aCB[n]s), as new derivatives of the family of CB[n]s, increase the solubility of insoluble pharmaceuticals. However, the nature by which the drug interacts with carriers remains largely unknown. In this study, molecular docking and molecular dynamics (MD) simulation were performed to understand how CB[7] and aCB[4] nanocontainers interact with PTX which affect its aqueous solubility. The results clarify how the flexibility of containers is influenced by their structure and how this affects their interactions with PTX. Our results reveal that although both CB[7] and aCB[4] are capable of binding to PTX, the affinity to aCB[4] is higher than that of CB[7]. It has also been shown that the binding to both CB[7] and aCB[4] is probably an entropy-driven process. This research supports the potential use of the cucurbit[n]urils and their acyclic derivatives as drug delivery systems.
Collapse
Affiliation(s)
- Nasim Ahmadian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| |
Collapse
|
34
|
Liu W, Lu X, Meng Z, Isaacs L. A glycoluril dimer-triptycene hybrid receptor: synthesis and molecular recognition properties. Org Biomol Chem 2019; 16:6499-6506. [PMID: 30155536 DOI: 10.1039/c8ob01575a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The strategic combination of the methylene bridged glycoluril dimer and triptycene skeletons delivers acyclic water soluble hybrid receptor 1 which is analogous to cucurbit[6]uril. The molecular recognition properties of host 1 toward hydrophobic cationic guests are investigated in detail by a combination of 1H NMR spectroscopy and isothermal titration calorimetry (ITC) studies. The fluorescence emission of 1 can be selectively and efficiently quenched upon the formation of 1·26 and 1·28 complexes.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | | | | | | |
Collapse
|
35
|
|
36
|
Li F, Liu D, Liao X, Zhao Y, Li R, Yang B. Acid-controlled release complexes of podophyllotoxin and etoposide with acyclic cucurbit[n]urils for low cytotoxicity. Bioorg Med Chem 2019; 27:525-532. [DOI: 10.1016/j.bmc.2018.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
|
37
|
Bauer D, Andrae B, Gaß P, Trenz D, Becker S, Kubik S. Functionalisable acyclic cucurbiturils. Org Chem Front 2019. [DOI: 10.1039/c9qo00156e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Functionalised acyclic cucurbiturils can be prepared in a straightforward fashion and provide access to a wide variety of substituted derivatives.
Collapse
Affiliation(s)
- Daniel Bauer
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Beatrice Andrae
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Patrick Gaß
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Danjano Trenz
- Organic Chemistry II
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Sabine Becker
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Anorganische Chemie
- 67663 Kaiserslautern
- Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| |
Collapse
|
38
|
Abstract
Two acyclic CB[n]-type hosts (1 and 2) which possess four 2° or 3° amide arms are reported; 1 and 2 are slightly soluble in water and do not self-associate. Host 2 has four 3° amide arms that exist as a mixture of E- and Z-isomers. 1H NMR was used to qualitatively investigate the binding properties of 1 and 2 which indicates they retain the essential binding features of macrocyclic CB[n] hosts (e.g. cavity binding of hydrophobic residues and portal binding of cationic groups). We measured the Ka values of 1 and 2 toward guests 6 - 12, methamphetamine, and fentanyl by ITC to evaluate their potential as in vivo sequestration agents. Neutral hosts 1 and 2 bind less tightly than tetraanionic hosts M1, ACB1, and ACB2. We attribute the lower Ka values to the absence of secondary ion-ion (ammonium•••sulfonate or ammonium•••carboxylate) electrostatic interactions for host•guest complexes of 1 and 2. The secondary amide functionality on 1 decreases affinity by formation of intramolecular NH•••O=C H-bonds. Tertiary amide host 2 binds even more weakly than 1 due to backfolding of the amide N-CH3-groups of 2 into its own cavity. The x-ray crystal structure of 2 supports this conclusion.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
39
|
Liu W, Ai H, Meng Z, Isaacs L, Xu Z, Xue M, Yan Q. Interactions between acyclic CB[n]-type receptors and nitrated explosive materials. Chem Commun (Camb) 2019; 55:10635-10638. [PMID: 31429448 DOI: 10.1039/c9cc05117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding ability of acyclic CB[n]-type receptors M1, M2 and macrocyclic CB[7] toward explosive materials was investigated. Acyclic M2 demonstrates an overall better binding and solubilizing ability, and lower fluorescence in the presence of aromatic explosive compounds, suggesting its future application for the detection of harmful explosive materials.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2018; 46:7021-7053. [PMID: 28980674 DOI: 10.1039/c6cs00898d] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is currently one of the most effective ways to treat cancer. However, traditional chemotherapy faces several obstacles to clinical trials, such as poor solubility/stability, non-targeting capability and uncontrollable release of the drugs, greatly limiting their anticancer efficacy and causing severe side effects towards normal tissues. Supramolecular chemotherapy integrating non-covalent interactions and traditional chemotherapy is a highly promising candidate in this regard and can be appropriately used for targeted drug delivery. By taking advantage of supramolecular chemistry, some limitations impeding traditional chemotherapy for clinical applications can be solved effectively. Therefore, we present here a review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host-guest recognition and provide guidance on the design of new targeting supramolecular chemotherapy combining diagnostic and therapeutic functions. Based on a large number of state-of-the-art studies, our review will advance supramolecular chemotherapy on the basis of host-guest recognition and promote translational clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | |
Collapse
|
41
|
Chandra F, Kumar P, Koner AL. Encapsulation and modulation of protolytic equilibrium of β-carboline-based norharmane drug by cucurbit[7]uril and micellar environments for enhanced cellular uptake. Colloids Surf B Biointerfaces 2018; 171:530-537. [PMID: 30096474 DOI: 10.1016/j.colsurfb.2018.07.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023]
Abstract
The effect of supramolecular nanocavity on photophysical and acid-dissociation properties of Norharmane (NHM), a physiologically important, anxiety control and memory-enhancing β-carboline-based drug, has been investigated using steady-state absorption and fluorescence spectroscopy. Self-assembled organization derived from surfactants and rigid water-soluble macrocyclic host Cucurbit[7]uril (CB7) have been selected for this investigation. The confined-space offered by the supramolecular assemblies modulates the pKa value of NHM (up to 3 units) as it can exist in two protolytic forms at near neutral pH. Therefore, the pH-dependent binding properties, modulation of pKa value and its consequences on the photophysical, chemical and solubility properties are investigated in detail. This investigation shows a large shift in the protolytic equilibrium which in turn causes ca. 15 times solubility-enhancement at near neutral pH. Moreover, the effect of enhanced solubility has been further investigated by the augmentation in the cellular uptake of NHM entrapped inside CB7. Thus, the modulation of the acid-base properties and solubility of β-carboline-based drugs will have immense potential for their formulation, cellular uptake and bioavailability.
Collapse
Affiliation(s)
- Falguni Chandra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Prashant Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Apurba L Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
42
|
Rizzi A, Murkli S, McNeill JN, Yao W, Sullivan M, Gilson MK, Chiu MW, Isaacs L, Gibb BC, Mobley DL, Chodera JD. Overview of the SAMPL6 host-guest binding affinity prediction challenge. J Comput Aided Mol Des 2018; 32:937-963. [PMID: 30415285 PMCID: PMC6301044 DOI: 10.1007/s10822-018-0170-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/07/2018] [Indexed: 10/27/2022]
Abstract
Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.
Collapse
Affiliation(s)
- Andrea Rizzi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - John N McNeill
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Wei Yao
- Department of Chemistry, Tulane University, Louisiana, LA, 70118, USA
| | - Matthew Sullivan
- Department of Chemistry, Tulane University, Louisiana, LA, 70118, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael W Chiu
- Qualcomm Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, Louisiana, LA, 70118, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California, 92697, USA.
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
43
|
Kikot LS, Kulygina CY, Lyapunov AY, Shishkina SV, Zubatyuk RI, Bogashchenko TY, Kirichenko TI. Synthesis and complexation of molecular clips based on diphenylglycoluril and dibenzocrown ethers with alkali metal cations and paraquat. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Liu W, Lu X, Xue W, Samanta SK, Zavalij PY, Meng Z, Isaacs L. Hybrid Molecular Container Based on Glycoluril and Triptycene: Synthesis, Binding Properties, and Triggered Release. Chemistry 2018; 24:14101-14110. [PMID: 30044903 DOI: 10.1002/chem.201802981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Indexed: 12/11/2022]
Abstract
We designed and synthesized a "hybrid" molecular container 1, which is structurally related to both cucurbit[n]uril (CB[n]) and pillar[n]arene type receptors. Receptor 1 was fully characterized by 1 H NMR, 13 C NMR, IR, MS and X-ray single crystal diffraction. The self-association behavior, host-guest recognition properties of 1, and the [salt] dependence of Ka were investigated in detail by 1 H NMR and isothermal titration calorimetry (ITC). Optical transmittance and TEM measurements provide strong evidence that receptor 1 undergoes co-assemble with amphiphilic guest C10 in water to form supramolecular bilayer vesicles (diameter 25.6±2.7 nm, wall thickness ≈3.5 nm) that can encapsulate the hydrophilic anticancer drug doxorubicin (DOX) and the hydrophobic dye Nile red (NR). The release of encapsulated DOX or NR from the vesicles can be triggered by hexamethonium (8 c) or spermine (10) which leads to the disruption of the supramolecular vesicles.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China.,Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Xiaoyong Lu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
45
|
Villarroel-Lecourt G, Carrasco-Carvajal J, Andrade-Villalobos F, Solís-Egaña F, Merino-San Martín I, Robinson-Duggon J, Fuentealba D. Encapsulation of Chemotherapeutic Drug Melphalan in Cucurbit[7]uril: Effects on Its Alkylating Activity, Hydrolysis, and Cytotoxicity. ACS OMEGA 2018; 3:8337-8343. [PMID: 30087942 PMCID: PMC6072240 DOI: 10.1021/acsomega.8b01335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 05/31/2023]
Abstract
The formation of inclusion complexes between drugs and macrocycles has proven to be an effective strategy to increase solubilization and stabilization of the drug, while in several cases improving their biological activity. In this context, we explored the formation of an inclusion complex between chemotherapeutic drug Melphalan (Mel) and cucurbit[7]uril (CB[7]), and studied its effect on Mel alkylating activity, hydrolysis, and cytotoxicity. The formation of the inclusion complex (Mel@CB[7]) was proven by absorption and fluorescence spectroscopy, NMR, docking studies, and molecular dynamics simulations. The binding constant for Mel and CB[7] was fairly high at pH 1 ((1.7 ± 0.7) × 106 M-1), whereas no binding was observed at neutral pH. The Mel@CB[7] complex showed a slightly decreased alkylating activity, whereas the cytotoxicity on the HL-60 cell line was maintained. The formation of the complex did not protect Mel from hydrolysis, and this result is discussed based on the simulated structure for the complex.
Collapse
|
46
|
Lu X, Samanta SK, Zavalij PY, Isaacs L. Blurring the Lines between Host and Guest: A Chimeric Receptor Derived from Cucurbituril and Triptycene. Angew Chem Int Ed Engl 2018; 57:8073-8078. [PMID: 29749674 DOI: 10.1002/anie.201803132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/30/2018] [Indexed: 12/13/2022]
Abstract
We report the synthesis and X-ray crystal structure of a cucurbituril-triptycene chimeric receptor (1). Host 1 binds to guests typical of CB[6]-CB[8], but also binds to larger guests such as blue box (20) and the Fujita square (22). Intriguingly, the geometries of the 1⋅20 and 1⋅22 complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of 1 is fully quenched by the formation of complexes with pyridinium-derived guests.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Lu X, Samanta SK, Zavalij PY, Isaacs L. Blurring the Lines between Host and Guest: A Chimeric Receptor Derived from Cucurbituril and Triptycene. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaoyong Lu
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Soumen K. Samanta
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
48
|
Shangguan L, Chen Q, Shi B, Huang F. Enhancing the solubility and bioactivity of anticancer drug tamoxifen by water-soluble pillar[6]arene-based host-guest complexation. Chem Commun (Camb) 2018; 53:9749-9752. [PMID: 28812763 DOI: 10.1039/c7cc05305c] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A water-soluble pillar[6]arene functions as a solubilizing agent to enhance the solubility and bioactivity of poorly water-soluble anticancer drug tamoxifen by host-guest complexation between it and tamoxifen.
Collapse
Affiliation(s)
- Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | |
Collapse
|
49
|
|
50
|
Ganapati S, Isaacs L. Acyclic Cucurbit[n]uril-type Receptors: Preparation, Molecular Recognition Properties and Biological Applications. Isr J Chem 2018; 58:250-263. [PMID: 29805180 PMCID: PMC5966040 DOI: 10.1002/ijch.201700098] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article traces the development of acyclic cucurbit[n]uril-type receptors with a focus on work from the Isaacs group. First, we describe the synthesis of methylene bridged glycoluril dimers capped with aromatic sidewalls which allowed us to probe the interconversion of the S- and C-shaped dimers which is a fundamental step in CB[n] formation. The C-shaped compounds were found to undergo discrete self-assembly (dimerization) in both water and organic solvents which lead us to investigate multicomponent self-sorting systems. We supressed the self-association of 8 by electrostatic repulsion in the putative dimer which allowed expression of its innate molecular recognition properties toward methylene blue and related planar cationic dyes. Longer glycoluril oligomers (trimer - hexamer, acyclic decamer) were prepared by starving the CB[n]-forming reaction of formaldehyde. The longer oligomers (e.g. 15 and 16) bind to alkylammonium ions in water ≈ 100-fold weaker than macrocyclic CB[n] highlighting the high preorganization of the acyclic but polycyclic framework. We prepared a wide variety of acyclic CB[n] compounds (wall variants, solubilizing group variants, linker variants) based on glycoluril trimer and tetramer. In particular, 26 and 27 have been shown to possess a wide variety of chemically and biologically interesting functions. For example, 26 was used to formulate the insoluble drug Albendazole and treat mice bearing SK-OV-3 xenograft tumors. Compound 27 binds tightly to the neuromuscular blocking agents rocuronium, vecuronium, and cisatracurium and acts as an in vivo reversal agent for these compounds in anesthetized rats. Container 27 was also found to modulate the hyperlocomotive effect of rats that had been treated with methamphetamine. Finally, 38 has been used as a cross reactive component of sensor arrays that are capable of classifying and quantifying cancer related nitroamines and a range of over the counter drugs. Overall, the work demonstrates that acyclic CB[n]-type compounds are nicely pre-organized and therefore retain the essential aspects of the recognition properties of macrocyclic CB[n] but allow for more straightforward tailoring of structure and solubility that enables a variety of chemically and biologically important applications.
Collapse
Affiliation(s)
- Shweta Ganapati
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA
| |
Collapse
|